Nonholonomic Interpolation: a g

eneral methodology for moton

planning in robotics

B. Berret, J.P. Gauthier and V. Zakalyukirh

Abstract— In this paper, we present several constructive
results about nonholonomic interpolation, in the perspedve
of motion planning in robotics. We specially treat the case ©
a set of nonholonomic constraints of corankp < 3. In fact,
we are able to treat almost all generic cases fop < 3. But
also, we show what may happen for larger corank. We give
complete details in the Engel’'s case, which, from the point
of view of robotics, corresponds to the kinematic constraits
of a car with a trailer.

Keywords— motion planning, subriemannian geometry,
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. INTRODUCTION

We are given a motion planning problem, i.E.=
(A,9,T) wherel™ :[0;Tr] — R" is a compact parametrized
curve onR", A is a completely non integrable distribution
onR" of corank p, g is a riemannian metric ou&r Then,
(A,g) is a subriemannian metric ov@&", the associated

In fact, and this is one of the main conclusions of the
paper, our results are in some sense, independant of the
choice of the metri@.

Following Jean ([1], [2], [3]), we define thenetric-
complexity MGZ, ¢) and theentropy EZ, €) of the mo-
tion planning problenk, as follows. Heres is a small
parameter.

1) The metric-complexity M(Z,¢) is ¢ times the
minimum length of the admissible curves that are
at distance less than or equalddrom I', and that
connect the endpoints of.

The (Kolmogorov's)entropy of I is 1 times the
minimum length of the admissible curveshat -
interpolate the curves (i.e., any piece oy of length
> € contains a point off), and that connect the
endpoints ofl".
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2)

subriemannian distance being denoted by d. In practicH,follows from our paper [4] that, provided thatis smalll

A is a set of nonholonomic constraints of@bot, g, the
metric, measures the length of the admissible curves.

a non-admissible path, that has been chosen in order
connect a source and a target in the ambient sfige
avoiding some obstacles.

enough g-interpolating curves minimizing the entropyp
exist

toOur methods are constructive, i.e., in both cases (en-
tropy and metric-complexity), we are able to construct
asymptotic optimal synthesds., one parameter families

The problem is to approximate the non-admissibl¢depending ore) of admissible curvesy : [0, T, | — R"
motion T by an admissible one, the approximation beinghat realizean equivalentof the entropy function or

made in the subriemannian sense.
Typical dynamicsA are the one of thenicyleand the
car with a trailer:
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In both cases, the subriemannian length of the admi
sible path is, for instance:
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of the metric-complexity function, .i.e., if denotes the
subriemannian length:
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The main result, on which we want to focus in this
paper is the following (more or less philosophical point):
in most cases, these asymptotic optimal syntheses are
extremely robust. In fact, they are really stable, in the
sense that, in certainormal coordinates, all of them are
diffeomorphic, and in particular, they do not depend on
the metric and on the curve: they depend only on the
integers appearing in the flag of bracketsfof

In the paper, we will just show the complete picture of
what happens up to corank< 3 for A.

For p > 3, some much more complicated phenomena
appear, that we have started to elucidate in our papers
[4], [10].

To say just a word, up to corank 8, the geometry of
guaternions comes deeply inside the problem.

The paper is organized as follows.



In the next section (1), we define the crucial notions of I. NORMAL COORDINATES, NORMAL FORM,

normal coordinates anuilpotent approximation along. NILPOTENT APPROXIMATION ALONGT,
We give a theorem (2.3) stating that the entropy and the EQUIVALENCE TO NILPOTENT
metric complexity are equivalent to those of the nilpotent APPROXIMATION

approximations along.

In sections (Ill, IV, V) we give the complete picture \ye are given a p-dimensionpirametrized surfaceS(u)
of what happens for entropy and metric complexity URransversal tay and containing-, which is itself assumed
to p < 3. We show the correspondireymptotic optimal ;4 e never tangent tA.

synthe_ses . Iso details ab h I The normal coordinates w.r.t. S that we define here

Secpon (V) contam_s also details a out t e Engel'gre a generalization of the geodesic coordinates in
case, i.e. the case @b in (1): the car with a trailer. Riemannian geometry
| g

In section (V), we give also a few explanations of wha
happens in the coranks 4-5 cases, the really wild case
starting from corank 6 on. 1 of global . | B h that -

Of course, in this study, we are interested only with of global coordinates along, (x,y,w) = ¢, such that :
the generic cases. Here, the topology is the ustial  * [ (1) =(0.0,1), S={(xy,w) | X_ZO}’
topology over compact sets, since the problems restrict S(ug, ..., Up) = (0,Us, ..., Up—1, Up); o
to s-nmghborhoods of th(_e compact curve . o Or =Ker dwni_y . p_1Ker dy, gs= d><|-2;

Also, we will not consider the case (generic in some &
dimensions) wherd™ is tangent toA at some isolated « Theée-cylindersCS= {& | d(§,S) = ¢} are the sets:
points. Refering to our previous papers, it is clear that the

STheorem 2.1:(Normal coordinates) There is a germ

n—p
formulas do not change: some invariants tend to infinity (& | inzz 82}
at these points, but the integral formulas MIC(Z,€) i=
andE(z,¢) are convergent. Also, of course, the tubes
Comments s T2 2
T S— T> = d(é,9 <el = c < g} 4
1) To summarize, in the paper, we try to present a e= 18 dE. S =ep={] i;X' <€} “)

synthesis of the results obtained in the papers [7]

[8], [9], [10]. The details of the proofs of the new " Normal coordinates are not unigque: changes of normal

results in this paper will appear in [4] and [11]_coord|nates are given by transformations of the following

These new results are mostly the relatiba: 2rMC type: o S
between complexity and entropy, and the case of X=T(y,w)x, (§,W) = (y,w) (5)
engel distribution. Theorem 2.2:(Normal form w.rt. normal coordi-
2) Of course, there are other approaches to the motigiateg A parametrized surfac&(u) being given and a
planning problem treated here. See for instancgormal coordinate syster = (x,y,w) w.r.t. S(u) being
[12],[13] and [14]. Our point of view starts mostly chosen, there is a unique orthonormal fraffg ..., Fn_p)
with the work of Jean ([1], [2], [3]), who first for the metric g, such that :
considered the concepts of metric complexity and
entropy. What we do more in our approach is tq:_in_pQ__(X w)ier_lL--(x w)iJrM-(x w)i
give precise estimates for these quantities (JeaHfi; YW i; YW Gy TYIEY W gy,
gave only the order of the leading term). Alsowith'
we provide explicit constructions of corresponding ™ ) , .
optimal syntheses. 1) ;I'he matrixQ = (Qj;) is symmetricQ(0,y,w) = Id,
3) Our main conclusion, in view of results, is the 2) “Q(XY,W).x=X
following: our methodology and the constructions 3) L(%¥%W).x=0
that follow are certainly highly recommandable for
several reasons: Conversely, if we have an orthonormal frame F in
. they are optimal, if some SR metric is specifiedcoordinates with properties 1), 2), 3), thens are
. they are (more than robust) STABLE in somenormal coordinates w.rt. the parametrized surface
sense. In particular, the optimal syntheses de9:Y,W).
pend neither on the robot nor on the metric,
but on the structure of the flag of brackets only. Examples
What is remarkable is that this robustness is 1) (h=4,p=2) The car with a trailer

generic up to corank 3, but fails to be true for
1 As usual, it is an equivalence class of coordinates on a hertjood

hlgher corank (as will be Sho.wn .m [4]) of I', under the relation of agreeing on some subneighborhodd of
* ODUmal Syntheses are eXp|ICIt, S|mple and €asy 2 \ye denote by . the usual product of a matrix by a vector, in @brm
to calculate. coordinates.




In that case, we have generically a canonical choice Definition 2.1: (Nilpotent approximation) The nilpo-

of a parametrized surface S transversalto tent approximation alond@ is the germ alond of the
The abnormal flonH (length 1) is a well defined subriemannian metric we get by truncating a normal
vector field (up to sign). It has, up to sign, a lengthorthonormal frame (i.e. a frame from theorem 2.2) at order
one orthonormal vector fieldin the distributionA.  -1.

SetK = [I,H]. Generically K is never tangent 1o

and never belongs th. So we have a canonical 3- Examples

frame (I,H,K) that defines a subriemannian metric 1y (n=4,p=2) Car with a trailer

', 9) over R4 of corank 1.

Again, we do not consider the case (generic) of X1 = up
isolated points wherd’ is tangent td": they do not Xo = Uz 8
change anything in the final results. In that case, the y = %(qul — X1Up) (®)
surfaceS(ug, Up) is given by: W= 3E(W)Xa(XoUy — XqUp)

S(ug, Uz) = explur.K(I"(u2))) (6) with the canonical choice of the surface S explained

above. Note that, up to the reparametrizatitm—

2) (n=3,p=1) The unicycle dw . L
In that case, the surfac®is restricted to the curve Z(w) of I, there is not any parameter in this normal

[ (it is one-dimensional). form of nilpotent approximation.
It has been shown in [5], [6], that the normal form 2) (n=3,generig Unicycle
in normal coordinateg = (X,y,w), is

X = u
y = v 9
X = (1+yB) -  xypv zv = y(0,0,w)3(yu—xv) ®
y = xyBu  + (1B (7) .
W= XVU B l(W an(_j we assume that there is no Martinet point along
2 2 I, i.e.y(0,0,w) #0
Here,u andv are the controls, anfl, y are smooth
functions of (x,y,w). In our paper [4], we have shown the following:
If y(0,0,w) = O (isolated points), then, the
distributionA is Martinet at this point. Theorem 2.3:(Equivalence to nilpotent approxima-
tion)
Now we explain what will be ounilpotent approxima- In all cases under consideration (one-step-bracket-
tion alongl. generating or Engel), metric complexity and entropy are

We will explain this in the case where the flag of brack-equivalent to those of the nilpotent approximation along
ets does not change the dimension at isolated points (such
as Martinet above), these cases are treated separately.
Also, besides these cases, we will consider at most cases
when we need brackets of order 2 to generate the whole
tangent space (Engel for instance). [1l. CORANK 1 CASE
For our purpose < 3, this will be enough. We give to COMPLETE GENERIC CLASSIFICATION
the variables; the weight 1, to the variablgg the weight
2, and to the variablev the weight zero. Remind that  consider a 1-fornmw which is 1 onl™ and vanishing on
is the parameter along the curle A.
gets Then,a =dw, is a bilinear form oved, that defines
a field A(t) of skew-symmetric (w.r.t the subriemannian

F) metric) operators along : [0,T] — R", by:
in the direction ofl), we set that— has weight -2
in the one-step-bracket-generating case, and -3 in the at(X,Y) = g(A(t)-X,Y)
remaining case (Engél) The matrixA(t) does not depend on the choice @f
Setx(t) = ||A( l|g- Generically,x (t) is smooth.

Then, the vectorfleldiX‘ gets weight -1,— By
weight -2, and (in order to agree with sortoeal effect

3 Usually one proceeds as follows: there is a gradation on dbrm Seté( ) = dt |
power seri%s on the variabley,zwith some natural weights. Differential We have the following result ([7], [8], [4]).
operatorsa By oW
degree. If§; has ordelk,

operate on formal power series, decreasing the

Theorem 3.1:
7% has order—k, as an operator. The formal

0 . . . . .
vector fields get also a gradation. For |nstario§é)aE has ordek — p 1) Genencally, except in dimension 3, the metric-
I

if f(&) has orderk and & has orderp. complexity is given by the following formula:



Fig. 1.

Contact case: (a) Metric-complexity (b) Entropy

MC(e) = (10)

2 dt
7 ) x©

2) In dimension 3, eitheg (t) never vanishes, in that

caseMC(¢) is still given by formula 10. Ifx(t)
vanishes at isolated points then:

MC(e) 4In

Z 5(t (11)

T
A
s
X;{
M=Martinet point L
L=Limit cycle o -7
I
(a) (b)

Fig. 2. Martinet Case: Metric-complexity

betweerC, andl'. After reaching M, take the same
strategy reversing time along:.
For entropy, we give some less explicit construction:

a) Follow the same optimal synthesis as in the
contact case (Fig. 1.b) out of the neighborhood
of the Martinet point M of height 2, for a
certain k large enough.

b) To cross this cylinder of heighk2, use some
strategy of order% (they are several)

3) The entropy and the metric-complexity are related
by the relation:

This cost of ordel:—L of step (b) is neglectible in front

of the cost of step (a)'”— At the end, |t is easily
computed that this strategy cos‘t§’—7 In(€)d(M).
(12) 2) Higher dimensional corank 1 cases
There is no other generic case than contact or quasi-
contact.
In these cases, the asymptotic optimal syntheses
reduce to the 3 dimensional case in the following
way:
In normal coordinates, they are two distinguished x-
coordinates corresponding to the maximum modulus
eigenvalues of the skew symmetric mathig). Put
all the other coordinates to zero, to get a problem
in dimension 3.

E(e) =

The point 2) says thaall the time is spent to cross the
Martinet surface if any.

The point 3) is proven in [4], except in Martinet case.
The proof in that case is obtained by using the asymptotic
optimal synthesis exhibited below. To show that it is
optimal involves the same reasoning as in [8].

21MC(¢)

Asymptotic optimal syntheses
1) dimension 3 : contact case

C¢ is the subriemannian cylinder (Fig. 1.a) of radius
€ alongl'. Then, the optimal curves for the metric-
complexity are just the integral curves of the vector
field X¢, obtained by intersecting the distribution
with the tangent plane§C;.

There is anothecylinder (Fig. 1.b), containing the
curvel . This cylinder is defined in normal coordi-
nates as the cylinder of radids centered along a
curvel”’, parallel tol", at subriemannian distandge

of I'. Then, the optimal curves for entropy are the
integral curves of the vector fiel;, intersection of
the distribution with the tangent planes@).

In the Martinet case, there is a limit cycle for the
vector field X;. The asymptotic optimal synthesis
for metric-complexity is like that: follow the flow
of —X, as long as the vertical coordinate along the
cylinder C; increases (Fig. 2.a) when it starts to
decrease (Fig. 2.b), cross the cylinder by an hori-
zontal subriemannian geodesic realizing the distance

This strategy, for generic problems, can be real-
ized globally alond", since, generically, moduli of
eigenvalues ofA(t) do not cross each other.

Then, the asymptotic optimal syntheses, for
metric-complexity or entropy, are those of the 3
dimensional case, for the restricted problems.

Remark: note that, at this step, up to smooth
reparametrization df, whatever the distribution and
the metric, these pictures are all globally diffeo-
morphic in normal coordinates. This is the strong
robustness property that we pointed out in the in-
troduction.

It will be the same for all the cases under consid-
eration in the paper, up to corank 3 (even for the
Engel’s case, which is extremely surprising).

This remark, in our opinion, certainly shows that
these control strategies avery pertinent in prac-
tice.



IV. CORANK 2 SITUATION Take any parametrized surface S, transversa, tand
containingl’. Take a normal coordinate system w.gtas

In corank 2, there is the exceptional Engel’s case (thg . . . .
: . . . . efined in section (I), and the associated normal form.
car with a trailer, examplé\; in Introduction), which

is generic in dimension 4, and the one-step-bracket- 1) takeA*(t) € «/(t) that minimizeg|A(t)||, and the 2-

generating cases. There is no other generic situation. dimensional real coordinateg, xp, corresponding
to the eigenspace @f*, w.r.t. its maximum modulus
A. One-step-bracket-generating case eigenvalue.

2) Put the othex coordinates to zero

3) Forget about the y coordinates

4) Then, one gets a 3-dimensional contact problem.
The asymptotic optimal syntheses are obtained by
the 3-dimensional strategies applied to these prob-
lems.

In the corankp > 1, the 1-formsw that vanish on the
distribution and that are one dnform an affine space of
dimensionp — 1.

Then, taking as in section (Il), the fornms = dwp,
and setting agaig(AX,Y) = a(X,Y), defines a field
along ' of affine spaces of skew symmetric (w.rgd)
endomorphisms? (t) of Ar .

The main invariant in this situation is: B. Engel's case

This is the case of the car with a trailer, distributifyn
xt)= inf [|A]l (13) of Introduction.
Aed ) In that case, there is a distinguished choice of the
Of course,x(t) coincides, in corank 1, with the invariant surfaceS, to define the normal coordinates (explained in
defined in section (Il). section (I1)).

At this step, another main object comes inside the There is an abnormal vector field H, contained in
picture. Consider the mapping,.];a from Ary x Arg the distributionA, of length 1, |nf|n|te_5|mal _genera_ltor of
to TrtyR"/Ar() which to two vectors (not vector fields!) grclength parametrized abnormgl trajectories. _Thls vecto
(X,Y) associates their bracket [X,Y] modulo This is a field has a (length 1) orthogonklin the distribution.
well defined mapping. SetK = [I,H].

ConsiderB;, the image of the product of two unit balls {l,H,K} defines an orthonormal frame for a corank
Ut: 1 subriemannian metri¢A’,g’). Generically,g’ is not

tangent tol" except at isolated points that do not change
{ B = [Ut,Ut]/Ar(t) (14) anything to the final result.

Ut {X€bry | [X]lg<1} Let x(t) be the invariant relative to the corank one

problem defined by, ¢ andT.

~ We say thaB is convex in the direction of a vect@  Recall that the distinguished surfa&eis just defined
if there is a vectoZ =AZ € B, A > 0, and a hyperplane by S(6.t) = exp(8.K(T'(1))).

{x | w(x) = 0}, such thatw(Z) — w(x) > 0 for all x € By
(i.e., there is a poinZ of B; in the direction oZ such that
B; is entirely on one side of a certain hyperplane through Theorem 4.3:There is a universal constany ~

2) : . . . . 0.00580305 (called the Berret-Gauthier-Zakalyukin con-
The main point, which starts to fail to be true in Corankstant) such that:

p > 3 is the following.

We have the following result:

Bz e 3 [dt
Theorem 4.1:([4], [9], [10] for corank p=1, 2, 3 (2.6) = 2yg3/rm
generically

Bt is always convex in the direction 6 Remark: We don't know anything about the

metric complexity. In particular, probably, the equality

Because of this fact, we have: E — 21MC(Z, ¢) fails to be true.

Theorem 4.2:([4], [9], [10] )

: . L The asymptotic optimal synthesis for the minimum
As soon as (any coranf)) B; is convex in the direction ymp P y

entropy is extremely interesting:

of (1), ) s - dt In normal coordinates(xi,xp,y,w) relative to the
« againMC(z,¢) = 5 [ 3y canonical surfaces, consider thes-curves for entropy.
» again,E(Z, &) = 2nMC(Z, €) The subriemannian metric 82+ V2 in the notations of

A in Introduction.
Due to the convexity property, the asymptotic optimal
synthesis reduces to the 3-dimensionnal case, by theThe optimal curvegx;(t),x(t)) are just the Euler's
following procedure: periodic inflexional Elastica.



Fig. 3. The dance of minimum entropy

Fig. 4. Trajectory of the center of the wheels of the car

The e-optimal controls are given in term of the Jacobi

elliptic functions by (see [4] and [11])

ut) = 1-dn(K(1+%))2
{v(t) = —2dn(K(1+4))sn(K(1+ 2))sin%

where: EamK) = K, andK(k) is the quarter period of
the Jacobi elliptic functions of modulds k = sin% (i.e.
$o ~ 130,692)

V. HIGHER CORANK
A. Corank 3: one-step-bracket-generating

In the case of corank 3, the situation is already de-
scribed by theorems 4.1, 4.2 in the previous section,
despite some isolated points Bfthat introduce technical
complications (see [4]).

The remainingp = 3 generic cases ane=2, n=3
(where a surface of degeneracy appears).

In both cases, were able to compute what happens. We
don't state these results here.

B. Corank p>3

Let us say a few words about the situation in the one-
step-bracket-generating case.

We have the bod¥; (defined in the previous section),
moving along the curvé;. From corank 6 on, the new
fact is that (generically), the bods; is never convex in
the direction off’;.

Then, using deeply the structure of quaternions, it can
be shown that (corank 6), entropy verifies:

[ [
r r

41T dt 61T
X(t)

e x© <E(Z¢) < 22 (15)

The lower bound is reached in tlBg convex case.

The upper bound is reached in the worst case.

For coranks 4, 5, some intermediate situations appear:
the bodyB; (moving alongl';) may be on some open
intervals convex in the direction df;, on some other
intervals non convex.

Then, generically, we always have formula (15),

the lower bound being eventually attained on open

We have considered, as an application, the less natusalbintervals of".

non-admissible curvé, for the car with a trailer:(x =
cog0)v, y=sin(@)v, 6 =u, ¢ =u—sin(¢p)v)

Acknowledgement we thank an anonymous referee for

We want the car to move along a line (the x axis, fronflis remarks, who suggested to add some comments in
point x=1 to point x=0), but the car and the trailer bothsection | and technical footnotes for the convenience of

remaining perpendicular to this line, i.e.:

HO)

r(t> 757

(1-t,0

with the notations of section (I).

In normal coordinates, the motion follows the elasticajz

in the (x1, x2) plane (Fig. 3).

Trajectories of the center of the wheels of the car are,
in the plane(x,y) of natural coordinates, presented on

figure 4.

A movie of the motion of the car may be seen at the[6]

web address:
http://www.u-bourgogne.fr/monge/e.busvelle/JPG/

Remark: There is, in the Engel's case, still the unex-

non specialist readers.
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