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Abstract—In this paper we suggest basic principles
to design a novel type of passive variable impedance
actuator aimed at replicating a specific property of
human co-contraction, related to the ability to cope
with uncertainties affecting any physical/biological
system. In particular the dynamical model of the
proposed actuator is such that the variance of the
state vector in response to noisy disturbances can be
reduced by tuning the passive stiffness of the system.
By means of a linearization analysis we characterize
the mathematical properties that a non-linear dynam-
ical system should have in order to possess this noise
rejection property. We provide a practical example
of such a system based on non-linear springs whose
critical feature is to attach some elastic elements to
a fixed reference (e.g. “ground”). We then show that
this antagonist actuator structure is actually analog to
Hill’s model of the human muscle/tendon system, em-
phasizing its biological relevance. We finally illustrate
how time-varying stiffness can be efficiently planned
feedforwardly to reject disturbances that may affect
task achievement. To this aim, we use the formalism of
stochastic optimal control to derive open-loop controls
anticipating the consequences of unpredictability and
instability linked to the task. We conclude that the
suggested actuators are well-suited to mimic the main
features of human co-contraction and plan to imple-
ment this type of actuator on the robot platform iCub
in a near future.

variable impedance actuator, stiffness, co-contraction,
stochastic optimal control, uncertainty

I. Introduction

Muscle co-contraction can be modeled as an active modu-
lation of the passive musculo-skeletal compliance. Within
this context, some findings in human motor control have
shown that active compliance modulation is fundamental
when planning movements in presence of unpredictability
and uncertainties [1], [2]. Along this line of research,
the present article investigates the link between active
impedance control and unpredictability, with special fo-
cus on robotic applications. A necessary prerequisite for
fully understanding the motivations behind the present
paper is our previous work [3] where we observed that
different actuator models behave differently in handling
unpredictability in open-loop movement planning with
a two degrees of freedom unstable manipulator. The
present paper gives a mathematical characterization of
the properties that a system (and its actuators) should
have in order to arbitrarily reduce the effects of un-

predictability without relying on active feedback1. The
characterization is given for a class of manipulators actu-
ated with variable impedance actuators but the analytical
computations are restricted to a single joint. System
properties are analyzed and compared with Hill’s muscle
model. We eventually use tools from stochastic optimal
control to illustrate the possibility of efficiently exploiting
stiffness control to reject unpredictable disturbances in
open-loop.

II. Methods

A. Preliminary

Throughout this article, we will consider a specific class
of manipulators with elastic joints, whose dynamics can
written as follows [4, Chap. 13]:

q̈ = f(q, q̇) + g(q − θ), (1)
θ̈ = h(θ, θ̇,u)− g(q − θ). (2)

The variable q denotes generalized coordinates of the
external system (manipulator level), while the variable
θ denotes the generalized coordinates of the internal
system (actuator level). Both systems are coupled via
the function g, which represents an elastic (typically non-
linear) element coupling the manipulator with the motor.
The functions f and h thus represent the external (ma-
nipulator) and internal (actuator) dynamics, respectively.
The control input u first acts on the internal system,
which in turns activates the external one. The system (1)-
(2) can be also used to represent manipulators actuated
with variable stiffness actuators. In this specific class of
systems, the characteristics of the elastic element g can be
either changed directly [5] (acting on an additional input,
see also Section II.II-B1) or indirectly [6] (by traversing
equilibrium states with constant q but different θ, see
Section II.II-C).

The aim of this paper is to understand the properties
that (1)-(2) should have in order to guarantee that the

1The reader interested in understanding the relevance of (feed-
back free) open-loop planning should refer to [3] and its introduc-
tion.
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rejection of disturbances acting on the system can be
(arbitrarily) augmented without using active feedback
loops. The proposed analysis relies on a linearization of
the system dynamics around an equilibrium configuration
and therefore the results can be extended to the original
non-linear system only locally.

Let us assume the existence of an equilibrium state x>eq =
(q>eq,θ

>
eq, q̇>eq, θ̇

>
eq) with u = ueq and let us linearize the

system (1)-(2) around that point:

q̈ = ∂f
∂q

∣∣∣∣
eq

δq + ∂f
∂q̇

∣∣∣∣
eq

δq̇ + ∂g
∂z

∣∣∣∣
eq

(δq−δθ),

θ̈ = ∂h
∂θ

∣∣∣∣
eq

δθ + ∂h
∂θ̇

∣∣∣∣
eq

δθ̇ − ∂g
∂z

∣∣∣∣
eq

(δq − δθ) + ∂h
∂u

∣∣∣∣
eq

δu.

In the latter equation, δ denotes deviation of a certain
variable with respect to the equilibrium configuration and
the quantity ∂g/∂z denotes the derivative of the function
z 7→ g(z), which will be denoted by g′. Therefore, around
an equilibrium configuration, we get a linear system of the
form:

˙δx = Aδx +Bδu,

which can be expanded as follows2:

˙δx =


0 0 1 0
0 0 0 1

∂f
∂q + g′ −g′ ∂f

∂q̇ 0

−g′ ∂h
∂θ

+ g′ 0 ∂h
∂θ̇


|eq

δx

+


0
0
0
∂h
∂u


|eq

δu.

B. Stability analysis

As previously pointed out, we are interested in under-
standing what properties (1)-(2) should have in order to
vary the system noise rejection capabilities without active
feedback loops. In this section, the analysis is conducted
on the linearized system and therefore results will hold
only locally in the original non-linear dynamics. In order
to model uncertainty, let us define an input matrix C
through which noise, denoted by w, affects the system
dynamics:

˙δx = Aδx +Bδu + Cw,

where w is a standard Gaussian process (i.e. normalized
white noise). In order to characterize the system capa-
bility of rejecting the disturbances due to w, we will

2Note that the matrix A is block companion, which might be
exploited in the study of its stability. However, in this paper, we
will directly assume that A is asymptotically stable.

Figure 1. Simple idealized variable stiffness actuator, with
∂h
∂θ
|eq 6=

0. The possibility to directly vary the stiffness k1 is emphasized by
the oblique arrow over the spring. In this example we thus have
g′

|eq
= −k1. For simplicity only, we will choose unitary masses (i.e.

m = m1 = 1, see (3)).

focus on the properties of the matrix P defined to be
the asymptotic variance of the state δx, i.e.:

P = lim
t→∞

cov[δx(t)],

when no changes to the input are applied (i.e. δu = 0).
Necessary condition for P to be finite is the stability
of the matrix A [7]. Under this assumption, the matrix
P corresponds to the unique solution of the following
continuous Lyapunov equation:

AP + PA> + CC> = 0.

In the following analysis we will try to characterize
the properties of the matrix P for a class of variable
impedance actuators. In the remaining of the paper, in
order to make the analytical computations tractable, we
restrict ourselves to the case q = q ∈ R. In practice, we
thus limit our analysis to systems with only one external
joint. Even if this might appear a major restriction, we
believe that this is an admissible simplification in order to
keep the analytical computations compact while focusing
on an essential building block, i.e. the single joint actua-
tor. Another evident simplification will be the restriction
to linear (vs rotational) systems. In this case however we
do not loose generality because identical considerations
will hold for the analogous rotational systems.

1) Stability analysis for manipulators with variable
impedance joints in serial configuration: Manipulators
with elastic joints [8] do not have the ability to change
the passive properties of the elastic element g′. A class
of variable impedance actuators (see for example [5], [9])
can instead vary the value of g′ thus varying the matrix
P . In these actuators a variable stiffness is placed in
between the motor and the actuated joint (thus the name
“serial configuration”). A linear equivalent of a single
joint actuated with this kind of actuator is shown in Fig.
1. The dynamic equation of this system is characterized
by the fact that they can be written in the form (1)-(2)
with q = q ∈ R and θ = θ ∈ R, respectively the external
and internal states. Following the notation in Figure 1
we obtain:

q̈ = −k1(q − θ)− b0q̇ + F,

θ̈ = k1(q − θ) + k′1(θ′ − θ)− b1θ̇ + F1.
(3)

where k1, k′1 and b0, b1 are respectively spring’s stiffness
and friction constants and F and F1 are external forces
applied to the masses.
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From the above equation, we identify:

g′ = −k1,
∂f
∂q = 0, ∂h

∂θ
= −k′1,

∂f
∂q̇ = −b0,

∂h
∂θ̇

= −b1.

To simplify our notations but keep things general, we
rewrite the matrix A as follows:

A =


0 0 1 0
0 0 0 1

−a− c c −d 0
c −b− c 0 −e

 .

All the above quantities are scalars in the one-
dimensional case, and their physical meaning can be
easily understood from Figure 1 together with (3). Note
that in the latter example we have a = 0, b = k′1 and
c = k1 (the stiffness we can actually vary), and the terms
d and e are friction coefficients (note that all quantities
are positive).

Let us assume that noise enters into the system via a
term C = (0, 0, σ1, σ2)>, such that noise affects both
the internal and external dynamics. We are interested in
understanding the properties of the Lyapunov solution P
when varying c which corresponds to the variable elastic
element. The lower the eigenvalues of P , the bigger the
noise rejection of the system. The first observation is that
P is finite only if A is stable and therefore we need to
assume that a and b cannot be simultaneously zero3. This
implies that there must exist either a spring connecting
q to the ground or a spring connecting θ to the ground
(k′1 in Fig. 1). Actuators like the ones proposed in [5], [9]
do not typically have these springs since noise rejection
is achieved with active feedback loops.

Let us now characterize the behavior of P under variation
of c. Explicit calculations with Maple give the following
formulae:

lim
c→0

var(q) = 1
2
σ2

1
ad

; lim
c→∞

var(q) = 1
2

(σ1 + σ2)2

(a+ b)(d+ e) ,

lim
c→0

var(q̇) = 1
2
σ2

1
d

; lim
c→∞

var(q̇) = 1
2
σ2

1 + σ2
2

d+ e
,

lim
c→0

var(θ) = 1
2
σ2

2
be

; lim
c→∞

var(θ) = 1
2

(σ1 + σ2)2

(a+ b)(d+ e) ,

lim
c→0

var(θ̇) = 1
2
σ2

2
e

; lim
c→∞

var(θ̇) = 1
2
σ2

1 + σ2
2

d+ e
.

Regarding our example, it is clear that the variance of the
external state q can be decreased by making b and/or e
larger. Increasing b just means choosing a stiffer spring
that connects the internal state to the ground (i.e. k′1),
while increasing e would imply having larger viscous
friction forces acting on θ. Similarly, for the trace of P ,

3If a = b = 0 the first two columns of A become linearly
dependent. In such a case, zero is an eigenvalue of A and thus the
system can be at best marginally stable.

which is a measure of the overall system sensitivity to
noise4, we get the following limits:

lim
c→0

trace(P ) = 1
2
σ2

1be(a+ 1) + σ2
2ad(b+ 1)

abde
,

lim
c→∞

trace(P ) = (a+ b)(σ2
1 + σ2

2) + (σ1 + σ2)2

(a+ b)(d+ e) .

If we further assume that e = d = 1, the full expression
for trace(P ) and its partial derivative with respect to c
reduce to:

trace(P ) = 1
2

(
(σ1 + σ2)2 + (σ2

1 + σ2
2)(a+ b)

)
c

ac+ bc+ ab

+1
2
b(a+ 1)σ2

1 + a(b+ 1)σ2
2

ac+ bc+ ab
,

∂trace(P )
∂c

= −1
2

(aσ2 − bσ1)2

(ac+ bc+ ab)2 < 0.

The above formulae show that this kind of system pos-
sesses the interesting property of monotonically dimin-
ishing the effect of noise by increasing c, i.e. the stiffness
of the spring connecting the actuator side θ to the joint
side q. However, this noise rejection capability crucially
depends on a and b (stiffness of the springs connecting
the actuator and the joint to the ground) and on d and e
(viscous friction on the actuator and on the joint) which
determine a lower bound for the noise rejection via the
equations above.

C. Practical example with antagonist non-linear springs

In this subsection, we provide an example of an antag-
onist system possessing the above mentioned property.
Let us consider a system of 3 masses and 4 springs, as
depicted in Figure 2.

Figure 2. Example of physical system with passive variable
stiffness. The springs with stiffnesses k1 and k2 are non-linear (here
cubic). The two other springs are assumed to be linear here, but
they could be non-linear as well. It is noted that this system can be
shown to be formally equivalent to the one presented in Fig. 1.

Using Lagrangian mechanics and assuming cubic non-
linear springs where indicated, we can write the dynamics
as follows:

mq̈ = k1(θ1 − q)3 + k2(θ2 − q)3 − b0q̇ + F,

m1θ̈1 = k1(q − θ1)3 + k′1(θ′1 − θ1)− b1θ̇1 + F1,

m2θ̈2 = k2(q − θ2)3 + k′2(θ′2 − θ2)− b2θ̇2 + F2.
(4)

Remarkably, the dynamic equation of this system can
be written in the form (1)-(2) with q = q ∈ R and

4We are using here the property that the trace of a matrix is the
sum of its eigenvalues.
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θ = (θ1, θ2)> ∈ R2. Let us consider an equilibrium
configuration and the linearized system around it:

A =



0 0
0 0
0 0

− 3k1
m (θ1 − q)2 − 3k2

m (θ2 − q)2 3k1
m (q − θ1)2

3k1
m1

(θ1 − q)2 − 3k1
m1

(q − θ1)2 − k′
1

m1
3k2
m2

(θ2 − q)2 0

0 1 0 0
0 0 1 0
0 0 0 1

3k2
m (q − θ2)2 − b0

m 0 0
0 0 − b1

m1
0

− k′
2

m2
− 3k2

m2
(q − θ2)2 0 0 − b2

m2


|eq

,

and
B =

(
0 0 0 0 0 1/m2
0 0 0 0 1/m1 0

)>
.

Then the linearized system writes:
˙δx = Aδx +Bδu,

with x = (q, θ1, θ2, q̇, θ̇1, θ̇2)>, u = (F1, F2)>, δx = x −
xeq and δu = u − ueq. Also in this case the linearized
system is only marginally stable if we remove both the
springs k′1 and k′2 connecting the actuators to the ground.
The noise rejection characteristic of the system can be
increased by traversing states with constant equilibrium
for the variable q but different equilibria for the variables
θ1, θ2. This allows to vary the value of g′(xeq) via changes
of xeq which do not affect qeq.

For instance for the system (4) the stiffness “felt” at the
middle mass, locally around an equilibrium point xeq, is
expressed as:

Kq = 3
m

(
k1(θ1,eq − qeq)2 + k2(θ2,eq − qeq)2).

From that equation it is obvious to see that stretching the
internal springs would cause an increase of the stiffness
Kq. Interestingly new static equilibria with larger stiff-
ness may be achieved without changing qeq. For instance
if qeq is given and fixed, then for any θ2,eq the variable
θ1,eq can be chosen as follows:

θ1,eq = qeq +
( 1
k1

(
− k2(θ2,eq − qeq)3 − F

))1/3

.

Then, we can simply define the control vector ueq =
(F1,eq, F2,eq)> that will realize the equilibrium configu-
ration xeq as:

F1,eq = −k1(qeq − θ1,eq)3 − k′1(θ′1 − θ1,eq),
F2,eq = −k2(qeq − θ2,eq)3 − k′2(θ′2 − θ2,eq).

In the following, we illustrate the ability for this system
to decrease trace(P ) by increasing θ2,eq (with θ1,eq =

−θ2,eq) (Fig. 3). The asymptotic value of trace(P ) (its
lower bound) can be decreased by increasing the values
of k′1 and k′2 (solid line vs dashed-line).
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5
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Figure 3. Trace of the Lyapunov matrix corresponding to the
linearization of the system (4). In abscisse, the position of θ2,eq

is depicted. It is implicitly assumed that the configuration is kept
symmetric, i.e. θ1,eq = −θ2,eq and qeq = 0. Numerical values used
are reported in Section III. The dashed line illustrates the decrease
of the asymptotic value of trace(P ) when increasing the values of
k′

1 and k′
2 by a factor 2.

D. Analogy with Hill’s muscle model

In this subsection, we emphasize that the actuator pro-
posed in the previous section has interesting analogies
with the human musculoskeletal system. In particular,
we compare our actuator to Hill’s model of muscles. Hill’s
antagonist muscles model is illustrated in the Figure 4.

Figure 4. Hill’s antagonist muscles model with non-linear
springs. SE=series elastic element, PE=parallel elastic element,
CE=contractile element. The total length of the structure is fixed,
equal to ∆. Usually Hill’s model assumes linear springs but for the
purpose of this paper we consider non-linear ones (which is more
realistic anyway).

Again, we make use of the Lagrangian formalism to derive
the equation. We first write the potential and kinetic
energy functions:

Ep = 1
2ktq

′2
1 + 1

4k1q
4
1 + 1

2ktq
′2
2 + 1

4k2q
4
2 ,

Ek = 1
2mq̇

2 + 1
2m1(q̇ − q̇1)2 + 1

2m2(q̇ + q̇2)2.

Applying Euler-Lagrange equations and noting that q′1 =
q − q1 and q′2 = ∆− q − q2 gives:

F1 = −kt(q − q1) + k1q
3
1 −m1(q̈ − q̈1),

F2 = −kt(∆− q − q2) + k2q
3
2 +m2(q̈ + q̈2),

F = kt(q − q1)− kt(∆− q − q2) +mq̈
+m2(q̈ + q̈2) +m1(q̈ − q̈1).
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Then inserting the two first rows into the last one and
simplifying the terms involving kt, we get:

F = mq̈ + F2 − k2q
3
2 + k1q

3
1 − F1.

Using the change of variables θ1 = q′1 = q − q1 and θ2 =
∆− q′2 = q + q2 we obtain:

q1 = q − θ1 and q2 = θ2 − q.

Therefore, the dynamical system corresponding to Hill’s
model can be re-written as:
mq̈ = −k1(q − θ1)3 − k2(q − θ2)3 + F + F1 − F2,

m1θ̈1 = −ktθ1 − k1(θ1 − q)3 + F1,

m2θ̈2 = −kt(∆− θ2)− k2(θ2 − q)3 + F2.

This system has to be compared with the one proposed
previously in (4), with θ′1 = 0 and θ′2 = ∆.
It is then obvious that the additional springs added on
the extreme left and right sides of the system (Fig. 2)
and that connect to the ground simply play the role of
tendons (elastic elements attached to the bones, which
serve as a fixed reference). The only difference is the
way the generalized forces enter into the system: this
is because our system directly actuates the masses m1
and m2, while forces are generated through contractile
elements in Hill’s muscle model. These considerations
show that the class of actuators we presently describe is
compatible with the most classical model of the human
tendon/muscle system.

III. Simulations

In this section, we consider a simple unstable task to
illustrate how stiffness control as offered by the proposed
actuator can be used effectively. We consider the dy-
namical system given in (4) and the goal of the task is
to maintain the middle mass at position zero without
feedback but by tuning the stiffness adequately. The
presence of uncertainty (i.e. dynamical noise) and insta-
bility (divergent force field) makes the task difficult if one
considers latencies in the feedback loop or simply neglects
feedbacks for instance .
To find an effective solution, we build a stochastic optimal
control (SOC) problem, and we used an algorithm for
SOC using (Feynman’s) path integrals, similar to PI2 as
recently developed by [10]. Our algorithm jointly relies
on the theories developed by [10], [11], but the precise
description of the algorithm we used is out of the scope of
the present paper. The method allows to automatically
derive an open-loop SOC that optimally regulates the
system in a divergent force field centred at q = 0 (see [1]
for a similar unstable task studied in humans).
In state space form, using x = (q, θ1, θ2, q̇, θ̇1, θ̇2)> and
u = (F1, F2)> we can rewrite the system (4) in the
control-affine form:

dx = a(x)dt+Budt+ Cdw,

where w is a standard 2-D Brownian motion.

To define a task and attribute a meaning to “optimal”,
we consider a cost function under the general form:

J(t0,x0) = E
(
φ
(
x(tf )

)
+

tf∫
t0

q(x) + u>Ru dt
)
.

Let us further assume, for technical reasons, that C =
B
√
λR−1 for an arbitrary λ. For this class of SOC

problems, it has been shown that the solutions can be
estimated using path integral approximations [10], [11].

Here we used φ(x) = q(x) = xTQx, with Q =
diag(0, 0, 1e4, 1e1, 1e1, 1e2), R = Id2×2, λ = 0.1. The
initial and final configurations were defined as x(tf ) = 0
and x(0) = (0,−1.5, 1.5, 0, 0, 0)> and the task duration
tf was set to 10 seconds. The springs characteristics were:
m = mi = 0.1, ki = k′i = 2 and b0 = bi = 2, i = 1, 2.
The ground position was θ′1 = θ′2 = 0. Note that we also
added a cost to penalize unrealistic behaviors, such as
having a spring pass through the ground. More precisely,
we added 1

2 1010( tanh(105θ1 + 1) − tanh(105θ2 − 1)
)
to

the term q(x).

For the simulations we chose a step size dt = 0.02 s.
The algorithm relies on an iterative procedure, using
importance sampling of paths (N = 1000 samples at
each update), for a total of 250 iterations. To evaluate
the effect of varying instability of the task, we used two
divergent force fields5 of different magnitudes (F = Kdivq
with Kdiv = 2 or 6 N/m). The goal of the task was to
maintain the middle mass around position q = 0 for 10
seconds using an open-loop control and minimizing the
amount of control effort involved. Note that minimizing
the control energy makes perfectly sense here because
large stiffness implies large control norm since springs
must be stretched significantly. This property is similar
to the large metabolic energy expenditure associated
with co-contraction in humans, which thus motivates the
design of “just stiff enough” control laws.

To initialize the process we used a pre-stretched config-
uration of the springs which resulted in a quite large
stiffness at the beginning, sufficient to counteract the
instability of the task but energy consuming. Therefore,
this is not optimal since the task is performed but with
a high control cost (i.e. large co-contraction). Across
iterations, a more efficient open-loop control is uncovered,
setting the optimal trade-off between remaining close to
q = 0 and using the smallest control energy possible (see
Fig. 5).

5Although it is divergent, the force field is nevertheless determin-
istic. It is distinct from the term involving the Brownian motion
w, which just reflects the noise affecting the system. Combined
together, instability (force field) and uncertainty (noise) makes it
impossible to stabilize the system at q = 0 in open-loop without
tuning the mechanical impedance.
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Figure 5. Stochastic optimal control simulations for an unstable task. A. The uncontrolled system diverges very rapidly, even with
in quite light divergent force field (Kdiv = 2 N/m, blue curves). Shaded areas depict the standard deviation across 100 trials. Black
thick traces depict the average behavior. B. Using a relatively high stiffness, the task can be performed quite accurately in open-loop,
despite uncertainty and instability. C. An optimal trade-off between accurate trajectory tracking and low energy consumption is found
by solving a SOC problem. As a result, the springs are stretched optimally to perform the task well enough. No feedback is used in
those simulations, meaning that they will still be an effective solution in presence of transmission delays. In the graphs, we have defined
Fq = k1(θ1− q)3 +k2(θ2− q)3 and Kq = 3

(
k1(θ1− q)2 +k2(θ2− q)2

)
, which are the feedforward force and stiffness active at the endpoint

(i.e. the external state q). The optimal control is relatively noisy (bottom right plots) due to the stochastic nature of the sampling process.
A filtered version of the control forces is also plotted to better visualize the trend in the behavior of the optimal control law.

IV. Conclusion

We have presented a passive variable stiffness actuator
with interesting human-like features. Mainly it makes it
possible to mimic some effects of muscle co-contraction
in humans, which is useful to cope with noise and senso-
rimotor delays affecting physical/biological systems. The
price to pay to achieve this behavior is a waste of energy
associated with the need for stretching additional springs.
This property is nevertheless similar to the large energy
expenditure of muscle co-contraction and this moreover
justifies the use of optimal control techniques to reduce
this energy consumption to a minimum. This also justifies
why and how stiffness should be tuned in such systems,
going beyond safety or force regulation considerations
usually investigated in the field. We illustrated the use
of variable stiffness during an unstable stabilization task.
Open-loop stochastic optimal control laws were derived
using an algorithm based on path integrals. Future work
will focus on the actual fabrication and implementation
of such actuators on a real humanoid platform (iCub) in
order to consider more realistic daily life unstable tasks,
such as screw driving for instance.

References

[1] E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and
M. Kawato, “The central nervous system stabilizes unstable

dynamics by learning optimal impedance.” Nature, vol. 414,
no. 6862, pp. 446–449, Nov 2001.

[2] D. Mitrovic, S. Klanke, R. Osu, M. Kawato, and S. Vijayaku-
mar, “A computational model of limb impedance control based
on principles of internal model uncertainty,” PLoS ONE, vol. 5,
no. 10, 2010.

[3] B. Berret, S. Ivaldi, F. Nori, and G. Sandini, “Stochastic
optimal control with variable impedance manipulators in pres-
ence of uncertainties and delayed feedback,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems,
San Francisco, USA, September 2011, pp. 4354–4359.

[4] B. Siciliano and O. Khatib, Eds., Springer Handbook of
Robotics. Springer, 2008.

[5] A. Jafari, N. Tsagarakis, B. Vanderborght, and D. Cald-
well, “A novel actuator with adjustable stiffness (AwAS),” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, taipei, Taiwan.

[6] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi, “Vsa-ii: A novel
prototype of variable stiffness actuator for safe and performing
robots interacting with humans,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2008,
2008.

[7] G. Picci, Filtraggio Statistico (Wiener, Levinson, Kalman) e
Applicazioni. Libreria Progetto, 2007.

[8] G. Pratt and M. Williamson, “Series elastic actuators,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Los
Alamitos, CA, USA, 1995, pp. 399–406.

[9] S. Wolf and G. Hirzinger, “A new variable stiffness design:
Matching requirements of the next robot generation,” in
ICRA, 2008, pp. 1741–1746.

[10] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path-
integral control approach to reinforcement learning,” Journal
of Machine Learning Research, vol. 11, pp. 3137–3181, 2010.

[11] H. J. Kappen, “A linear theory for control of non-linear
stochastic systems,” Physical Review Letters, vol. 95, pp. 200–
201, 2005, published.

227


