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Abstract—This paper is devoted to the behavior of human arms during pointing movements.
Several assumptions have already been made about the planning of such motions. None of
these assumptions is able, up to now, to explain certain nonintuitive dynamic phenomena,
in particular certain asymmetries in the motion and certain time intervals of inactivity of
the muscles. In this paper, we propose an assumption explaining all these phenomena. Two
strong points in this work are the following. First, our assumption is that human beings
minimize a certain criterion that physically makes sense, namely, a compromise between the
absolute work of external forces and a comfort term. Second, our conclusions do not rely on any
numerical experiment and are completely justified mathematically (i.e., without any argument
from simulation or “experimental mathematics,” such arguments being usually considered as
acceptable in neurobiology). Also, the conclusion that total inactivity holds during some time
subintervals of the movement is shown to be a stable property (in our model).
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1. INTRODUCTION

This work lies in the following very general context: we want to understand motor control for
human beings. We want also to understand how humans learn to control the movements of eyes,
arms, legs, . . . . In particular, and in the perspective of long spatial trips, we want to elucidate
the role of gravity (or of changes in gravity) in this setting. This study, partly supported by the
French “National Center of Spatial Studies” (CNES), concerns one of the most basic problems: the
(vertical) pointing (or point-to-point) movements of a human arm.

In the paper [4], there is a recent review about “optimality principles in sensorimotor control,”
and although it is the only general reference we give here from the neurobiology literature, there is
an enormous amount of such literature.

Many of the contributions are like that: choose some criterion (most classical criteria are called
“minimum jerk,” “minimum torque change,” and, in a stochastic context, “minimum variance”). The
criterion being chosen, make certain numerical computations to solve the corresponding optimal
control problem, and compare to some experiments.

Let us assume all along our discussion that the experiments are in fixed time T . This means
that a prisoner is required to make a point-to-point movement of the arm, specified by the initial
position of the arm, by some target point in the space to be pointed at the end of the motion, and
by two sound beeps giving the beginning and the end of the motion. For the sake of simplicity,
we consider single-joint movements around the shoulder joint. This means that the prisoner is also
required to keep the arm straight. Depending on what we want to study, the prisoner may learn
the problem as a first step, or, on the contrary, he may be subject to changes of the target position
or of the gravity field.
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Fig. 1. Experimental data: the time and amplitude of kinematic and electromyographic measure-
ments are normalized.

Just as an example, the minimum jerk problem is the following: minimize the rate of change of
the angular acceleration of the arm, i.e.,

min

T∫
0

(
d3θ

dt3
(t)

)2

dt. (1.1)

Immediate computation shows that the optimal velocity profile is given by

1
ω

θ̇(τ) = τ2(1 − τ)2,

where τ = t
T is the normalized time and ω is a constant depending on the target angle. This is a

completely symmetric profile with zero derivatives at the endpoints, the maximum being reached
at τM = 0.5.

In fact, real velocity profiles of vertical arm movements do not fit well with this profile (see [5, 6])
and with any of those from the literature. Figure 1 shows two experimental profiles. Measurements
are made with sensors planted on the muscles of the prisoner (electromyographic signals) and with
an accelerometer. The first column is an upward motion, and the second column corresponds to a
downward motion.

In both cases, the triceps is always activated: one of the reasons is that the arm needs to keep
straight (no motion at the level of the elbow). For downward movements, after the beginning of the
motion, there is always some activation (at least of the posterior deltoid). For the upward motion,
one checks very clearly inactivation of all muscles (except triceps) during some time interval in the
second part of the motion.

Remark 1. This inactivity sequence appears exactly where it is predicted in the paper (a bit
after the maximum velocity). However, it does not reflect on the acceleration profile. What is
displayed in the picture is just the brute acceleration measured by an accelerometer, which is already
smoothed and requires some corrections. Moreover, there could be some residual component due
to the activity of the triceps.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 261 2008



46 B. BERRET et al.

The main qualitative behaviors that are not reproduced by classical models (criteria) are as
follows:

1. The asymmetry in the velocity profile (maximum is a bit before the half of the interval) from
0.45T to 0.49T , and the difference between upward and downward movements.

2. As we have explained just above, there is some time interval after the middle of the interval
on which activation of the muscles is almost zero. This is very clear for movements in the upward
direction, although it is not visible for downward movements.

Experiments have been made in normal gravity (1g) and microgravity (0g). In the zero gravity
case, the velocity profiles are symmetric (as in the case of minimum jerk).

In this paper, we investigate a criterion that seems to explain more or less everything, in a
qualitative and quantitative way. We mean that both these unexpected asymmetries and the zero
excitation interval are explained, even quantitatively. In the zero gravity case, we still get symmetric
motions.

The criterion is the following:

J(u) = J1(u) + J2(u) =

T∫
0

|θ̇(t)u(t)| dt +

T∫
0

α(θ̇)θ̈(t)2 dt,

where α(y) = αU for y > 0 and α(y) = αD for y < 0, with αD > αU > 0. The variable u is the
torque applied by the muscles to the arm (the control variable). Of course, we also assume absolute
bounds −umin ≤ u ≤ umax on the control u.

The significance of this criterion is the following: it is a compromise between J1(u) and J2(u).
The term J1(u) represents the absolute work of the forces developed by the muscles (remember
that the infinitesimal work of a torque u is dw = u dθ = uθ̇(t) dt). The term J2(u) is a comfort
term, expressing that the human articulations do not like high acceleration (anyone can check this
very easily). The fact that αD > αU is not very important (although it causes certain technical
complications here) and could be omitted in the exposition. It means that the articulations are
more sensitive to high acceleration for motions in accordance with the gravity than for motions
against the gravity. Without this fact αD �= αU, certain quantitative differences between upward
and downward motions cannot be explained.

For this criterion, contrary to what is done usually in computational neuroscience (numerical
experiments), it is not a so hard exercise to solve explicitly the minimization problem for a rigid
arm in a gravity field. This is what we do in the paper, using Pontryagin’s maximum principle [1].
Analyzing the results, the reader will easily understand that it is certainly unexpectable to get these
results just by numerical investigation.

Let us briefly describe the optimal synthesis we get. The most complicated optimal trajectories
(in fact, those that occur in practice) are of the type bang-singular-bang (for upward motion:
maximum control, singular control, minimum control). Due to the term |θ̇(t)u(t)| in the energy
part J1 of the criterion, the singular piece is divided in three pieces: usual singular piece, inactivation
interval, and usual singular piece (by “usual singular” we mean a piece along which the Hamiltonian is
differentiable with respect to the control u, although the “special singular” piece, i.e., the inactivation
piece, corresponds to the fact that the maximum of the Hamiltonian is attained at a point of
nonsmoothness with respect to u).

In Fig. 2, we have depicted the results we get for an upward motion (in this figure, we have also
taken into account inertial control, which is clearly the case in practice in Fig. 1; see Section 4 for
details). It is the reason why we have moreover a gradient constraint reached at the beginning and
at the end of the motion. In this picture, one can see very clearly the inactivation interval. For
downward motion, it almost disappears.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 261 2008



HOW HUMANS CONTROL ARM MOVEMENTS 47

Phase trajectory

Angular position

Control u

Angular velocity

x

x

y

y

u

t

tt

0

0

0
0

0

0

00

1

1

2

2

3

3

0.2

0.20.2

0.4

0.4 0.4

0.40.4

0.8

0.8

20

40

−20

Fig. 2. The results we get for an upward motion. The phase of inactivation of the muscles is shown.

The paper is divided as follows.
In Section 2, we state our basic optimal control problem. We deal with the well-posedness

(which is not obvious) and with the existence of solutions.
Section 3 summarizes completely the results of our study, without proof.
In Section 4, we deal with a real smoothed version (inertial control) of our results that seems

to be more in accordance with practical observations (we add gradient constraints on the control
to get zero derivatives at the endpoints of the velocity profiles). We show that, provided that
these constraints are large enough, the only effect is smoothing the strategy at the endpoints of
the optimal trajectories; i.e., we get, as expected, zero derivatives at the endpoints of the velocity
profiles (which is always observed in practice), but all the other intermediate behaviors remain
unchanged.

In Section 5, we go to one of our main conclusions of practical interest (also true without the
“small-angle” assumption): the inactivation principle.

In Section 6 we give some hints to get the results of Section 3.

2. STATEMENT OF THE PROBLEM

2.1. System under consideration. Consider a one-degree-of-freedom rigid arm moving in a
vertical (with respect to the gravitational force) plane, subject to the following equations, in which
we neglect the friction terms: {

ẋ = y,

ẏ = u − k cos x,

where
• x is the position of the arm (the angle between the horizontal axis and the arm),
• y is the angular velocity,
• k is a constant (depending on the gravity, the mass of the arm, its inertial moment, and the

position of its center of mass).
It is a Hamiltonian system with external force (torque) u, the corresponding Hamiltonian being

H =
y2

2
+ k sinx − ux,
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where the term y2

2 corresponds to the kinetic energy, the term k sinx is the potential term, and ux
is the action of external forces.

Considering only small angles, we write sin x = x + O(x3) and approximate the Hamiltonian by

H =
y2

2
+ (k − u)x.

We get the following standard linear control system:{
ẋ = y,

ẏ = u − k.
(2.1)

2.2. Problem under consideration. Along trajectories of the system that connect a certain
“source point” Xs = (xs, 0) to a certain “target point” Xt = (xt, 0), we want to minimize the following
cost J(u(·)) in fixed time T :

J(u(·)) =

T∫
0

(
|yu| + α(y)ẏ2

)
dt, (2.2)

subject to the constraints

−umin ≤ u ≤ umax (2.3)

and {
α(y) = αU > 0 if y > 0,

α(y) = αD > αU if y < 0.
(2.4)

This problem, denoted by (P), was discussed in Section 1.
The optimal cost is denoted by J∗, and the corresponding minimizers (if any) will be denoted

by u∗ and X∗, with X∗ = (x∗, y∗).

Remark 2. In problem (P), neither the dynamics, nor the constraints, nor the cost depend
on x. Hence the solutions depend only on the difference ∆x = xt −xs. Therefore, J will be denoted
by JT,∆x wherever it will be necessary to consider this dependence.

2.3. Well-posedness of the problem. A priori our problem is an ill-posed problem since
the value α(y) for y = 0 is not given.

Theorem 1. (A) Problem (P) is well posed ; i.e., the values J(u(·)) do not depend on the
value α(0).

(B) J∗
T,∆x

is a decreasing function of T .

(C) Given a trajectory (u(·),X(·)), with X(·) = (x(·), y(·)), we may consider that there is
0 ≤ T̃ ≤ T with

(C1) y = 0 and u = k for T ≥ t ≥ T̃ ;

(C2) on the interval [0, T̃ ], y = 0 on a subset of null Lebesgue measure only.

Proof. For (A), let E = {t ∈ [0, T ] such that y(t) = 0}. Let Ẽ ⊂ E be the set of times that
are not accumulation points of E. The set Ẽ is countable. Let E = E \ Ẽ. We have∫

E

(
|yu| + α(y)ẏ2

)
dt =

∫
E

(
|yu| + α(0)ẏ2

)
dt = 0, (2.5)
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because ẏ exists on a subset of total measure in E since y is absolutely continuous, and, at such a
point t where ẏ exists, ẏ = 0 also (arbitrarily close to t, there is another time t′ with y(t′) = 0).
This shows that J(u(·)) does not depend on α(0).

Let us assume the existence of minimizers, which will be shown in the next Subsection 2.4.
Point (B) is obvious: assume we have found T2 > T1 with J∗

T2,∆x
> J∗

T1,∆x
, and then consider the

control u3 defined as follows: u3 is u1 from time 0 up to time T1 and is k from T1 on. Clearly,
JT2(u3) = J∗

T1,∆x
< J∗

T2,∆x
. A contradiction.

To prove (C), we start from any trajectory (u(·),X(·)) connecting Xs to Xt in time T . We
will construct another trajectory (ũ(·), X̃(·)) connecting the same endpoints and reaching Xt at
time T̃ , such that the cost is the same and y is zero only on a subset with zero measure of [0, T̃ ].
Let us define the function ϕ by ϕ(θ) = measure{t; 0 ≤ t ≤ θ, y(t) �= 0}. Set T̃ = ϕ(T ). The
function ϕ is well defined and increases on the interval [0, T̃ ]. We leave to the reader to check that
ϕ is measurable. We define ũ up to some irrelevant subset of measure zero of the interval [0, T̃ ] by
ũ(ϕ(θ)) = u(θ). By construction, this control produces the same trajectory X̃(·) as X up to some
measurable reparametrization. �

2.4. Existence of minimizers. It is not so easy to show that the minimum is reached in this
problem. We follow more or less the scheme of a proof in [2], with some additional problems due to
the nonsmoothness and even noncontinuity of our cost.

Theorem 2. There is a certain critical time Tc =
√

2∆x(umin+umax)
(umin+k)(umax−k) such that, for prob-

lem (P), minimizers exist for all T ≥ Tc.

Proof. First, it is easily seen that for T < Tc there is no admissible trajectory at all connecting
the source to the target. Second, for T = Tc there is a single trajectory (described later in Sub-
section 3.2) connecting the source to the target. Therefore, this trajectory is necessarily optimal.
Hence, in this proof we assume T > Tc and claim that the set of admissible trajectories doing the
job is nonempty. We will show the existence of some optimal one.

Notation. Changing u − k to u, we denote our linear control system by Ẋ = AX + Bu. As
usual in this machinery, we add an extra variable z(t) = Jt(u). The extended control system is
written as ξ̇ = G(ξ, u), ξ = (z,X). Notice that G is nonsmooth, and even noncontinuous. We
also use the convexification of the extended system. By a classical result of Carathéodory, it is the
following system:

ż = ωλϕ(u1) + ω(1 − λ)ϕ(u2) + (1 − ω)ϕ(u3),

ẋ = y,

ẏ = ωλu1 + ω(1 − λ)u2 + (1 − ω)u3,

(2.6)

where the controls are U = (u1, u2, u3, ω, λ) such that −umin ≤ u1, u2, u3 ≤ umax and 0 ≤ ω, λ ≤ 1.
The function ϕ is defined by ϕ = |y(u + k)| + α(y)u2.

We write this convexified system in abbreviated notation:

(Σc) ξ̇ = F (ξ, U), (2.7)

where U ∈ U .
Let Uk be any minimizing sequence for (Σc) and ξk be the corresponding state sequence. Clearly

ξk is equicontinuous, and by Ascoli ξk converges uniformly to ξ∗. We want to show that ξ∗(t) is
actually a trajectory of (Σc) corresponding to some control U∗.

In fact, ξ̇k converges ∗-weakly to some Φ∗(t). It is enough to show that Φ∗(t) ∈ F (ξ∗(t),U).
Let O be the open set O ⊂[0, T ] where y∗(t) �= 0.
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First, O is nonempty: for the subsystem in X = (x, y), which is just the linear system (ẋ = y,
ẏ = v), by standard arguments (see [3] for instance), we have the continuity of the map

v → X, L∞
[O,T ], ∗-weak → C0

[0,T ],uniform.

Therefore, if O =∅, whatever a large k, the vector Xk(T ) cannot approach the target point Xt.
Second, for almost all t ∈ O, Φ∗(t) is equal to a certain F (ξ∗(t), U∗).
Were it otherwise, we could find some subset S ⊂ O of strictly positive measure such that

Φ∗(t) /∈ F (ξ∗(t),U) for all t ∈ S. We can assume that S is contained in some interval I ⊂ [0, T ]
on which y∗(t) has constant sign (y∗(t) > 0, say). Let us say that the measure of S is ε and the
measure of I is l > 0. Then, we can find (by Lusin’s criterion) a continuous function Φ̃(t) on I
that is different from Φ∗(t) on a set of measure less than ε

2 . It follows that there is a subset S
(of strictly positive measure) of I such that Φ∗(t) = Φ̃(t) /∈ F (ξ∗(t),U) for all t ∈ S. To finish,
there is some t0 ∈ S such that, for all δ small enough, the set of t ∈ Iδ = [t0 − δ, t0 + δ] such that
Φ∗(t) = Φ̃(t) /∈ F (ξ∗(t),U) is denoted by Sδ ⊂ Iδ, and the measure of Sδ is strictly positive.

Hence, by the separation of convex sets, there is a P ∈ (Rn)∗ such that PΦ∗(t0) = P Φ̃(t0) >

PF (ξ∗(t0),U). Since y∗(t0) �= 0, since F (·, ·) is continuous (recall that y∗ > 0), and since Φ̃ is
continuous, it follows that δ can be chosen small enough for P Φ̃(t) > PF (ξ∗(t),U) for all t ∈ Iδ.
In particular, PΦ∗(t) > PF (ξ∗(t), Uk(t)) for all t ∈ Sδ. This last property is denoted by (A). Also,
since ξk converges uniformly to ξ∗,

(B) lim sup
k→+∞

P
(
Φ∗(t) − F (ξk(t), Uk(t))

)
> 0

for all t ∈ Iδ.
Denoting by κ the indicatrix function of Sδ in [0, T ], we have, by the ∗-weak convergence

of ξ̇k to ξ∗,

lim sup
k→+∞

P

T∫
0

κ(t)
(
Φ∗(t) − F (ξk(t), Uk(t))

)
dt = 0.

This contradicts (B).
We conclude that ξ∗ is an admissible trajectory of the convexification (Σc): Φ∗(t)= F (ξ∗(t),U∗(t))

for almost all t ∈ [0, T ], for some measurable U∗(·), U∗(t) ∈ U (the measurability of U∗ is a standard
exercise).

Third, let us show that (C) ξ∗ is in fact an admissible trajectory of the original (nonconvexified)
extended system.

Let us consider any fixed t0 ∈ [0, T ] such that y∗(t0) �= 0. Then, on some neighborhood of t0,
our trajectory (of the convexified system (Σc)) has to meet the maximum principle. Hence, the
Hamiltonian H(t) = PF (ξ∗(t), U∗(t)) has to be maximum with respect to U , H(t) = pż + qy + rẏ.
Moreover, p(t) = p(t0) = p. If p = 0 (singular case), this obviously leads to

u = ωλu1 + ω(1 − λ)u2 + (1 − ω)u3 = −umin or umax,

which obviously implies u1 = u2 = u3 = −umin or umax, and ż = ϕ(y, u); therefore, ξ∗ is a trajectory
of the original extended system.

Let us now examine the case where p �= 0. The modified Hamiltonian H̃ = pż + rẏ is maximum
with respect to U . But

H̃ = p
(
ωλϕ(u1) + ω(1 − λ)ϕ(u2) + (1 − ω)ϕ(u3)

)
+ r

(
ωλu1 + ω(1 − λ)u2 + (1 − ω)u3

)
= ωλ(pϕ(u1) + ru1) + ω(1 − λ)(pϕ(u2) + ru2) + (1 − ω)(pϕ(u3) + ru3).
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We shall only examine the case ωλ �= 0. The other cases (ω(1−λ) �= 0 or (1−ω) �= 0) are similar.
The function pϕ(u) + ru is strictly concave since p < 0. But pϕ(u1) + ru1 has to be maximum,
and the maximum is reached at a unique u∗ (depending on y only). At the end H̃ = pϕ(u∗) + ru∗,
ẏ = u∗, and ż = ϕ(u∗). This shows that the piece of the trajectory (ξ∗(t), U∗(t)) around t0 is in
fact a trajectory of the nonconvexified extended system.

At almost all points t0 where y∗(t0) = 0 (that is, at nonisolated points of O where ξ∗(t0) is
differentiable), ẏ∗(t0) = 0 also, and u(t0) = (ωλu1 +ω(1−λ)u2 +(1−ω)u3)(t0) = 0. By Theorem 1,
we can assume α(0) = 0. This implies that ż(t0) = 0, ẋ(t0) = 0, ẏ(t0) = u∗(t0) = 0, and at the end,
at almost all t, ξ̇∗(t) = G(ξ∗(t), u∗(t)), which means that ξ∗(t) is a trajectory of our nonconvexified
extended system. �

3. SUMMARY OF THE RESULTS

3.1. Different classes of optimal trajectories. We classify different types of optimal tra-
jectories in terms of the duration T of the motion. When T increases from the critical time Tc

towards infinity, we get the successive strategies. The critical time Tc corresponds to the minimum
time necessary to connect the source to the target.

Also, it is a consequence of this study that the optimal strategies remain in one of the half-planes
H1 or H2 corresponding to y ≥ 0 and y ≤ 0, respectively. Moreover, the optimal trajectories consist
of a single piece connecting {y = 0} to {y = 0}. These optimal arcs are described here for the upper
half-plane H1 only, the case of H2 leading to completely symmetric formulas.

Remark 3. Up to the change of variables x̃(t) = x(T − t), ỹ(t) = −y(T − t), and ũ(t) =
u(T − t), the problems that consist of moving from xs to xt (e.g., upward) and from xt to xs (e.g.,
downward) are equivalent, and consequently the optimal controls u lead to the optimal controls ũ (for
the fixed value αD of the parameter α). Therefore, up to this exchange of αD and αU, the solutions
for upward and downward motions are formally exactly the same. The quantitative difference
between downward and upward motions is only determined by the practical value of α. However,
it is a crucial fact that αD �= αU for the quantitative results.

In the following, (p, q) will denote the adjoint vector of (x, y). Hence, (p0, q0) is the initial value
of the adjoint vector.

We obtain the following seven different optimal strategies that are presented in more detail in
Subsection 3.2 and the equations of which are established from the Pontryagin maximum principle
(PMP) in Section 6. Each of them is an optimal solution of problem (P), depending on the explicit
values of the parameters.

The seven qualitative types of optimal strategies are denoted by Sj, j = 1, . . . , 7, and correspond
to the following sequences of controls:

• S1 (bang-max, bang-min):
(u = umax) → (u = −umin);

• S2, the most general strategy (bang, singular, special-singular, singular, bang):

(u = umax) →
(
u =

q − y

2α
+ k

)
→ (u = 0) →

(
u =

q + y

2α
+ k

)
→ (u = −umin);

• S3 (singular, special-singular, singular, bang):(
u =

q − y

2α
+ k

)
→ (u = 0) →

(
u =

q + y

2α
+ k

)
→ (u = −umin);

• S4 (bang, singular, special-singular, singular):

(u = umax) →
(
u =

q − y

2α
+ k

)
→ (u = 0) →

(
u =

q + y

2α
+ k

)
;
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• S5 (singular, special-singular, singular):(
u =

q − y

2α
+ k

)
→ (u = 0) →

(
u =

q + y

2α
+ k

)
;

• S6 (bang, singular):

(u = umax) →
(
u =

q − y

2α
+ k

)
;

• S7 (singular only): (
u =

q − y

2α
+ k

)
.

The special-singular pieces corresponding to inactivity sequences u = 0 are due to the term |u|
in the criterion, as we said.

In the following subsections we describe in detail these different strategies.
Notation. In the following subsections, we will use the notations ui(t), qi(t), xi(t), and yi(t)

for t ∈ [0, τi] and i ≥ 1 for the functions u, q, x, and y on the interval
[∑i−1

j=0 τj,
∑i

j=0 τj

]
with

τ0 = 0. For instance, u2(t) means u(t+τ1) for t ∈ [0, τ2] and u3(t) means u(t+τ1 +τ2) for t ∈ [0, τ3].

3.2. Case S1. Fastest possible movements, critical time Tc. We consider first the ab-
normal1 case, corresponding to the quickest possible movement. This solution depends only upon
the constraints umax and umin.

The corresponding equations for the solutions are the following:

• for t ∈ [0, τ1], ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1 = umax,

y1 = (umax − k)t,
q1 = q0 − p0t,

x1 = xs + (umax − k)
t2

2
;

• for t ∈ [0, Tc − τ1] (τ2 = Tc − τ1),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u2 = −umin,

y2 = y1(τ1) − (umin + k)t,

q2 = q1(τ1) − p0t,

x2 = x1(τ1) + y1(τ1)t − (umin + k)
t2

2
,

with

Tc =

√
2∆x(umin + umax)

(umin + k)(umax − k)

and the commutation time τ1,

τ1 =
(umin + k)Tc

2umax − k + umin
.

1The trajectories corresponding to λ = 0 (λ is the adjoint vector to the cost) are called abnormal. Note that they
are candidates for optimality whatever the cost. Recall that in the paper we also consider regular (or bang) and
singular trajectories (the control is not bang). Singular trajectories are divided into usual singular and special
singular ones.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 261 2008



HOW HUMANS CONTROL ARM MOVEMENTS 53

3.3. Case S2. The practical strategy, five-piece trajectories. This case is the usual one
in practice, and it is also the most complicated. When T ∈ [Tc, T1], the solutions are the following:

• for t ∈ [0, τ1], ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1 = umax,

y1 = (umax − k)t,

q1 = q0 + (umax − p0)t,

x1 = xs + (umax − k)
t2

2
;

• for t ∈ [0, τ2], ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 = umax +
k − p0

2α
t,

y2 = y1(τ1) + (umax − k)t +
k − p0

4α
t2,

q2 = q1(τ1) + (umax − p0)t +
k − p0

4α
t2,

x2 = x1(τ1) + y1(τ1)t +
umax − k

2
t2 +

k − p0

12α
t3;

• for t ∈ [0, τ3], ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u3 = 0,

y3 = y2(τ2) − kt,

q3 = q2(τ2) − p0t,

x3 = x2(τ2) + y2(τ2)t −
kt2

2
;

• for t ∈ [0, τ4], ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u4 = −k − p0

2α
t,

y4 = y3(τ3) − kt − k + p0

4α
t2,

q4 = q3(τ3) − p0t −
k + p0

4α
t2,

x4 = x3(τ3) + y3(τ3)t −
k

2
t2 − k + p0

12α
t3;

• for t ∈ [0, τ5], ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u5 = −umin,

y5 = y4(τ4) − (umin + k)t,

q5 = q4(τ4) + (umin − p0)t,

x5 = x4(τ4) + y4(τ4)t − (umin + k)
t2

2
.

The commutation times τi are equal to

τ1 =
q0 + 2α(k − umax)

p0 − k
, τ2 =

2αumax

p0 − k
, τ3 = 2

(2αk + q0)(umax − k) − αu2
max

(p0 − k)(p0 + k)
,

τ4 =
2αumin

k + p0
, τ5 =

(q0 + 2αk)(umax − k) − α(u2
max + u2

min + 2kumin)
(p0 + k)(k + umin)

.
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Fig. 3. Different optimal strategies.

Of course, we have τi > 0 for all i and
∑5

i=1 τi = T . This implies several constraints on p0

and q0. The initial adjoint vector can be computed by requiring that y5(τ5) = 0 and x5(τ5) = xt.
Explicit formulas for p0 and q0 cannot be obtained, but it is numerically easy to compute these
values and to check if they are compatible with the above conditions.

The time T1 after which this strategy is not actual can be easily determined numerically.

3.4. Cases S3 and S4. Bang only in umax or only in −umin, four-piece trajectories.
The disappearance of the saturation u = umax is determined by τ1 = 0, which implies q0 = qa

0 =
−2kα + 2αumax.
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Similarly, the disappearance of the saturation u = −umin is determined by τ5 = 0, which implies

q0 = qb
0 = −2kα +

α(u2
max + u2

min + 2kumin)
umax − k

.

It follows that
qa
0 ≥ qb

0 ⇔ umax − umin ≥ 2k.

If umax − umin ≥ 2k, it is easy to see that we have to choose q0 = qa
0 and τ1 = 0 before τ5 = 0.

Conversely, if umax − umin ≤ 2k, we should take q0 = qb
0, and τ5 = 0 appears first.

We set T = T a
1 in the first case and T = T b

1 in the second case. We do not give more details for
this case.

3.5. Case S5. Three-piece trajectories. Note that this situation can appear only if
umax ≥ 2k. Therefore, it may appear after each of the above situations (since we can have
umax − umin ≤ 2k or umax − umin ≥ 2k). When T ∈ [T1, T

a
2 ], with T a

2 =
√

6∆x/k, we get optimal
solutions of the unconstrained problem.

3.6. Case S6. Two-piece trajectories. It can be proven that this situation is only pos-
sible when umax ≤ 2k. Consequently, this situation occurs when T ∈ [T b

1 , T b
2 ], with T b

2 =√
6∆x/(umax − k).

3.7. Case S7. Singular piece only. Symmetric velocity profiles. This situation appears
for T ∈ [T a

2 ,+∞[ (if umax ≥ 2k) or T ∈ [T b
2 ,+∞[ (if umax ≤ 2k).

For t ∈ [0, T ], ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
q0

2α
+ k +

k − p0

2α
t,

y =
q0

2α
t +

k − p0

4α
t2,

q = q0 +
( q0

2α
+ k − p0

)
t +

k − p0

4α
t2,

x = xs +
q0

4α
t2 +

k − p0

12α
t3.

It turns out that in this case velocity profiles are symmetric (the acceleration time equals the
deceleration time).

3.8. Examples of each of the optimal trajectories. Figure 3 illustrates the different
strategies, except the most usual strategy S2, which was depicted in the introduction (see Fig. 2)
with the addition of inertial control.

4. SMOOTHING THE OPTIMAL STRATEGY

As one can note in the practical experiments (moreover, this is clear whatever), the control has
to be inertial; i.e., the control is absolutely continuous, with gradient bounds. Let us assume∣∣∣∣du

dt

∣∣∣∣ ≤ U. (4.1)

This section is not very crucial for what we want to show. Since the results are intuitively clear,
while their proofs are rather technical and long (use the maximum principle for inertial controls),
we just state a few results and do not give the proofs.

We will focus on the situation S2 (the most suitable in practice) and assume (Hs) that T ∈ ]Tc, T1[
(open interval).
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Theorem 3. Under assumption (Hs), optimal constrained solutions do exist, provided that the
bound U is large enough.

Theorem 4. When U tends to infinity, under assumption (Hs),

(1) optimal controls converge ∗-weakly to unconstrained optimal controls;
(2) constrained optimal state trajectories converge uniformly to unconstrained optimal state tra-

jectories;
(3) optimal controls are seven pieces (counted here for upward motion): bounded maximum

derivative, maximum bang, usual singular, inactivation, usual singular, minimum bang, and
bounded maximum derivative.

An example of such a smoothed trajectory is depicted in Fig. 2 in the Introduction.

5. THE INACTIVATION PRINCIPLE

Let us consider the original system without the small-angle assumption, or even more generally
any potential ϕ(x) with constant sign.

Let us fix everything (the source, target, and the bounds) except the duration T of the experi-
ment. We also assume that umin, umax ≥ supx ϕ′(x).

Then, we still have a critical (minimum) time Tc. Notice that for T = Tc, the optimal control
u∗(t) changes sign: assuming the contrary, since u∗(t) = −umin or umax (minimum time and no
abnormal trajectories), the motion would be monotonic and therefore cannot connect the source to
the target.

An easy continuity argument shows that the same happens (u∗ changes sign) in some time
interval ]Tc, T2[.

Lemma 1. Assume that T ∈ ]Tc, T2[. Then, the optimal control u∗ is continuous.
Proof. Along an optimal trajectory with λ = −1, since T > Tc is a nonminimum time (λ is

the adjoint additional variable), the Hamiltonian H is

H = −|yu| − α(x, y)ẏ2 + py + q(u − ϕ′(x)).

Here we assume that α is strictly positive and continuous. In our case, along the optimal trajectories,
y does not change sign, and hence α(y) is continuous.

Therefore, H(t) is a strictly concave Lipschitz continuous function of u(t). It has to be maximum
all along the trajectory, and the u reaching the maximum is unique. The result follows. �

Moreover, u is uniquely determined by the inclusion

0 ∈ ∂uH,

where ∂u is the subdifferential of convex analysis (with respect to u). This condition can be rewrit-
ten as

u ∈ |y|ε + 2α(x, y)ϕ′(x) + q

2α(x, y)
= I, where ε =

{ sign(u) if u �= 0,

[−1, 1] if u = 0.
(5.1)

Now, since u is a continuous function of t, changing sign (for y �= 0), u has to cross the
continuously time-varying interval I. Therefore, u has to be zero on some time interval.

We have shown the following:
Theorem 5 (total inactivation principle). Under the assumptions of this section (in partic-

ular, in the case of our system without the small-angle assumption), for T ∈ ]Tc, T2[, there is a
nondegenerate subinterval of [0, T ] on which u = 0 (total inactivation).
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The time T2 at which total inactivation disappears is of importance for neurobiologists. We
have computed it under the small-angle assumption:

T2 =
√

6∆x

umax − k
for umax ≤ 2k,

T2 =

√
6∆x

k
elsewhere.

6. IDEAS FOR THE MAIN COMPUTATIONS

Computations are tedious but easy: optimal control of a linear system with strictly convex
(piecewise quadratic) cost. Hence, all the results of Section 3 are obtained just playing with the
maximum principle.

Moreover, it can be shown (by comparisons) that the optimal trajectories are entirely in {y ≥ 0}
or {y ≤ 0}. Therefore, there is just nonsmoothness with respect to u, and we need only the usual
Pontryagin’s maximum principle.

The Hamiltonian H of the problem can be written as

H = −λ(y|u| + α(u − k)2) + py + q(u − k), (6.1)

where λ ≥ 0 is the constant additional adjoint variable and (p, q) is the adjoint vector to (x, y).
We set z = q − y and w = q + y. The condition y ≥ 0 is now w ≥ z.
Let us just show the (z,w) phase portrait of the optimal trajectories, in a single case (the one

corresponding to the most usual situation, p0 > k, see Fig. 4).
The typical trajectory drawn in the half-plane y ≥ 0 (w ≥ z) corresponds to the most usual

trajectories S2.

0

w≤ z

w≥ z z = w

q0

w = −2kαD

w = 2αD(umax − k)
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Fig. 4. Phase portrait for p0 > k.
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