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Abstract— In this paper, we present several constructive
results about nonholonomic interpolation, in the perspective
of motion planning in robotics. We specially treat the case of
a set of nonholonomic constraints of corankp 6 3. In fact,
we are able to treat almost all generic cases forp 6 3. But
also, we show what may happen for larger corank. We give
complete details in the Engel’s case, which, from the point
of view of robotics, corresponds to the kinematic constraints
of a car with a trailer.

Keywords— motion planning, subriemannian geometry,
robotics.

I. INTRODUCTION

We are given a motion planning problem, i.e.Σ =
(∆,g,Γ) whereΓ : [0;TΓ]→R

n is a compact parametrized
curve onR

n, ∆ is a completely non integrable distribution
on R

n of corank p, g is a riemannian metric over∆. Then,
(∆,g) is a subriemannian metric overR

n, the associated
subriemannian distance being denoted by d. In practice,
∆ is a set of nonholonomic constraints of arobot, g, the
metric, measures the length of the admissible curves.Γ is
a non-admissible path, that has been chosen in order to
connect a source and a target in the ambient spaceR

n,
avoiding some obstacles.

The problem is to approximate the non-admissible
motion Γ by an admissible one, the approximation being
made in the subriemannian sense.

Typical dynamics∆ are the one of theunicyleand the
car with a trailer:
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∆1 :







ẋ = cos(θ ) u
ẏ = sin(θ ) u
θ̇ = v

∆2 :















ẋ = cos(θ ) v
ẏ = sin(θ ) v
θ̇ = u
ϕ̇ = u−sin(ϕ) v

(1)

In both cases, the subriemannian length of the admis-
sible path is, for instance:

l(γ) =

∫ Tγ

0
||γ̇||g dt =

∫ Tγ

0

√

u2+v2 dt (2)
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In fact, and this is one of the main conclusions of the
paper, our results are in some sense, independant of the
choice of the metricg.

Following Jean ([1], [2], [3]), we define themetric-
complexity MC(Σ,ε) and theentropy E(Σ,ε) of the mo-
tion planning problemΣ, as follows. Hereε is a small
parameter.

1) The metric-complexity MC(Σ,ε) is 1
ε times the

minimum length of the admissible curves that are
at distance less than or equal toε from Γ, and that
connect the endpoints ofΓ.

2) The (Kolmogorov’s)entropy of Γ is 1
ε times the

minimum length of the admissible curvesγ that ε-
interpolate the curvesΓ (i.e., any piece ofγ of length
≥ ε contains a point ofΓ), and that connect the
endpoints ofΓ.

It follows from our paper [4] that, provided thatε is small
enough,ε-interpolating curves minimizing the entropydo
exist.

Our methods are constructive, i.e., in both cases (en-
tropy and metric-complexity), we are able to construct
asymptotic optimal syntheses, i.e., one parameter families
(depending onε) of admissible curves,γε : [0,Tγε ] → R

n

that realize an equivalentof the entropy function or
of the metric-complexity function, .i.e., ifl denotes the
subriemannian length:
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

lim
ε→0

1
ε l(γε )

MC(Σ,ε)
= 1, or

lim
ε→0

1
ε l(γε )

E(Σ,ε)
= 1.

(3)

The main result, on which we want to focus in this
paper is the following (more or less philosophical point):
in most cases, these asymptotic optimal syntheses are
extremely robust. In fact, they are really stable, in the
sense that, in certainnormal coordinates, all of them are
diffeomorphic, and in particular, they do not depend on
the metric and on the curveΓ: they depend only on the
integers appearing in the flag of brackets of∆.

In the paper, we will just show the complete picture of
what happens up to corankp≤ 3 for ∆.

For p ≥ 3, some much more complicated phenomena
appear, that we have started to elucidate in our papers
[4], [10].

To say just a word, up to corank 8, the geometry of
quaternions comes deeply inside the problem.

The paper is organized as follows.



In the next section (II), we define the crucial notions of
normal coordinates andnilpotent approximation alongΓ.
We give a theorem (2.3) stating that the entropy and the
metric complexity are equivalent to those of the nilpotent
approximations alongΓ.

In sections (III, IV, V) we give the complete picture
of what happens for entropy and metric complexity up
to p≤ 3. We show the correspondingasymptotic optimal
syntheses.

Section (IV) contains also details about the Engel’s
case, i.e. the case of∆2 in (1): the car with a trailer.

In section (V), we give also a few explanations of what
happens in the coranks 4-5 cases, the really wild cases
starting from corank 6 on.

Of course, in this study, we are interested only with
the generic cases. Here, the topology is the usualC∞

topology over compact sets, since the problems restrict
to ε-neighborhoods of the compact curveΓ.

Also, we will not consider the case (generic in some
dimensions) whereΓ is tangent to∆ at some isolated
points. Refering to our previous papers, it is clear that the
formulas do not change: some invariants tend to infinity
at these points, but the integral formulas forMC(Σ,ε)
andE(Σ,ε) are convergent.

Comments:
1) To summarize, in the paper, we try to present a

synthesis of the results obtained in the papers [7],
[8], [9], [10]. The details of the proofs of the new
results in this paper will appear in [4] and [11].
These new results are mostly the relationE = 2πMC
between complexity and entropy, and the case of
engel distribution.

2) Of course, there are other approaches to the motion
planning problem treated here. See for instance
[12],[13] and [14]. Our point of view starts mostly
with the work of Jean ([1], [2], [3]), who first
considered the concepts of metric complexity and
entropy. What we do more in our approach is to
give precise estimates for these quantities (Jean
gave only the order of the leading term). Also
we provide explicit constructions of corresponding
optimal syntheses.

3) Our main conclusion, in view of results, is the
following: our methodology and the constructions
that follow are certainly highly recommandable for
several reasons:

• they are optimal, if some SR metric is specified.
• they are (more than robust) STABLE in some

sense. In particular, the optimal syntheses de-
pend neither on the robot nor on the metric,
but on the structure of the flag of brackets only.
What is remarkable is that this robustness is
generic up to corank 3, but fails to be true for
higher corank (as will be shown in [4]).

• Optimal syntheses are explicit, simple and easy
to calculate.

II. NORMAL COORDINATES, NORMAL FORM,
NILPOTENT APPROXIMATION ALONGΓ,

EQUIVALENCE TO NILPOTENT
APPROXIMATION

We are given a p-dimensionalparametrized surfaceS(u)
transversal to∆ and containingΓ, which is itself assumed
to be never tangent to∆.

The normal coordinates w.r.t. S that we define here
are a generalization of the geodesic coordinates in
Riemannian geometry.

Theorem 2.1:(Normal coordinates) There is a germ
1 of global coordinates alongΓ, (x,y,w) = ξ , such that :

• Γ(t) = (0,0,t), S= {(x,y,w) | x = 0},
S(u1, ...,up) = (0,u1, ...,up−1,up);

• ∆Γ(t) = Ker dw∩i=1,...,p−1Ker dyi , g|S =
n−p

∑
i=1

dx2
i ;

• The ε-cylindersCS
ε = {ξ | d(ξ ,S) = ε} are the sets:

{ξ |
n−p

∑
i=1

x2
i = ε2}

Also, of course, the tubes

TS
ε = {ξ | d(ξ ,S)≤ ε} = {ξ |

n−p

∑
i=1

x2
i ≤ ε2}. (4)

Normal coordinates are not unique: changes of normal
coordinates are given by transformations of the following
type:

x̃ = T(y,w)x , (ỹ,w̃) = (y,w) (5)

Theorem 2.2:(Normal form w.r.t. normal coordi-
nates) A parametrized surfaceS(u) being given and a
normal coordinate systemξ = (x,y,w) w.r.t. S(u) being
chosen, there is a unique orthonormal frame(F1, ...,Fn−p)
for the metric g, such that :

Fj =
n−p

∑
i=1

Qi j (x,y,w)
∂

∂xi
+

p−1

∑
i=1

Li j (x,y,w)
∂

∂yi
+M j(x,y,w)

∂
∂w

with:

1) The matrixQ= (Qi j ) is symmetric,Q(0,y,w) = Id,
2) 2Q(x,y,w).x = x
3) L(x,y,w).x = 0

Conversely, if we have an orthonormal frame F in
coordinatesξ with properties 1), 2), 3), then,ξ are
normal coordinates w.r.t. the parametrized surface
(0,y,w).

Examples:
1) (n=4,p=2) The car with a trailer:

1 As usual, it is an equivalence class of coordinates on a neighborhood
of Γ, under the relation of agreeing on some subneighborhood ofΓ.

2 We denote by . the usual product of a matrix by a vector, in normal
coordinates.



In that case, we have generically a canonical choice
of a parametrized surface S transversal to∆:
The abnormal flowH (length 1) is a well defined
vector field (up to sign). It has, up to sign, a length
one orthonormal vector fieldI in the distribution∆.
SetK = [I ,H]. Generically K is never tangent toΓ
and never belongs to∆. So we have a canonical 3-
frame(I ,H,K) that defines a subriemannian metric
(∆′,g′) over R

4 of corank 1.
Again, we do not consider the case (generic) of
isolated points where∆′ is tangent toΓ: they do not
change anything in the final results. In that case, the
surfaceS(u1,u2) is given by:

S(u1,u2) = exp(u1.K(Γ(u2))) (6)

2) (n=3,p=1) The unicycle:
In that case, the surfaceS is restricted to the curve
Γ (it is one-dimensional).
It has been shown in [5], [6], that the normal form
in normal coordinatesξ = (x,y,w), is:











ẋ = (1+y2β ) − xyβv
ẏ = xyβu + (1+x2β )v

ẇ =
y
2

γu −
x
2

γv
(7)

Here,u andv are the controls, andβ , γ are smooth
functions of(x,y,w).
If γ(0,0,w) = 0 (isolated points), then, the
distribution∆ is Martinet at this point.

Now we explain what will be ournilpotent approxima-
tion alongΓ.

We will explain this in the case where the flag of brack-
ets does not change the dimension at isolated points (such
as Martinet above), these cases are treated separately.
Also, besides these cases, we will consider at most cases
when we need brackets of order 2 to generate the whole
tangent space (Engel for instance).

For our purposep≤ 3, this will be enough. We give to
the variablesxi the weight 1, to the variablesyi the weight
2, and to the variablew the weight zero. Remind thatw
is the parameter along the curveΓ.

Then, the vectorfield
∂

∂xi
gets weight -1,

∂
∂yi

gets

weight -2, and (in order to agree with somelocal effect

in the direction ofΓ), we set that
∂

∂w
has weight -2

in the one-step-bracket-generating case, and -3 in the
remaining case (Engel)3.

3 Usually one proceeds as follows: there is a gradation on formal
power series on the variablesx,y,zwith some natural weights. Differential

operators
∂

∂xi
,

∂
∂yi

,
∂

∂w
operate on formal power series, decreasing the

degree. Ifξi has orderk,
∂

∂ξi
has order−k, as an operator. The formal

vector fields get also a gradation. For instancef (ξ )
∂

∂ξi
has orderk− p

if f (ξ ) has orderk and ξi has orderp.

Definition 2.1: (Nilpotent approximation ) The nilpo-
tent approximation alongΓ is the germ alongΓ of the
subriemannian metric we get by truncating a normal
orthonormal frame (i.e. a frame from theorem 2.2) at order
-1.

Examples:

1) (n=4,p=2) Car with a trailer:














ẋ1 = u1

ẋ2 = u2

ẏ = 1
2(x2u1−x1u2)

ẇ = 1
2ξ (w)x2(x2u1−x1u2)

(8)

with the canonical choice of the surface S explained
above. Note that, up to the reparametrizationdτ =

dw
ξ (w)

of Γ, there is not any parameter in this normal
form of nilpotent approximation.

2) (n=3,generic) Unicycle:






ẋ = u
ẏ = v
ẇ = γ(0,0,w)1

2(yu−xv)
(9)

and we assume that there is no Martinet point along
Γ, i.e. γ(0,0,w) 6= 0

In our paper [4], we have shown the following:

Theorem 2.3:(Equivalence to nilpotent approxima-
tion)

In all cases under consideration (one-step-bracket-
generating or Engel), metric complexity and entropy are
equivalent to those of the nilpotent approximation along
Γ.

III. CORANK 1 CASE
COMPLETE GENERIC CLASSIFICATION

Consider a 1-formω which is 1 onΓ̇ and vanishing on
∆.

Then,α = dω|∆ is a bilinear form over∆, that defines
a field A(t) of skew-symmetric (w.r.t the subriemannian
metric) operators alongΓ : [0,T] → R

n, by:

αt(X,Y) = g(A(t).X,Y)

The matrixA(t) does not depend on the choice ofω .
Set χ(t) = ||A(t)||g. Generically,χ(t) is smooth.
Setδ (t) = | ∂ χ

∂ t |.
We have the following result ([7], [8], [4]).

Theorem 3.1:

1) Generically, except in dimension 3, the metric-
complexity is given by the following formula:



Fig. 1. Contact case: (a) Metric-complexity (b) Entropy

MC(ε) =
2
ε2

∫

Γ

dt
χ(t)

(10)

2) In dimension 3, eitherχ(t) never vanishes, in that
caseMC(ε) is still given by formula 10. Ifχ(t)
vanishes at isolated pointsti , then:

MC(ε) =
−4ln(ε)

ε2 ∑
i

δ (ti) (11)

3) The entropy and the metric-complexity are related
by the relation:

E(ε) = 2πMC(ε) (12)

The point 2) says thatall the time is spent to cross the
Martinet surface, if any.
The point 3) is proven in [4], except in Martinet case.
The proof in that case is obtained by using the asymptotic
optimal synthesis exhibited below. To show that it is
optimal involves the same reasoning as in [8].

Asymptotic optimal syntheses:

1) dimension 3 : contact case
Cε is the subriemannian cylinder (Fig. 1.a) of radius
ε alongΓ. Then, the optimal curves for the metric-
complexity are just the integral curves of the vector
field Xε , obtained by intersecting the distribution
with the tangent planesTCε .
There is anothercylinder (Fig. 1.b), containing the
curveΓ. This cylinder is defined in normal coordi-
nates as the cylinder of radiusε2, centered along a
curveΓ′, parallel toΓ, at subriemannian distanceε2
of Γ. Then, the optimal curves for entropy are the
integral curves of the vector fieldX′

ε , intersection of
the distribution with the tangent planes toC′

ε .
In the Martinet case, there is a limit cycle for the
vector field Xε . The asymptotic optimal synthesis
for metric-complexity is like that: follow the flow
of −Xε as long as the vertical coordinate along the
cylinder Cε increases (Fig. 2.a) when it starts to
decrease (Fig. 2.b), cross the cylinder by an hori-
zontal subriemannian geodesic realizing the distance

Fig. 2. Martinet Case: Metric-complexity

betweenCε andΓ. After reaching M, take the same
strategy reversing time alongXε .
For entropy, we give some less explicit construction:

a) Follow the same optimal synthesis as in the
contact case (Fig. 1.b) out of the neighborhood
of the Martinet point M of height 2kε, for a
certain k large enough.

b) To cross this cylinder of height 2kε, use some
strategy of order1ε (they are several)

This cost of order1ε of step (b) is neglectible in front

of the cost of step (a):ln(ε)
ε . At the end, it is easily

computed that this strategy costs−4π
ε ln(ε)δ (M).

2) Higher dimensional corank 1 cases:
There is no other generic case than contact or quasi-
contact.
In these cases, the asymptotic optimal syntheses
reduce to the 3 dimensional case in the following
way:
In normal coordinates, they are two distinguished x-
coordinates corresponding to the maximum modulus
eigenvalues of the skew symmetric matrixA(t). Put
all the other coordinates to zero, to get a problem
in dimension 3.
This strategy, for generic problems, can be real-
ized globally alongΓ, since, generically, moduli of
eigenvalues ofA(t) do not cross each other.
Then, the asymptotic optimal syntheses, for
metric-complexity or entropy, are those of the 3
dimensional case, for the restricted problems.

Remark: note that, at this step, up to smooth
reparametrization ofΓ, whatever the distribution and
the metric, these pictures are all globally diffeo-
morphic in normal coordinates. This is the strong
robustness property that we pointed out in the in-
troduction.
It will be the same for all the cases under consid-
eration in the paper, up to corank 3 (even for the
Engel’s case, which is extremely surprising).
This remark, in our opinion, certainly shows that
these control strategies arevery pertinent in prac-
tice.



IV. CORANK 2 SITUATION

In corank 2, there is the exceptional Engel’s case (the
car with a trailer, example∆2 in Introduction), which
is generic in dimension 4, and the one-step-bracket-
generating cases. There is no other generic situation.

A. One-step-bracket-generating case

In the corankp > 1, the 1-formsω that vanish on the
distribution and that are one oṅΓ form an affine space of
dimensionp−1.

Then, taking as in section (II), the formsα = dω|∆,
and setting againg(AtX,Y) = α(X,Y), defines a fieldAt

along Γ of affine spaces of skew symmetric (w.r.t.g)
endomorphismsA (t) of ∆Γ(t).

The main invariant in this situation is:

χ(t) = inf
At∈A (t)

||At || (13)

Of course,χ(t) coincides, in corank 1, with the invariant
defined in section (II).

At this step, another main object comes inside the
picture. Consider the mapping[., .]/∆ from ∆Γ(t) ×∆Γ(t)
to TΓ(t)R

n/∆Γ(t) which to two vectors (not vector fields!)
(X,Y) associates their bracket [X,Y] modulo∆. This is a
well defined mapping.

ConsiderBt , the image of the product of two unit balls
Ut :

{

Bt = [Ut ,Ut ]/∆Γ(t)

Ut = {X ∈ ∆Γ(t) | ||X||g ≤ 1}
(14)

We say thatBt is convex in the direction of a vectorZ
if there is a vector̃Z = λZ ∈ Bt , λ > 0, and a hyperplane
{x | ω(x) = 0}, such thatω(Z̃)−ω(x) ≥ 0 for all x∈ Bt

(i.e., there is a point̃Z of Bt in the direction ofZ such that
Bt is entirely on one side of a certain hyperplane through
Z̃).

The main point, which starts to fail to be true in corank
p≥ 3 is the following.

Theorem 4.1:([4], [9], [10] for corank p=1, 2, 3
generically)

Bt is always convex in the direction oḟΓt

Because of this fact, we have:

Theorem 4.2:([4], [9], [10] )
As soon as (any corankp) Bt is convex in the direction

of Γ̇(t),

• again,MC(Σ,ε) = 2
ε2

∫ dt
χ(t)

• again,E(Σ,ε) = 2πMC(Σ,ε)

Due to the convexity property, the asymptotic optimal
synthesis reduces to the 3-dimensionnal case, by the
following procedure:

Take any parametrized surface S, transversal to∆, and
containingΓ. Take a normal coordinate system w.r.t.S, as
defined in section (I), and the associated normal form.

1) takeA∗(t)∈A (t) that minimizes||A(t)||, and the 2-
dimensional real coordinatesx1, x2, corresponding
to the eigenspace ofA∗, w.r.t. its maximum modulus
eigenvalue.

2) Put the otherx coordinates to zero
3) Forget about the y coordinates
4) Then, one gets a 3-dimensional contact problem.

The asymptotic optimal syntheses are obtained by
the 3-dimensional strategies applied to these prob-
lems.

B. Engel’s case

This is the case of the car with a trailer, distribution∆2

of Introduction.
In that case, there is a distinguished choice of the

surfaceS, to define the normal coordinates (explained in
section (II)).

There is an abnormal vector field H, contained in
the distribution∆, of length 1, infinitesimal generator of
arclength parametrized abnormal trajectories. This vector
field has a (length 1) orthogonalI in the distribution.

SetK = [I ,H].
{I ,H,K} defines an orthonormal frame for a corank

1 subriemannian metric(∆′,g′). Generically, g′ is not
tangent toΓ except at isolated points that do not change
anything to the final result.

Let χ(t) be the invariant relative to the corank one
problem defined by∆′, g′ andΓ.

Recall that the distinguished surfaceS is just defined
by S(θ ,t) = exp(θ .K(Γ(t))).

We have the following result:

Theorem 4.3:There is a universal constantγ ≃
0.00580305 (called the Berret-Gauthier-Zakalyukin con-
stant), such that:

E(Σ,ε) =
3

2γε3

∫

Γ

dt
χ(t)

Remark: We don’t know anything about the
metric complexity. In particular, probably, the equality
E = 2πMC(Σ,ε) fails to be true.

The asymptotic optimal synthesis for the minimum
entropy is extremely interesting:

In normal coordinates(x1,x2,y,w) relative to the
canonical surfaceS, consider theε-curves for entropy.
The subriemannian metric isu2 + v2 in the notations of
∆2 in Introduction.

The optimal curves(x1(t),x2(t)) are just the Euler’s
periodic inflexional Elastica.



Fig. 3. The dance of minimum entropy

Fig. 4. Trajectory of the center of the wheels of the car

The ε-optimal controls are given in term of the Jacobi
elliptic functions by (see [4] and [11])

{

u(t) = 1−dn(K(1+ 4t
ε ))2

v(t) = −2dn(K(1+ 4t
ε ))sn(K(1+ 4t

ε ))sin ϕ0
2

where: 2Eam(K) = K, andK(k) is the quarter period of
the Jacobi elliptic functions of modulusk, k = sin ϕ0

2 (i.e.
ϕ0 ≈ 130,692◦)
We have considered, as an application, the less natural
non-admissible curveΓ, for the car with a trailer:(ẋ =
cos(θ )v, ẏ = sin(θ )v, θ̇ = u, ϕ̇ = u−sin(ϕ)v)

We want the car to move along a line (the x axis, from
point x=1 to point x=0), but the car and the trailer both
remaining perpendicular to this line, i.e.:

Γ(t) = (1− t,0,
π
2

,0)

with the notations of section (I).
In normal coordinates, the motion follows the elastica

in the (x1, x2) plane (Fig. 3).
Trajectories of the center of the wheels of the car are,

in the plane(x,y) of natural coordinates, presented on
figure 4.

A movie of the motion of the car may be seen at the
web address:

http://www.u-bourgogne.fr/monge/e.busvelle/JPG/

Remark: There is, in the Engel’s case, still the unex-
pected fact, showing robustness, that, whatever the metric,
whatever the Engel’s distribution, modulo reparametriza-
tion of Γ by the entropy, allε-optimal pictures are
identical, in normal coordinates.

V. HIGHER CORANK

A. Corank 3: one-step-bracket-generating

In the case of corank 3, the situation is already de-
scribed by theorems 4.1, 4.2 in the previous section,
despite some isolated points ofΓ that introduce technical
complications (see [4]).

The remainingp = 3 generic cases aren = 2, n = 3
(where a surface of degeneracy appears).

In both cases, were able to compute what happens. We
don’t state these results here.

B. Corank p≥ 3

Let us say a few words about the situation in the one-
step-bracket-generating case.

We have the bodyBt (defined in the previous section),
moving along the curveΓt . From corank 6 on, the new
fact is that (generically), the bodyBt is never convex in
the direction ofΓt .

Then, using deeply the structure of quaternions, it can
be shown that (corank 6), entropy verifies:

4π
ε

∫

Γ

dt
χ(t)

≤ E(Σ,ε) ≤
6π
ε2

∫

Γ

dt
χ(t)

(15)

The lower bound is reached in theBt convex case.
The upper bound is reached in the worst case.
For coranks 4, 5, some intermediate situations appear:

the bodyBt (moving alongΓt ) may be on some open
intervals convex in the direction ofΓt , on some other
intervals non convex.

Then, generically, we always have formula (15),
the lower bound being eventually attained on open
subintervals ofΓ.

Acknowledgement: we thank an anonymous referee for
his remarks, who suggested to add some comments in
section I and technical footnotes for the convenience of
non specialist readers.
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