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Objectives
• Estimate calibrated belief functions in a co-learning context.

• Use a minimum amount of calibration data.
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Problem
• Common problem on machine learning predictions: poor calibration.

• Calibration definition: The level of confidence actually reflects the chance that the
associated output turns out to be true.

• Inductive Conformal Prediction (ICP) [1] is a possible solution to this problem.

• What is the relation (if any) between ICPs and Belief Functions?
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Possibility theory

• Possibility distribution: π :Ω 7→ [0,1]

• Necessity Measure N and Possibility Measure Π (equivalent to Belief and Plausibilty
Functions, respectively): Π(B) = 1−N (BC ) = maxx∈B π(x),B ⊆Ω.

• Limitation: we can only extract imprecise probabilities from a possibility distribution.

• α-cut: πα= {x ∈R|π(x) >α}[2].

• Property: P (πα) ≥ 1−α.

• In the example below, we can compute the mass functions as m({y1}) = py1
−py2

and
m({y1, y2}) = py2

.
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Inductive Conformal Prediction
• Dataset Z = {(xi , wi ), wi ∈Ω|i = 1, . . . ,n} is exchangeable.

• Compute non-conformity scores αi .

• Computes p-values, ICP output, by comparing the non-conformity scores of a single
exemple and the ones of the calibration set.

• P-values property: P ({p(wi ) ≤ δ}) ≤ δ, wi ∈Ω.

• In the exemple below, y1 is a better prediction than y2 because py1
> py2

.

• Advantages: Simple to implement/understand and with a rigorous theory behind it.

• Drawbacks: Calibration set (needs more data) and significantly slower.
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Our solution
• Our hypothesis: ICP outputs can be learned directly from a machine learning model.

• We need p-values as labels, which doesn’t exist in any public datasets.

• We train a model that estimates probability distributions and then we apply the ICP
on this model output to compute p-values.

• This p-values are the labels to train a regressor.

• P-value vector p can be interpreted as a possibility distribution π.

• Estimation of calibrated belief functions via possibility distribution.
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Experiments

• CIFAR-10 dataset.

• Classifier: Fitnet backbone [3] + softmax layer.

• Regressor: Fitnet backbone + linear layer with
activation function φ(x) = exi

maxxi∈x exi
.

• π(;) = 0.

• Training parameters: batch size 25, learning
rate 0.001, momentum 0.9 and an Adam opti-
mizer.

P-values comparison

• Comparison between ICP and the regressor outputs.

• Calibration dataset = 10% of the test dataset.

• The Mean Square Root(MSR) and the R2 coefficient are
0.02 and 0.8, respectively.

• Output averaged by the number of classes.

• Results for 200 outputs. Ideal result = Blue line.

Calibration size influence
• Goal = Change the calibration set size from 10 to 1000

instances and check how the accuracy of ICP and our al-
gorithm grows.

• Regressor performs slightly worse after 100 instances, at
most 2.5% below than the ICP, but has a better perfor-
mance with less data.

Conclusion
• Calibration techniques make model predictions statistically valid.

• The ICP is a popular calibration technique but it is slower and requires more data.

• Our algorithm decrease the dependence of ICP on the calibration dataset while also being less
computationally expensive and having similar performance.

• However, it still requires a minimum amount of data and takes more time to learn.

• Future works may solve this problem using co-learning techniques[4][5].
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