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Abstract— Muscle co-contraction can be modeled as an
active modulation of the passive musculo-skeletal compliance.
Within this context, recent findings in human motor control
have shown that active compliance modulation is fundamental
when planning movements in presence of unpredictability and
uncertainties. Along this line of research, this paper investigates
the link between active impedance control and unpredictability,
with special focus on robotic applications. Different types of
actuators are considered and confronted to extreme situations
such as moving in an unstable force field and controlling a
system with significant delays in the feedback loop. We use tools
from stochastic optimal control to illustrate the possibility of
optimally planning the intrinsic system stiffness when perform-
ing movements in such situations. In the extreme case of total
feedback absence, different actuators model are considered and
their performance in dealing with unpredictability compared.
Finally, an application of the proposed theories on planning
reaching movements with the iCub humanoid platform is
proposed.

I. INTRODUCTION

Recently, robotic research has shown a growing interest
in studying human motor control to understand how humans
are capable of performing motor skills well beyond current
robot motor capabilities. In particular, recent findings in
human motor control have suggested that co-contraction, or
the human ability to change the intrinsic musculo-skeletal
compliance, might play a crucial role when dealing with
uncertainties and unpredictability. It is therefore reasonable
to understand if and consequently why we need to replicate
this capability in the robots of the next generation since
the ability of changing the system mechanical impedance
is nowadays not available in most of the robots.

The present paper focuses on systems capable of vary-
ing their intrinsic compliance. As previously discussed, the
human musculo-skeletal system possesses this property via
muscular co-contraction. Recently, a number of robotic ac-
tuators capable of actively regulating the overall system
compliance have been proposed. Different motivations have
been behind the design of these actuators: safety [1] and force
regulation [2] to cite a few. We propose here a rather different
point of view suggested by recent results from human motor
control which has proposed that variable compliance can be
interpreted as a tunable, high bandwidth reaction strategy. In
this paper we suggest that a relevant advantage of variable
compliance becomes apparent when considering the intrinsic
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latencies typical of a distributed control system. Within
this context, it is worth observing that both humans and
robots share qualitatively similar (but quantitatively differ-
ent) control issues. Generally speaking, signal transmissions
are never instantaneous, neither in robots nor in humans.
Latencies typically augment with distances and therefore, as
a rule of thumb: (a) local (distributed) controls are typically
affected by relatively small latencies; (b) global (centralized)
controllers are necessarily affected by significant delays in
signal propagation.

The idea proposed in this paper is that co-contraction in
humans can be interpreted as a distributed and local control
strategy not affected by delays. Our goal will be to show that
the ability of actively varying the system compliance can pre-
vent the disadvantages of delayed feedback if coupled with a
global and centralized feedforward motor plan which exploits
muscle co-contraction to achieve (feedback free) disturbance
rejection. Similar characteristics will be simulated in robots
equipped with passive variable impedance actuators (VIA)
where the ability of actively regulating the stiffness can be
seen as an analogous of muscle co-contraction.

A. Previous works

Previous works within the field of motor control have
demonstrated that humans have at least two different con-
trol strategies to compensate for external disturbances: dis-
turbance compensation via motor plan adaptation [3] and
disturbance rejection via muscle co-contraction [4].

Remarkably, classical neurophysiological experiments
have already shown that disturbance rejection does not neces-
sarily pass through proprioceptive feedback. Polit and Bizzi
[5] have demonstrated that both intact and deafferented mon-
keys correctly perform goal directed reaching movements
even in presence of unexpected displacement of the arm
(prior to movement initialization). These results have been
classically interpreted as an evidence for the so called “equi-
librium point hypothesis” suggesting that the central nervous
system controls both the body equilibrium and the stiffness
via proper agonist/antagonist muscles co-contraction. It is
worth stressing here that even if deafferentation (i.e. total
removal of feedback) is just an extreme situation, we just
discussed that there might be tasks [4] where relying on
feedback would prevent the task achievement in presence
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of delays1 and unpredictability.
The importance of the agonist/antagonist muscle arrange-

ment in dealing with the minimization of uncertainties, has
been recently studied by Mitrovic et al. [7]. In particular,
it was shown that the tool of stochastic optimal control
can efficiently simulate the impedance regulation principles
observed in humans performing stationary and adaptive
tasks. Similarly to the work presented in [7], we will make
extensive use of a state of the art optimization tool (ILQG,
[8]) to solve the problem of planning movements in presence
of uncertainties but extending results to two degrees of
freedom models of the human arm. Instead of focusing only
on realistic models of human muscles, we will consider also
other actuators whose dynamical model covers a number
passive variable stiffness actuators recently designed for
robotic applications [9], [10]. Moreover, differently from the
approach proposed by Mitrovic et al. (see also [11]) we focus
on purely feedforward control thus neglecting the possibility
of using feedback to correct online the motor plan (see the
discussion in Section II).

II. METHODS

A. General settings

Throughout this paper, we will consider rigid body dynam-
ics described by the following differential equation [12]:

M(q)q̈ + C(q, q̇) + g(q) = τj + J>(q)D(q), (1)

where M , C, g and J denote the inertia matrix, the vector
of Coriolis/centripetal torques, the gravitational torque vector
and the Jacobian matrix, respectively. The vector D refers
to an external (disturbing) force field possibly applied to
the end-effector. The vectors q and τj denote the system
generalized coordinates and forces, respectively. Often Eq. 1
will be written in the canonical state space form:

ẋ = f(x,u), (2)

where x ∈ Rn is the state of the system and u ∈ U ⊂
Rm is the control (U is convex, typically defined by linear
constraints given on u).

B. Variable impedance control

In the following, we shall consider three types of robotic
actuator to control Eq. 2. In robots with rigid joints, the
control vector u corresponds to τj, here denoted τff to stress
on its feedforward nature. In this case, the control vector is
simply:

1st type of actuator : u = τff . (3)

1In the field of control system theory, typical solutions for handling delays
rely on predictors (e.g. Smith predictors and Kalman filters) which exploit
a model of the controlled system to anticipate the effect of delays. Of
course predictors can be very beneficial but in the context of this paper the
reader should be aware of the fact that a certain level of unpredictability
is always present. Mathematically, unpredictability takes the form of the
innovation [6], i.e. the stochastic process representing the difference between
predictions and measurements. More practically, unpredictability always
follows from differences between the system and its model.

The latter actuator does not allow controlling stiffness per
se. However, it can be combined with a PD control law to
regulate the joint impedance. The second type of actuator
we will consider is therefore expressed as a combination of
a feedforward torque plus a PD control law. For this kind of
actuator, the feedforward torque, the equilibrium configura-
tion and the joint stiffness can be independently controlled.
This is similar to the properties of the musculoskeletal system
in humans. Hence the joint torque is expressed as:

τj = τff −KP(q− qd)−KD(q̇− q̇d), (4)

where KP and KD are symmetric positive-definite matrices
(respectively the stiffness and damping gains) and qd, q̇d

define the desired equilibrium trajectory. For the sake of
simplicity and to make simulations computationally tractable,
we will restrict ourselves to the case KD = αKP with
constant α. Moreover, we will assume KP diagonal and
positive definite (e.g. KP = diag(k1, k2) with k1 > 0 and
k2 > 0, for a two-link arm). Therefore, the control vector
turns out to be:

2nd type of actuator : u> =
(

τ>ff vec(KP)>
)
. (5)

Note that this type of actuator captures the main features of
an agonist/antagonist configuration such as the one proposed
by Mitrovic and collaborators for modeling human muscles
or the one realized in [13] with electro active polymers.

In robots with flexible joints [1], the joint stiffness can
be modulated as well. A standard model for such a kind of
actuators is given by:

τj = −K(q− θ) with τm = Bθ̈ +K(θ− q). (6)

In these equations, θ and θ̇ are the internal state of the
motors, B is the matrix of the effective rotor inertias of the
motors. The controlled variables are the torques supplied by
the motors τm and the stiffness matrix K typically diagonal
and positive definite (e.g. K = diag(k1, k2)). For this type
of actuators, the control vector is thus augmented by the
stiffness components:

3rd type of actuator : u> =
(

τ>m vec(K)>
)
. (7)

C. Stochastic optimal control

As previously pointed out we are interested in modeling
unpredictability in dynamical systems by means of stochastic
differential equations [14] of the following form:

dx = f(x,u)dt+ F (x,u)dw, (8)

where w ∈ Rp is a standard Brownian motion (i.e. the
noise). All the quantities are assumed to have compatible
dimensions. Functions f and F respectively characterize
the nonlinear deterministic dynamics (see Eq. 2) and the
state/control-dependent disturbances.

We address the planning problem in the context of stochas-
tic optimal control (SOC) [14], [15]. This mathematical
framework is used to derive approximate optimal control
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laws driving the system from an initial state x(t = 0) to
a final state x(t = T ). Optimality is defined with respect to
expected value C of a function written as follows:

C = E[g(x(T )) +
∫ T

0
l(x,u, t)dt],

with g the final cost (typically accuracy constraint in task
space) and l the running cost (typically control energy and/or
trajectory tracking constraints).

SOC problems we here consider are non-linear and con-
strained and, therefore, they do not fall in the well-known
Linear Quadratic Gaussian (LQG) framework [16]. We there-
fore tackled the problem using an iterative-LQG algorithm
(ILQG) [8], recently developed to solve such non-linear SOC
problems with linear constraints on the control. The solution
u? computed by this iterative algorithm has the following
form:

u?(t) = ū(t) + L(t)(x(t)− x̄(t)). (9)

where ū(t) represents the optimal open-loop control policy
and where L(t) is the optimal feedback strategy to correct
local deviation of the current state x(t) from the optimal state
trajectory x̄(t). Clearly the optimal feedback matrix L(t) has
some analogies with the impedance matrix but there are some
important differences briefly discussed in the next section.

Systems with time delays have been simulated following
the classical state augmentation approach, i.e. discretizing
the system and augmenting the state with the delayed states.

III. RESULTS

In this section, we want to show that unpredictability
and significant delays can be efficiently overcome through
impedance control. The subsequent numerical simulations
will show that exploiting stiffness is a means to accurately
control the system where feedback control schemes are
likely to fail (because of delays and/or uncertainty about the
state/task).

A. Two-link arm in a divergent force field

Numerical settings: In this example, we consider the three
types of actuators defined above for controlling a two-link
arm moving in a horizontal plane. The joint angle vector is
denoted by q = (q1, q2)>, where the subscript 1 corresponds
to the shoulder. A divergent force field is possibly applied to
the end-effector (i.e. the vector D in Eq. 1). Therefore, two
situations are considered:

D(q) = 0 and D(q) =
(
βx 0

)>
,

where β = 50 N/m is a constant that determines the strength
of the divergent force field and x = l1 cos q1 + l2 cos(q1 +
q2) is the x-coordinates of the end-effector in the horizontal
plane (x, y). The origin of the frame of reference is centred
at the shoulder. The numerical parameters we used for the
two-link arm can be found in [17]. The β parameter means
that a force of 0.5 N is applied to the arm when the end-
effector is 1 cm away from the straight line defined by x = 0.
The magnitude of the force field thus scales with the distance
from the straight line.

Such a dynamical system can be written in state space
form as in Eq. 8, with either x = (q1, q2, q̇1, q̇2)> or
x = (q1, q2, q̇1, q̇2, θ1, θ2, θ̇1, θ̇2)> depending on the type
of actuators employed (this latter state vector is for the
3rd type of actuator). A state-dependent noise was then
integrated as F (x) = σq̇1I . The noise thus reflects on all
state components and is proportional to the shoulder velocity.
A desired trajectory to be tracked qd was also imposed and
derived from a minimum jerk-like trajectory in Cartesian
space (i.e. the inverse kinematics of a straight path for the
end-effector and a bell-shaped velocity profile).

The expected cost under minimization was precisely:

C = E[g(x(T )) +
∫ T

0
||u||2W + wp||q− qd||2

+wv||q̇− q̇d||2dt],
(10)

with g(x) = wp||q − qd(T )||2 + wv||q̇||2 and ||u||2W =
u>Wu, W diagonal positive-definite.

Numerical settings were wto = 1, wst = 10−4, W =
diag(wto, wst), wp = 106, wv = 0.1wp, σ = 0.05 and
α = 0.1. A smaller weight was given to the stiffness to
allow using large stiffness for cheap. For the second type of
actuator, we used B = diag(2)[kg.m2] (a reasonable value
considering that this is the joint-reflected motor inertia) and
the weight given to the torque was decreased to wto = 10−2

to compensate for larger torque commands compared to the
other type of actuators. Numerical experiments in presence
of noise, with and without the force field were tested and
are described in Section III.

Results: We replicated in simulation an experiment con-
ducted by Burdet and collaborators in humans [4]. It has
been observed that a selective use of muscle co-contraction
was used by subjects to adapt to a divergent (and thus
unpredictable) force field. Indeed, let’s consider a forward
movement of the end-effector along a straight line. When
a force field acts laterally (i.e. leftward or rightward) with
a magnitude proportional to the distance of the end-effector
from the straight line, the presence of sensorimotor noise
and delays makes it impossible to use a feedback control
strategy. It was concluded that controlling stiffness is an
efficient means to cope with the unpredictability and the
delays inherent to the human nervous system. Here we
emulate the above experiment using three different actuators
(see Section II). Note that we voluntarily restrict our analysis
to feedforward control strategies.

Figure 1A depicts the performance of the different ac-
tuators in the divergent force field. For the deterministic
case (1st column), the presence of a divergent force field
is transparent. This is because the desired straight trajectory
can be tracked exactly. Therefore, the optimal solution is to
use only torque control for the 1st and 2nd types of actuator
(no need of gain scheduling). For the 3rd type of actuator,
the optimal solution in the deterministic case is a trade-off
between torque and stiffness control (not reported here). This
is because both control components consume energy, and
executing the movement with very small stiffness imply large
torques and vice versa.
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Fig. 1. A. Two-link arm moving in a divergent force field. The four columns depict the result obtained with the different type of actuators. a: End-effector
trajectories. Light gray lines depict trials (20 are depicted). The thicker gray line is the mean path, and a shaded area depicts the standard deviation around
the mean when possible. At the end, 95% confidence ellipses are displayed to show the variability of task accuracy. b: Joint displacements and velocities.
Mean values and standard deviation (shaded areas) are plotted. c: Feedforward control commands for both the torque and stiffness. Note that, for all trials
(i.e. noise instances) the same control is used (no use of feedback). For the 4th column, note the dashed-line ellipse shows the variability we obtain when
the inertia matrix B is reduced by a factor 10. B. Single-joint arm subject to time delays. a: Angular displacements for 20 trials. 1st col.: feedforward
control strategy without delays. 2nd col.: delayed feedback control strategy without stiffness. 3rd col.: Feedforward control strategy with 200 ms of delay,
without using the optimal feedback gain L but using stiffness control. b: Angular velocities. c: Control trajectories.

The role of stiffness is actually highlighted in the stochas-
tic context. The 2nd column of Fig. 1A demonstrates than
using only τff to execute the movement in a divergent force
field leads to divergent trajectories. This is because it is
basically impossible to track the straight line perfectly in
presence of noise. The force field will push to the left or
to the right in an unpredictable manner. Since the force in-
creases with the distance from the straight line, the trajectory
diverges very quickly. Note that relying on the feedback gain
may be possible in simulation, but in practice, the residual
uncertainty and the delays would yield divergent trajectories
in strong enough force fields.

The third column shows that when using the 2nd type
of actuator (with the PD control law), it is possible to
counteract the divergent force field and perform the task
very accurately. This result is quite obvious but it illustrates
that, if the stiffness level is sufficiently high, it is possible
to perform the task using the nominal feedforward torque
control. This shows that, when using the more human-like
kind of actuators, the task can then be performed with high
precision and without using feedback at all. If we were using
the optimal feedback gain L without relying on stiffness

control, this would have resulted in extensive changes of the
feedfoward torques to correct disturbances. Assuming that
the cost related to the torque or the torque change is higher,
it would have resulted in a costly solution, likely more costly
than increasing stiffness adequately.

In the fourth column, it is apparent that the 3rd type of
actuator yields better results than pure feedforward torque
control (2nd column). The end-effector is more robust to
perturbations, but the final accuracy is subject to some
variability (remind we only use open-loop control). This
terminal inaccuracy is related to the properties of the actuator
itself. It is clear from Eq. 5 that increasing stiffness implies
that a direct transfer of perturbations to the motor torques
τm. Since it is impossible to plan whether the end-effector
is going to be pushed leftward or rightward, adjusting the
motor torques in open-loop is impossible. Tuning the inertia
matrix B may also improve accuracy as illustrated in the last
column in Fig. 1A where it is shown that increasing B by a
factor of ten results in augmented robustness to perturbations.

B. Implementation on the iCub robot

In this example we consider a simple example that is a
single-joint arm moving in the vertical plane but subject
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to time delays. Only the 2nd and apparently most efficient
actuator is considered.

Numerical settings: The system dynamics is a 1-D version
of Eq. 1, including the gravitational torque:

Jq̈ +mglc cos q = τff −KP(q − qd)− αKP(q̇ − q̇d), (11)

where J , m, g and lc are the moment of inertia, the
mass, the gravity acceleration and the length to the center
of mass of the arm, respectively. Because of gravity, the
dynamics is nonlinear. Time delays were integrated using
the discrete time formulation provided above. Parameters
compatible with the forearm of the robot iCub are chosen
here: J = 5.08× 10−3 kg.m2, m = 0.812 kg, lc = 0.103 m
and l = 0.273 m (the total forearm length). The noise
magnitude is scaled by σ = 0.03 and the damping gain
was related to the stiffness gain by α = 0.2. Here, the 2-
dimensional state vector is x = (q, q̇)>. The function F is
again state-dependent and similar to the previous one, that
is F (x) = σq̇I . The cost function is the same as in Eq. 10
and the same parameters are used. Note that in this case τff
and KP are scalar.

Simulation results: We performed numerical simulations
to test the effectiveness of variable impedance control in
presence of time delays, where naive feedback schemes are
likely to fail. Here we restrict our analysis to the 2nd type of
actuator, given in Eq. 5. Figure 1B (first column) shows that,
without delay, a feedforward motor command can be used to
perform the task accurately despite the noise perturbing the
system, confirming the previous results in the divergent force
field. There is no need of using the optimal feedback gain
in such a case. The second and third columns reveal that
stiffness is actually the crucial feature to perform the task
accurately in presence of non-negligible latencies. In fact, it
is very inefficient to rely only on a feedback control scheme
in presence of large time delays in the feedback loop when
there is no stiffness. Controlling accurately the end-effector
becomes impossible under our working hypothesis. The third
column shows that, however, we do not need the feedback
gain to accurately control the plant. A feedforward control
of both torques and stiffness is in fact sufficient to overcome
the problem of delays and uncertainty. These simulations
demonstrate how variable impedance control can be used to
compensate the unpredictability inherent to physical systems,
which cannot be handled by means of feedback loops in
some cases.

Experimental results on the iCub: Experiments on the
iCub platform confirmed that the ability of changing the
stiffness is beneficial to the execution of movements in
presence of modeling errors and delays. iCub is a 53DOF
full-body humanoid robot [18], developed by the Italian
Institute of Technology within the RobotCub consortium, as
an open-source platform for research in embodied cognition.
Even though the robot is not equipped with passive variable
stiffness actuators but only with an active torque control,
results from previous sections still apply because the control
structure of the robot is composed of two main layers: on one
side localized control boards implementing torque control

at 1KHz; on the other side a centralized controller running
at 50Hz. Local control boards are responsible for feedback
controlling the joint stiffness and torque, thus simulating
within certain bandwidth limits the ability of regulating
the system intrinsic stiffness. The centralized controller on
the other side, is responsible for planning the movement
by sending joint torques and stiffnesses in a feedforward
manner (feedback control is more proficiently performed at
the control board level). In a sense, the implementation of
theoretical results presented in the previous sections, allows
to plan the feedforward stiffness and torque commands to be
sent by the centralized controller to the local control boards
in order to optimally compensate for disturbance exploiting
only the efficient local feedback as opposed to exploiting the
delayed centralized feedback.

In order to simplify the planning problem, we followed the
problem formulation of the current subsection and considered
a single degree of freedom movement, nominally the elbow
joint of the right arm moving upward in the vertical plane.
Exploiting the joint impedance control interface available in
the iCub [19], it was possible to reproduce exactly the control
action described in Eq. 11, with arbitrary control on both
τff and KP, realized by the localized control boards.

The desired movement was set from q∗0 = −60 to q∗T =
−30 degrees, which were remapped in the iCub elbow joint
range. The movement duration T was set to 1.5s, while the
control rate was set to 10ms. System dynamics, modeled by
Eq. 11, have been modified with a state-dependent noise e:

e = (a+ bq̇)η (12)

where η is a normally distributed stochastic variable (η ∼
N(0, 1)). In order to set reasonable values of the parameters
a and b, the modeling error has been identified. A sequence
of movements was performed with the iCub elbow, varying
all the control variables τff and KP. The associated errors e
were then computed as follows:

e = −Jq̈ −mglc cos q + τff −KP(q − qd)− αKP(q̇ − q̇d),

and state-dependent characteristics evaluated (see Fig. 2(a)
and associated caption). Admissible values for a and b were
then obtained by running a normality test on η = a+bq̇

e .
Precisely, the Jarque-Bera test available in Matlab, was used.
The best set of parameters found was (a◦, b◦) = (0.15, 0.37).
Similarly, the dependence between KP and KD was exper-
imentally identified on the real robot by defining a suitable
linear stability region in the KP-KD space (Fig. 2(b)).

After this identification procedure, the associated stochas-
tic optimal control problem was solved in order to compute
the optimal control strategy relying on pure feedforward.
Associated nominal optimal control and trajectory are visual-
ized with a red line in Fig. 3(a) and Fig. 3(b), respectively.
Tests on the real platform resulted in slightly different
trajectories (blue line in Fig. 3); differences are motivated
by slight imprecision in the desired torque tracking. However
the experimentally evaluated expected cost (C = 0.41)
results quite close to the one predicted by the simulation
(C∗ = 0.29).
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Fig. 2. Left picture: mean ē and standard deviation σe of the joint
torque error from the elbow joint of iCub’s right arm. Standard deviation
is evidently bilinear with the increase of velocity, while the error mean is
linearly proportional to the velocity. Polynomial fitting models are σe =
1.254q̇2 − 0.351q̇ + 0.057 and ē = 0.213q̇ − 0.049 respectively. Right
picture: experimental evaluation of the stiffness-damping relationship. The
lower region highlighted in red causes unstable behaviors of the arm when
reaching its equilibrium point after an external force is applied. Boundary
values were detected by overshoot of a step response. The light blue region
shows feasible values, which make the joint behave like a softer or stiffer
spring. The boundary region between the two can be ideally described by
the following relationship: KD = 0.075KP − 0.0015.
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Fig. 3. Plots of optimal control policy (left column) and corresponding
system trajectories (right column). In red, the optimal nominal control
policy; in blue, the trajectories on the real system. Differences between
nominal and real trajectories follow from differences between commanded
and executed torques (left bottom panel) due to imperfect torque tracking.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we used numerical methods for optimal
movement planning with variable impedance manipulators in
presence of uncertainties. In order to evaluate the importance
of variable compliance actuation, we considered extreme
examples of movement planning in presence of unpredictable
disturbances and delayed feedback. The underlying idea was
to prove that the ability to regulate the system intrinsic
stiffness allows to rely less on feedback control strategies,
typically affected by large delays and noise. Simulations
were performed in a two degrees of freedom planar reaching
task. Preliminary tests on a real robotic platform were
performed on the iCub, exploiting its two layer control
structure which actively simulates passive variable stiffness
within certain bandwidth limits.

In the view of designing novel actuators for robotic
application, future works will concentrate on understanding
the role of poly-articular muscles in regulating cross joint
stiffness (off diagonal terms in the matrix KP), a control
variable which was neglected in our current formulation since

this possibility is nowadays not implementable in available
actuator designs.
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