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Abstract

In this chapter, we review recent work related to the optimal and modular control hypothe-

ses for human movement. Optimal control theory is often thought to imply that the brain

continuously computes global optima for each motor task it faces. Modular control theory

typically assumes that the brain explicitly stores genuine synergies in specific neural circuits

whose combined recruitment yields task-effective motor inputs to muscles. Put this way, these

two influential motor control theories are pushed to extreme positions. A more nuanced view,
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framed within Marr’s tri-level taxonomy of a computational theory of movement neuroscience,

is discussed here. We argue that optimal control is best viewed as helping to understand “why”

certain movements are preferred over others but does not say much about how the brain would

practically trigger optimal strategies. We also argue that dimensionality reduction found in mus-

cle activities may be a by-product of optimality and cannot be attributed to neurally hardwired

synergies stricto sensu, in particular when the synergies are extracted from simple factorization

algorithms applied to electromyographic data; their putative nature is indeed strongly dictated

by the methodology itself. Hence, more modeling work is required to critically test the modular-

ity hypothesis and assess its potential neural origins. We propose that an adequate mathematical

formulation of hierarchical motor control could help to bridge the gap between optimality and

modularity, thereby accounting for the most appealing aspects of the human motor controller

that robotic controllers would like to mimic: rapidity, efficiency, and robustness.
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1 Introduction

The vision neuroscientist David Marr, in his posthumous book, distinguished three levels of analysis

in the field of computational neuroscience [97]. In computational motor control, the higher level

(“theory”) addresses questions such as: why do humans displace their limbs the way they do?

what hidden goal(s) do they try to achieve? [133]. Essentially, this level of analysis seeks to

explain why human movement trajectories have certain characteristics and what makes the elected

movement better than another. By intuition and also by analogy with the principle of least action in

classical mechanics, some researchers (including Marr himself) presumed that human behavior may

be optimal in a sense that remains to be specified. Formulated in this way, the question turns out

to be an inverse optimal control problem, a class of problems that mathematicians started to tackle

a long time ago [e.g. 83] and has been recently applied to reaching [57], locomotion [27] or even

flying [1]. Precisely, inverse optimal control is the process of recovering the optimality criterion (or

cost function) according to which a bunch of ex hypothesi optimal trajectories are indeed optimal.

It is an ill-posed problem and, in fact, harder than direct optimal control [8, 117]. Direct optimal

control consists in a priori guessing the cost function and computing the corresponding optimal

trajectories, which can be a tricky mathematical problem in itself in many occasions. Importantly,

at this level of analysis, no assumption is made about how the brain could manage to generate

these optimal trajectories or whether it constantly solves optimal control problems from scratch1.

This type of question is left to the second level of analysis called “algorithm” which investigates

how observably optimal trajectories could be generated by the sensorimotor system. To this aim,

several motor control theories have been proposed such as the ones based on active inference which

do not even require the specification of a cost function to explain movement generation [54]. Active

inference, however, crucially requires prior knowledge about limb trajectories. As inverse optimal

control precisely seeks to provide the rationale about why certain trajectories may be more valuable

than others a priori, it can complement active inference models by informing why certain priors are
1A useful analogy from classical mechanics is the principle of least action. For instance, trajectories of conservative

systems are extrema of the Action, i.e. the time integral of the Lagrangian (kinetic minus potential energies), while it is
hardly arguable that objects explicitly “optimize” their trajectories on purpose. In fact, finding whether a Lagrangian
exists for a given system of differential equations has been the topic of numerous investigations in physics which date
back to the works of Maupertuis, Euler or Lagrange. This refers to the inverse problem of calculus of variations [47]
and can be seen as the analog problem of inverse optimal control. Notably, inverse calculus of variations has been
used in the context of motor control to investigate the origin of the two-thirds power law [93].
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used. Conceivably, through evolution and life-span development, the central nervous system (CNS)

may have learned statistical descriptions of movement distributions or may have found simplified

ways to trigger optimal or, say, good enough movements. By storing synergies (also called building

blocks, primitives or modules2), it has been proposed that the CNS might have found clever ways

to group and coordinate different degrees of freedom (joints or muscles) so that only a few task-

related variables would need to be tuned in order to produce adequate motor patterns and efficient

movements.

Modularity can be assumed at different levels: kinematic, dynamic, muscular or neural. When

focusing on the muscle activation level, as in the present chapter, we talk about the muscle syn-

ergy hypothesis whose main appeal is to simplify neural motor control through timely activation

of precoded groups of muscles. However, what these “building blocks” are and according to what

rules they are combined remains elusive. Very often these building blocks may take the form of

muscle weightings or temporal patterns, and are identified via dimensionality reduction such as

PCA (principal component analysis), NMF (non-negative matrix factorization) or ICA (indepen-

dent component analysis), i.e. unsupervised machine learning techniques applied to approximate

motor signals (electromyographic data, aka. EMG). Currently there is still a gap between theories

investigating the structure of muscle activities and theories assuming that cost functions determine

limb trajectories. Yet, the crucial pivot to both approaches is musculoskeletal modeling. In inverse

and direct optimal control, a model of the musculoskeletal system is required because optimally

driving a system requires some dynamical description of it (e.g. rigid body dynamics with more or

less advanced models of musculotendon complexes). Musculoskeletal models are also required to

test the modular control hypothesis in muscle space, especially for assessing the effectiveness of the

extracted synergies (from EMG) in controlling the musculoskeletal system; i.e. feeding back the

EMG-based synergies into the controlled system, which is rarely done in motor control studies.

A growing number of studies are interested in investigating the links between optimality - at the

highest level of analysis - (according to Marr’s taxonomy) and modularity - at the second level of

analysis - in order to evaluate whether optimal (or at least good enough) trajectories can be obtained

from the combination of a limited number of genuine motor modules. Whether or not the algorithm
2In this chapter, the terms synergy, primitive, module or building block are loosely treated as synonyms and will

be used interchangeably. In the literature, a precise mathematical definition specifying the exact nature of each term
is generally lacking. Different authors may thus have their own conception regarding the meaning of each term.
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used by the CNS to trigger “good enough trajectories” truly relies on this kind of synergies is an

open question but evidence is usually sought by tackling Marr’s third level of analysis, that is, the

“implementation” level. In particular, finding synergies of a neural origin would strongly support the

theory. However, the nature and shape of the building blocks to be found within the CNS critically

depends on the hypotheses made by the framework used to infer them. Therefore, research at

the implementation level is linked to the algorithmic level; i.e. studies of the neurophysiological

underpinnings of modular structures are conducted according to a predefined model of modularity.

In this chapter, we will review and discuss optimal and modular control theories and underline

their strengths and limitations. It is worth noting that the three levels of analysis put forward by

Marr are complementary but address conceptually different questions. Therefore, the interaction

and links between the first two levels will be discussed. In Section 2, we will review the inverse

optimal control approach which aims at deciphering the underlying high-level principles of motor

control. In Section 3, we will review works related to the muscle synergy hypothesis that aims

to assess the structure of muscle activity patterns from a dimensionality reduction perspective.

Section 4 is dedicated to discussing the links between the two approaches and, finally, perspectives

for future research are given in Section 5.

2 Optimal control hypothesis

2.1 Direct and inverse optimal control approaches to motor control

The inverse optimal control problem was first considered in a seminal paper by Kalman for linear-

quadratic problems [83] and extended in [108]. In motor control, few studies employed such an

inverse approach to tackle the motor planning problem until recently. This is not to say that optimal

control has not been used; on the contrary it has been applied extensively mostly since the 80s and

has emerged as a leading theory in the human movement control literature [49, 144]. The work

of [106] is for instance characteristic of the classical (direct) approach that was initially employed:

several costs were tested and compared to find the best descriptor/predictor of human motion

data. Then, the researcher suggested that the elected cost constituted an explanatory principle of

biological motion. Since that time the computational theory of motor control has developed and

become very popular. An account of all the main ideas and concepts like “optimal feedback control”
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and “internal models” can be found in specialized reviews [144, 129, 45, 130, 127]. The success of

this computational theory of motor control can be explained by two main reasons: first, once a cost

function is defined, it captures everything about the possible trajectories of the system, thereby

implementing an elegant dimensionality reduction from the infinite number of potential trajectories

to cost functions [10]; second, it is readily implementable in artificial systems because the very

same language is used by control theoretists and roboticists. The point we want to make here is

that most studies tended to a priori choose a cost function and to test its predictions subsequently.

Generally, they tried to match the standard LQR (linear-quadratic regulator) or LQG (linear-

quadratic Gaussian) designs to make the problem easier to solve [84, 145]. Interestingly, these

simple models were sufficient to explain several motor control phenomena (two-thirds power law,

Fitts’s law, [66]). However, the true nature of the question “why do we move like that?” better

conforms to a reversed process, which brings inverse optimal control into play. An illustration of

the difference between inverse and direct optimal control is given below (Eq. 1):

observed trajectories inverse optimal−−−−−−−−−−→
control approach

cost function

cost function direct optimal−−−−−−−−−−→
control approach

compare observed vs.

predicted trajectories

(1)

The need for inverse optimal control arises from the need to identify the most plausible (among

all possible) cost functions. Mathematically, a cost function may take the form J(u) =
´ T

0 h(x, u, t)dt

where x is the controlled variable (e.g. system state such as velocity, position etc.), u the control

variable and t is time3. If a cost function h accounts for some data, nothing precludes another cost

of a different nature to perform equally well or even better. This has been at the origin of some

controversy because in many occasions divergent costs were found to account for planar point-to-

point reaching movements. Innovative paradigms are thus required to disambiguate these candidate

costs. So, the following question arises: which of these candidate costs is really relevant to human

motor control? This situation is exemplified in Figure 1.

Inverse optimal control is a difficult problem because it is primarily ill-posed unless very careful

conditions are imposed. Therefore, to successfully study inverse optimal control problems, not only
3In this chapter, we consider only integral costs for simplicity but we could easily add a terminal cost in all the

optimal control problems.
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Figure 1: Predicted hand trajectories for two influential motor costs during planar reaching move-
ments. Left panel: when reaching to a target point, the minimum jerk [53] and torque change [159]
models predict highly similar and therefore equally plausible trajectories, whereas the two models
are very different in nature (kinematic cost for the former and dynamic for the latter). Right panel:
when replacing the point with a line or a bar, the two costs lead to different trajectories, and may
thus be distinguished empirically. Shaded areas indicate the difference between the trajectories
predicted by the two models. Taken from [15].

mathematical sophistication but also smart experimental designs are needed to distinguish putative

cost functions.

2.2 Example of inverse optimal control results

In 2008, a necessary and sufficient condition of optimality for fast enough arm reaching movements

was identified [13, 12, 57]. Namely, periods of simultaneous inactivation of opposing muscles -

during the movement - were shown to be equivalent to the minimization of a cost including a term

like the integral of the absolute power of muscle torques (termed “absolute work”). The strength

of this result was the mathematical proof of an “equivalence” between a singular motion feature

(muscular inactivation) and a cost feature (non-smoothness of the cost). Initially, the authors used

a direct approach by guessing what could be a physically-relevant cost function [13]. Later, the

mathematical analysis allowed to establish a powerful inverse optimal control result, whereby the

authors could infer certain properties of the cost function right from experimental observations [57].

In practice, the work was guided by a different intriguing experimental result: the kinematics of

vertical arm movements was shown to depend on its orientation relative to gravity vector, therefore

suggesting a potential imprint of gravity on human movement [113, 63, 58]. Since then, a series of

papers has shown that upward movements differed from downward movements of equal duration

and amplitude (including one-degree-of-freedom motions during which only the sign of gravity
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effects change with movement direction; i.e. assists/resists the acceleration of downward/upward

movements respectively) in that the acceleration duration was shorter in the upward compared to

the downward direction [114, 63, 92, 32, 58, 128, 60, 165, 151, 61, 73]. These directional asymmetries

have been observed by independent groups of researchers so consistently, including in microgravity

experiments where they were actually shown to progressively vanish, that we could now employ

the term “law of asymmetries” to refer to this phenomenon. In particular, minimizing the absolute

work of muscle torques has been shown to robustly reproduce these vertical asymmetries for fast

enough movements, despite differences in initial postures [12], upper limb’s segment [60] or gravito-

inertial context [61]. This led the authors to suggest an optimal integration of gravity force during

motion planning where gravity torque can be utilized to drive the limb during rapid movements.

This interpretation is corroborated by EMG analyses showing that, during a rapid movement, the

(phasic) activity of anti-gravity muscles is clearly lower than the (tonic) activity that would be

needed to maintain a static arm posture in the same position, in certain movement phases4 (e.g.

[19, 52, 38, 39, 124]).

Previously, the absolute work was shown to be one of the potential ingredients of a more general

cost function underlying human movement [12]. Various researchers had already proposed other

cost functions as well as the idea of composite costs which was explicitly tested in [15]. The idea

of composite costs proposes that multiple complementary criteria shape human trajectories. For

instance, motion smoothness and energy expenditure are complementary criteria as minimizing one

may be detrimental to the other. This mixed nature of cost functions has been observed in various

tasks such as reaching [15, 162, 61], landing after a jump [167] and walking [166]. At this point, it is

important to classify cost functions in two categories: the first category, “subjective” costs, depends
4It is generally assumed that the muscle torque τ acting at a given joint can be split into two terms such that

τ = τstat + τdyn, where τstat is a static term which only depends on the system position and τdyn is a dynamic term
which depends on its velocity and acceleration [72, 7]. Gravitational torque is part of the static term which may also
include other terms like elastic forces. On this basis, researchers have proposed to split EMG activity into tonic and
phasic components (e.g. [52]). To clarify our purpose, let us consider a single-joint upward movement here. If the
static torques were to be compensated at all times, a phasic activity of the agonist muscle should come on top of its
tonic activity during the entire motion duration. On the contrary, if the agonist EMG signal is found to be below its
corresponding tonic level, it may suggest that gravity is not just counteracted but utilized as a driving force. This
lack of tonic activity, already observed - but not fully considered - in several studies, actually echoes the inactivation
principle mentioned in the main text. If observing proper inactivation may be tricky due to multiple factors such as
the noisiness of EMGs, the predicted briefness of the phenomenon and the requirement of being under well-suited
conditions of speed and amplitude, this lack of compensation of gravity torques, clearly apparent in EMG data, is
additional evidence for an energy-related use of gravity in fast reaching movements.
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on the subject’s choice; the second category, “objective” costs, depends on the task specification5.

In general both objective and subjective costs are relevant to motor control. Forcing a subject to

reach very fast to the target, tracking an imposed trajectory or freezing a joint are examples of

objective costs. Yet, even with such constraints, most motor tasks are still redundant because there

is an infinity of ways, i.e. motor control solutions, to perform them. Subjective costs come into

play to resolve all residual redundancy and provide the rationale about why the task is eventually

performed as it is. Here, we want to underline this last statement. Reproducing or trying to explain

empirical data with an optimal control model does not compulsorily mean that the nervous system

solves an optimal control problem, especially not constantly and from scratch. It only means that

the motor solutions the nervous system has developed, whatever the time scale, are advantageous

in a sense that has been delineated.

According to the objective/subjective dichotomy, one may suggest that, in order to eliminate the

effects of objective costs in the identification process, experimenters should give maximal freedom

to the participant and put as little task constraints as possible. In other words, considering highly

redundant tasks with very few instructions given by the experimenter may help understanding the

fundamental principles humans prefer to rely on. In goal-directed tasks, there are two ways to make

a task more redundant: by adding intrinsic or extrinsic degrees of freedom. First, let us consider a

pointing task where the only objective constraint is to point with the fingertip toward the target.

The target location defines 3 constraints (in the 3-dimensional space) but to make the task very

redundant we could consider adding other degrees of freedom. For instance, asking a participant to

perform a whole-body reaching task would be advantageous to emphasize subjective motor decisions,

however, it would also make the optimal control problem and musculoskeletal modeling harder to

solve computationally. An other alternative is to reduce the constraints imposed by the target itself.

Instead of a dot, asking a subject to point to a line, or a surface, makes the task redundant even with

a simple two-link arm model (e.g. Fig. 1). The appeal of this second approach is to make explicit

the choice problem faced by a subject when planning a movement6 (in this type of task, the subject

has to select an end point on his/her own). How a subject moves when asked to point toward a line

(not a point) is instructive and has been studied in a couple of papers [16, 105, 17, 150]. This type
5This terminology is borrowed from [88]. In [127], the terms internal and regularization are used for subjective

costs while the term task-based is used for objective costs.
6Remarkably, motor control has been conceived as a true (motoric) decision-making problem recently [164].
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of protocol has been used to investigate eye-hand coordination [17], posture-movement coordination

[69] and the use of interaction torques and velocity dependence of cost functions [162, 161].

Hitherto, all the above-mentioned modeling studies have considered that movement time was

known7. However, motor redundancy is not only spatial but also temporal. Why are some subjects

faster than others or what determines someone’s movement vigor8 are questions that were addressed

more recently [132, 134, 76, 11]. It turns out to be an inverse optimal control issue as well, if one

considers the existence of a cost of time [11]. Assuming a linear separability of the temporal and

spatial cost functions, i.e. J(u) =
´ T

0 h(x, u, t)dt =
´ T

0 g(t) + l(x, u)dt, it was shown that it is

possible to accurately recover g(t) for different times t in a free-time optimal control setting [11]. In

particular, this approach requires having knowledge of both the subjective and objective terms of the

trajectory cost l(x, u). Given these assumptions and different simple models of the musculoskeletal

plant, it was also found that the cost of time exhibited a sigmoidal growth. This, therefore, raised

questions such as: how would the CNS proceed to depart from its spontaneous speed choice when

speed instructions are given to a subject (such as “move fast”)? A complex interplay between

trajectory and time costs, but also between objective and subjective costs, may be hypothesized.

Indeed, it was shown that speed instructions were most plausibly captured by adding objective

trajectory criteria to l(x, u) [82] rather than modifying g(t), and that subjective trajectory costs

appeared to be quite insensitive to speed instructions [162]. Overall, time, energy/effort, smoothness

but also accuracy may be relevant to biological motion planning and control. The relative weights

associated to each cost element may depend on the task characteristics. The multivariate aspect

of the cost function and the addition of task-dependent costs, however, make the identification

problem quite hard, even though these results may truly capture some fundamental high-level goals

of the motor system.

2.3 Remarks regarding optimal control theory

In general, posing an inverse optimal control problem remains difficult as it requires several choices.

Indeed, both devising the class of cost functions and the dynamical system to use is a modeling
7When we say that movement time is known, modeling-wise, we mean that time is set by the user (often it is

taken from experimental data). Therefore, time is an input to the model. Note, however, that time can also be a free
variable that emerges from optimization just as the limb’s trajectory does [138].

8Vigor loosely refers to the speed, extent or frequency of movement [48]. It is often characterized by relationships
between amplitude and velocity or duration.
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choice. First, the choice of which functional space of cost functions to consider is mostly left to the

experimenter. Once such an infinite dimensional space is chosen, however, a sort of discretization is

required to make the problem numerically tractable and to only have a finite number of parameters

to be inferred in practice9. One may distinguish basis costs that are chosen for mathematical

reasons (e.g. polynomials) from those that are chosen for their physical/biological meaning (e.g.

energy, effort...). While the former costs can be good for fitting or reproducing anthropomorphic

motion, they do not allow to explain it and, thus, do not answer Marr’s top level question which

constitutes the main appeal of the use of optimal control for motor neuroscience. Second, the

choice of the (sensorimotor) level of investigation is a related concern. It specifies the dynamical

system under consideration, thereby constraining the variables that can be included in the cost

function. Overall, the CNS has a hierarchical organization from task space to muscle space. Thus,

the CNS may first care about what happens in task space and work with a simplified model of the

musculoskeletal dynamics. Accordingly, cost functions could be defined at a kinematic level, at a

dynamic level or could even attempt to minimize the overall motoneuronal activity. What level

of description/investigation is best suited remains uncertain. Nevertheless, it seems that, in many

cases, we can get reasonably good predictions of human movement trajectories by simple models

that capture the essence of the system being controlled. For example, rigid body dynamics with

some very basic muscle dynamics implementation are sufficient to capture several important motor

phenomena as discussed above. Yet more involved models of the musculoskeletal apparatus have

been considered too [94]. While this is a valuable and complementary approach, this raised questions

regarding the confidence one can put in the “optimality” of the solutions and in the dependence of

the solutions on the relative uncertainty about the model parameters such as muscle time constants,

pennation angles, length/velocity force dependencies, the physiological cross-sectional area and so

on, and which are difficult to know precisely for a given individual. Solving an optimal control

problem can actually be a tricky task (doing the optimal synthesis10 even for simple problems may

illustrate this [117]). Quite often, we may only find sub-optimal solutions and get stuck in local

minima when using numerical tools. Therefore, working with very high-dimensional and non-linear
9For example, a researcher might decide to work in the space of cost functions that depend on position and speed

variables, or might wish to include acceleration variables (e.g. [27]). Other assumptions could be made such as working
with polynomials (e.g. [139, 115]). However, a numerical implementation would necessitate restricting to some degree
n or working with a finite number of basis costs belonging to the function space under consideration.

10Formally, this is the set of all the optimal trajectories joining any initial state to any terminal one.
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systems may be challenging also for this reason.

We must mention that, like with any theory, the question of falsifiability must be asked. Because

inverse optimal control is a form of data fitting (at least its numerical implementation), we shall

always find some functions that fit a given set of data. Thus, special care must be taken regarding

overfitting: Occam’s razor principle should be applied for numerical inverse optimal control espe-

cially when composite costs (i.e. combinations of multiple cost functions) are considered. If the

CNS truly relies on certain composite costs and if one imposes the constraint that a limited number

of costs should explain a variety of tasks, falsifiability could then be addressed. This would suppose

that the same cost functions should be relevant to a variety of tasks in the sense of generalization

and cross-validation. If, in contrast, a given mixture of costs allows to account for motor perfor-

mance in a given task but not in other tasks, then it would mean that the model must be modified

or even reconsidered more globally.

At last, some authors have argued that motor control is “good enough” instead of really opti-

mal [96]. Actually, saying that a system is not behaving optimally can be considered a stronger

claim than saying it is behaving optimally because it is always possible to find a cost replicating a

given experimental trajectory (a trivial - admittedly meaningless - counterexample would be a cost

tracking the specific trajectory to be reproduced). Yet, we agree that being good enough may be

sufficient for the sensorimotor system, especially if one thinks of the existence of muscle synergies

or primitives that restrain the repertoire of possible motor commands. In any case, saying that a

behavior is good or favorable implies that it offers some advantages against others, which can be

theoretically translated in terms of cost functions. Even though some behavioral strategy is a local,

not global, optimum [55, 123], it is nevertheless an extremum of a certain cost function (e.g. satisfy-

ing the necessary conditions given by Pontryagin Maximum Principle, [117]), which would be useful

to characterize. In the end, saying that something is good enough or even optimal (reciprocally not

good enough or not optimal) makes no sense without adding “with respect to” some well-defined

cost function11.

Other theories such as the passive motion paradigm [101] have also been opposed to optimal

control. The core idea in this paradigm is to replace cost functions with endpoint force fields and
11A useful biomechanical analogy would be to talk about the “moment of a force” without precising the fixed

reference point with respect to which it is calculated.
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assume that the mechanical system is moved by a virtual force acting at the level of the end-effector

(e.g. like strings moving a puppet’s limbs). This is seen as a means to maximally exploit the

spontaneous dynamics of the musculoskeletal system. However the nature of the underlying force

field has to be given (choosing some free parameters) and, once one is chosen, it could still be

interpreted as arising from a certain optimality criterion (e.g. optimal feedback control arising from

LQR/LQG settings typically leads to static or time-varying force fields, in Cartesian or joint space

depending on the control system under investigation). The same point could be made regarding

dynamical system theory [158, 87] as, once a control law is defined, the musculoskeletal system may

appear to be self-organized and governed by some ordinary differential equation. Inverse optimal

control theory mainly seeks to justify why certain force fields or dynamical attractors would be

utilized rather than others. Nonetheless, relying on learned dynamical patterns, or basis force

fields, can be viewed as an efficient algorithmic way to solve the degrees of freedom problem and

to generate effectively coordinated limb movements [103]. In our view, this level of investigation

rather addresses Marr’s second level of analysis (algorithm).

From a robotic perspective and towards an anthropomorphic motion factory, inverse optimal

control is also appealing as it may allow roboticists to produce an infinity of human-like movements

from a given cost function. Indeed, cost functions (together with a model of the plant) are able to

plan movements that have not been tested or encountered previously. Yet, the difficulty to resolve

quite involved optimal control problems in real time for robots with numerous degrees of freedom

limits the appeal of its generalization power. Besides classical linear-quadratic formulations, we

lack ways to quickly solve such problems. Model predictive control might partly resolve this issue.

Although this is an increasingly popular approach, it remains however unknown whether its control

architecture is biologically plausible [99]. Modularity may help efficiently solving optimal control

problems in an ecological way, however further research efforts are needed to figure out how the

CNS actually implements the control of limb movement.
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Figure 2: Illustration of the hierarchical modular control architecture at the muscle activation level.
The scheme goes from task parameters (in a lower-dimensional space yielding some activations ai),
via combinations of precoded and stored motor modules (here loosely denoted by vi), to neuromus-
cular inputs (in a higher-dimensional space, e.g. u =

∑
i aivi for a linear model). Dependencies on

time/state and distinction between vector/scalar quantities are not specified on purpose. The na-
ture of the modules and their combinations depend on the underlying model: they can be temporal
waveforms, vectors of muscle activation ratios, spatiotemporal activity profiles, feedforward and/or
feedback elementary control actions, and can be combined in a linear or nonlinear fashion etc. In all
cases, their task-dependent modulation is assumed to account for the formation of genuine muscle
patterns.

3 Modular control hypothesis

3.1 Hierarchical modular control approach to motor control

Another significant body of the motor control literature has focused on the idea of compositional or

modular motor control, such as the muscle synergy hypothesis on which we focus in this chapter.

This body of literature suggests that the CNS stores certain muscle synergies and is able to combine

them adequately to generate a motor command that would allow accomplishing a given motor task.

A useful metaphor to illustrate the concept of modularity for spatiotemporal motor signals is to

depict movement generation as music playing. Music is created by combining “modules” such as a

melody (notes) and a rhythm (tempo). Similarly, coordinated movement may be the outcome of

the combination of such stereotyped modular structures. The idea of hierarchical modular control

is illustrated in Figure 2.

The computational appeal of this theory is that, if pre-coded invariant modules can be used as
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motor building blocks, the CNS would only have to coordinate them to execute consistent move-

ments, thereby simplifying the control problem by, de facto, implementing a dimensionality reduc-

tion. Therefore, the aim is to understand both the representation of motor commands and according

to which algorithm the CNS may set them up (the second Marr’s level of analysis). More generally,

at this level of analysis, one would want to elucidate how the CNS builds motor commands that

generate good (enough) limb trajectories (which is not necessarily via muscle synergies but could

relate to active inference or other means as mentioned above).

A first step in deciphering whether and how motor building blocks are stored within the CNS

consists in defining a plausible modularity model. This is again a modeling choice. The model

parameters can then be inferred from experimental data and correlated with their putative neural

underpinnings. To implement this first step, several models of motor modularity have been proposed

in the literature, mainly differing in their assumptions about a) what quantities are stored by the

motor system as invariant “modules” which can be reused in different movements and b) what

quantities are determined by the descending neural motor commands to recruit the modules in single

trials [156, 79, 36]. Modules have been hypothesized to represent spatial, temporal or spatiotemporal

invariant patterns in motor signals [43, 5, 26]. It is worth mentioning that modularity has been

assumed to exist at different levels of the motor hierarchy (e.g. kinematic, [126, 14]; dynamic,

140, 25, 124; neural, [112, 28]) with most of the studies placing modularity at the muscle activation

level [155, 142, 143, 34]. Regarding the mathematical formulation, models of motor modularity are

typically linear because it was found that the force fields resulting from the co-stimulation of two

spinal loci were linear combinations of the individual force fields [104, 20]. Thus, the algorithms used

to identify putative modules are commonly based on linear dimensionality reduction methods such

as PCA or NMF and the extracted modules are assumed to be combined by feedforward motor

mechanisms. Recently, techniques for the identification of modules of feedback nature have also

been proposed for isometric tasks [118]. Hence, modeling choices include in general both the nature

of the modules (spatial, temporal, feedforward, feedback etc.) and the associated combination rules

(linear or not).

At the second step of this approach, motor signals recorded during a large number of motor

tasks have been successfully fitted by modularity models. This was interpreted as evidence that

performance of such motor behaviors relies on motor modules (e.g. reaching [38, 157, 26, 43,
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102]; grasping [110, 18, 163]; walking [78, 79, 80, 46, 91, 21]; pedaling [75, 74]; reflex movements

[156, 22, 116, 37]; postural tasks [154, 152, 153, 29, 141] etc.). Furthermore, modular structure in

muscle activity has been shown to be preserved or adjusted after different types of brain injuries

[24, 23, 65, 120, 121, 30].

At last, in order to probe the neural basis of modularity, the model parameters learned from

the motor signals can be used as proxies of modular mechanisms, so their correlations with neural

signals can be investigated. Several studies have identified potential neural bases of modules or their

activations, both at the cortical level [71, 112, 111, 86] and in spinal structures [67, 68, 64, 125].

Crucially, this approach can serve to disentangle a) the nature and structure of modules, thereby

informing the design of suitable modularity models and b) the level of the neural hierarchy where

modules may be encoded, thereby addressing Marr’s third level of analysis (the neural implemen-

tation). In this vein, Kargo and Giszter [85] showed that, at the spinal level of motor organization,

premotor pulses (i.e. temporal modules) are more likely to be encoded than time-varying synergies

(i.e. spatiotemporal modules). Also, Roh and collaborators [119] showed that medulla and spinal

cord are sufficient for the expression of most (but not all) muscle synergies (i.e. spatial modules),

which are likely activated by descending commands from supraspinal areas.

3.2 A task-space perspective to modularity

While many studies have tested modularity models based on whether they reconstruct the recorded

muscle activation patterns for a number of task conditions using a limited number of invariant mod-

ules (input space assessment), recently a regain of interest to relate modularity to task space has

been observed. A recent review of literature emphasizes this shift of paradigm [5]. As stated above,

muscle synergies are typically extracted from recorded EMG data using unsupervised algorithms.

The variance accounted for (VAF) or R2 (R is the correlation coefficient) values are computed to

evaluate the overall data approximation performed by the dimensionality reduction. However, this

assessment has some limitations. First, VAF and R2 values are somewhat arbitrary and defining

an absolute threshold that indicates what is good fitting is a sensitive subject. Second, the mus-

culoskeletal system being largely nonlinear, small errors in input space can lead to large errors in

task space and undermine task achievement. Therefore, we should evaluate how putative motor

synergies and their activations relate to task parameters. This idea has recently been put forward
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by many authors [6, 40, 42, 41, 135]. Mostly three approaches were taken: (1) using isometric tasks

for which a virtual mapping from muscle space to task space can be defined by the experimenter,

(2) quantifying the extent to which task identity is encoded in synergy-space so as to assess whether

the way synergies are activated unequivocally determines the task at hand, as postulated by the

theory, and (3) grounding on realistic musculoskeletal models to test whether experimentally-driven

synergies can effectively be used for control. In a series of papers, de Rugy and collaborators eval-

uated “the usefulness of muscle synergies [...] in terms of errors produced not only in muscle space,

but also in task space”. They showed that even for what could appear as a relatively high VAF,

control with muscle synergies could lead to unacceptable errors in task space. Delis and collab-

orators argued that single-trial task decoding/information techniques should be used to evaluate

whether modularity can guarantee task performance in single trials [44]. The rationale was the

following: if the performed movement cannot be discriminated in the reduced-dimension synergy

space, this would cast serious doubts about the effectiveness of the proposed hierarchical modular

control scheme (indeed, it is possible to get a large VAF with a low decoding score, which would

invalidate a modular decomposition although it is doing a good job at reducing dimensionality).

The authors concluded that complex and comprehensive data sets should be considered in general

to conduct such analyses, in the spirit of large-scale neuroscience endeavors [56]. This is a relevant

approach as it was shown that the number and efficiency of muscle synergies depends on the scope

of the original database and on the complexity of the tasks under investigation [40, 136]. Another

way to test the modular control hypothesis is to build an accurate musculoskeletal model, as done

in [107, 6]. The authors of these studies applied this technique for walking and essentially showed

that EMG-based synergies are rough starting point solutions that need to be fine-tuned to elicit

adequate walking patterns.

Hence, the analysis of motor modularity should ideally consist of a closed loop between the

recorded motor signals and their associated limb trajectories. This can be summarized as follows

(Eq. 2):

real muscle patterns reverse−−−−−−−→
engineering

extracted muscle synergies

extracted muscle synergies forward−−−−−−−−−−−−−−−→
musculoskeletal dynamics

reconstructed trajectories
(2)
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The first step allows to extract the potentially stored modules via some machine learning tech-

nique. To this aim, it is likely that switching from unsupervised to supervised learning algorithms

taking into account the underlying biomechanics and trajectories in task space could lead to more

advanced synergy models. However, the choice of unsupervised versus supervised learning algo-

rithms is often neglected in practice because the simplicity of standard methods such as NMF is

preferred. The second step consists in “playing back” the synergies into the musculoskeletal appa-

ratus to test the produced motor behavior and evaluate the proposed control model in task space

by analyzing the reconstructed limb trajectories.

3.3 Remarks regarding modular control theory

In reality, the questions of what the bricks of motor commands are, what model should be used

to describe them and how motor commands are combined have not been resolved yet. It is likely

that the models currently used are too simple to define a suitable framework from a control theory

standpoint and to allow finding explicit neural correlates of the putative modules. In particular, most

EMG-based identification models do not consider feedback processes whereas muscle synergies or

coordination patterns may be posture-dependent as suggested in [118, 123] and, therefore, the state

of the biomechanical system should possibly be taken into account during synergy identification.

Another restriction is that current synergy extraction algorithms usually require equal movement

durations across trials to simultaneously extract synergies from different movement conditions,

which is not the case of real data. At last, except in some studies where multiple layers of modularity

have been considered, thereby leading to nonlinear reductions of dimensionality [10], most existing

approaches are linear, which might be a good first-order approximation but might be limiting in

practice to control a nonlinear plant.

A major criticism of the modularity hypothesis is that, for a given task or set of tasks, it is

always possible to reduce dimensionality to a certain extent or to account for muscle patterns if

a sufficient set of modules is extracted. As a consequence, the extracted modules may be inher-

ently task-dependent and may reflect the biomechanical constraints imposed by the human body

(especially for neighboring muscles that control the same joint) [90, 160]. Moreover, if optimality

drives human trajectory formation and/or optimization guides muscle pattern design, it is clear

that, in general, small task variations (e.g. changing a target’s position) will only produce small
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muscle activity variations. Overall, this would lead to certain commonalities in muscle patterns,

which could always be isolated by machine learning or statistical techniques. Nevertheless, similarly

to optimal control, generalization should be tested and special care should be taken with regard

to the conclusions that can be reached via such EMG-driven analyses. In other words, while de-

scribing the organization of muscle patterns is valuable to provide synthetic views of how ensemble

muscle patterns are structured, relating this structure to underlying active neural mechanisms is

tricky. In practice, the existence of circumstantial evidence, as described above, combined with

the possibility that any deviations from the theory can be attributed to either a coarse model of

modularity or alternative neural pathways/mechanisms (e.g. allowing individual muscle control)

make the modularity hypothesis hard to falsify [155].

Consequently, although the muscle synergy hypothesis is popular in human motor control, it

remains rightly debated. At the core of the debate is whether EMG-based synergies are just a

descriptive low-dimensional representation of expectedly well-structured motor outputs or whether

they have a real neural basis. To better address this important point, we can hypothesize that such a

representation in terms of synergies exists and examine what this would imply [35]. First, a control

action achieving a given motor task is hypothetically built from the combined activation of a given

set of synergies. Therefore, performing a new task would just require adjusting the way synergies

are combined until a suitable one is found. If no combination of synergies allows to execute the

task, it may be because it requires non-habitual muscle patterns that have not been experienced

and stored before, thus new synergies may need to be learned12. This logical reasoning predicts that

learning a task that is incompatible with a currently available set of synergies would be harder and

take a longer time. d’Avella and collaborators nicely investigated the predictions of such a theory

along these lines [9]. This approach of a) formulating predictions of the modularity hypothesis

and b) designing experiments to critically (and, if possible, quantitatively) test them might provide

more direct evidence either supporting or falsifying the theory even though the neural code is not

directly accessed [2]. Studying behavior and its adaptation may actually represent a very valuable

approach to motor neuroscience [89].
12In particular, this would be compatible with the claim that muscle patterns are habitual rather than optimal

[123].
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4 From optimality to modularity and vice-versa

4.1 Optimality with modularity: theoretical ground

Optimality and modularity theories have often been treated separately yet some studies have at-

tempted to combine the two concepts. Theoretical works are of particular interest among those

studies. Interesting frameworks have been derived to understand if (and in what contexts) optimal

controllers can be built from a limited set of elementary control actions (possibly optimal them-

selves). Most of the times, the mathematical analyses aiming at reconciling the two approaches

were conducted from a control theory perspective. The link between optimality and modularity

may be envisioned as follows (Eq. 3):

Dynamics : ẋ = f(x, u)

Optimality : J(u) =
´ T

0 h(x, u, t)dt

Modularity : u(x, t) =
∑
i∈I aivi(x, t)

(3)

where u is the control action that can drive the system state x according to some dynamical con-

straints specified by f(x, u) and which is built from certain motor primitives or basis modules

vi(x, t)13, h is the infinitesimal cost whose integral should be minimized. The main open question

concerns the existence of motor building blocks allowing to effectively control the system for a given

set of tasks. The basis modules may constitute a finite set of mixed feedforward and/or feedback

control actions [109, 3, 4]. Linearity is often central to modularity studies because of experimental

findings showing linear summation properties of spinal force fields (see Section 3). Interestingly, it

can also be thought as a first-order approximation which simplifies the mathematical derivations.

Notably, it allowed researchers to obtain elegant results for a restricted class of problems such as

linear or feedback linearizable systems with quadratic costs or control-affine stochastic systems with

control-quadratic costs that lead to a linear Bellman equation under suitable assumptions about

noise [109, 147, 146]. These works showed that new optimal controls may be constructed from

linear combinations of a finite number of elementary optimal control actions. However, the problem
13The basis modules vi(x, t) might be separated into spatial and temporal components σi(t)wi(x) such as in [103] or

[95], and in a way which is reminiscent of the model proposed in [43]. In this case, spatial (state-dependent) modules,
or muscle synergies, would be feedback-dependent as suggested in [118]. Analogously, this time-space separation is
also apparent in the optimal control of finite-horizon LQR/LQG problems.
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may be more complex when thinking of the human motor system as a whole because of the hier-

archical nature of the neuromusculoskeletal system. Optimal control may indeed occur at different

levels in the hierarchy (kinematic, dynamic, muscular or neural levels). It is, apropos, particularly

remarkable how relatively simple optimal control models (e.g. minimum jerk model) capture the

hand/joint kinematics although they neglect fine muscle properties (e.g. speed/length dependencies,

concentric/eccentric contractions, slow/fast twitch muscle fibers etc.). Therefore, optimal control

may conceivably apply in a low-dimensional space (task space or joint space) and lower level neu-

romuscular activity may subsequently conform to these higher level constraints already specifying

the main spatiotemporal characteristics of the movement. In the spirit that approximate optimal

motor commands are acceptable, a hierarchical control framework has been proposed [149], thereby

providing a theoretical link between task parameters and motor synergies. Other approaches based

on deep learning schemes have also been considered by acknowledging that an optimal control

problem readily implements a (nonlinear) dimensionality reduction [10] which could lead to very

effective movement representations in neural networks. Although defining motor building blocks in

a compositional sense seems harder in those frameworks, they nevertheless nicely capture the idea

of dimensionality reduction resulting from the concept of motor synergies and address important

questions such as whether the monitoring of a restricted number of task variables can yield suitable

coordination of the complex and nonlinear musculoskeletal plant.

4.2 Optimality versus modularity: paradox and causality

At first sight, the coupling between optimality and modularity may seem paradoxical as the con-

straints imposed by modularity might severely compromise optimality. If one assumes existence of

synergies, two seemingly competing questions arise: (1) whether modularity constrains and shapes

the type or degree of optimality that can be attained in higher-level variables (i.e. end-effectors

or joints) and (2) whether optimality naturally leads to an apparent modularity at the lower level

(i.e. neuromuscular). On one hand, a number of studies have analyzed the extent to which motor

synergies may arise from optimal control. Since optimal control and/or optimization may give de

facto a structure to the associated muscle patterns according to variations of the task demand,

it can reasonably be expected that empirical motor synergies are just a byproduct of optimality

conditions. Accordingly, motor synergies have been shown to emerge from optimal feedback con-
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trol theory [148]. Furthermore, numerical studies have provided interesting insights regarding what

kind of time-varying synergies would result from optimal control policies applied to planar reaching

movements [25]. On the other hand, the authors reversed the process to verify what kind of arm

trajectories could be achieved via the extracted time-varying synergies [25]. Interestingly, these

numerical experiments demonstrated that task constraints (reaching to targets in a plane) together

with optimality objectives could be fulfilled with a small number of hypothetical motor synergies.

In the same vein, other authors have investigated a similar issue for different tasks and subsystems.

Computational studies based on musculoskeletal modeling showed that a simplified construction

of motor commands via modularity (either experimentally inferred using dimensionality reduction

techniques or synthesized) could significantly affect optimality and lead to sub-optimal solutions

in terms of effort costs during balance control [98] and to a limited ability to minimize energy but

also to tune endpoint stiffness during an isometric upper-limb task [77]. It is worth mentioning

that these studies relied on optimization rather than optimal control14. Other studies involving

optimization techniques are also relevant here as they implemented the whole loop mentioned in

Eq. 2 using EMG-driven virtual biomechanics [123, 40]. They could quantify how muscle synergies

affected energy consumption and aiming errors in task-space. Numerical studies about modularity

have also been conducted in robotics [109, 3, 137], in which errors in task-space were also evaluated.

Overall, it may be concluded that the nature of the motor building blocks (feedback/feedforward)

and the type of system and cost (linear-quadratic) is critical for effective and efficient motor con-

trol using modularity. As suggested by Neptune’s studies using complex musculoskeletal models,

muscle synergies (as extracted in EMG-based studies) may serve as a rough starting point for mo-

tor planning, which should then be refined through spinal and transcortical reflex pathways. As

such, modularity may be favorable to reduce the computational burden of behaving rigorously in

an optimal way at the price of sacrificing some optimality.

Besides the question of the neural origin of muscle synergies, which is crucial to motor neu-

roscience (as already discussed) and proved difficult to answer [70], the chicken-and-egg situation

of modularity versus optimality is of interest. Assuming that both optimality and modularity are

present in the sensorimotor system, which one drives the other remains unclear. It is likely that de-
14Optimization and optimal control should not be confused although they may be related when one comes to

numerical resolution of optimal control problems. The former only deals with a standard function while the latter
deals with a functional, i.e. a function of a function.
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velopmental studies could help disentangling how optimality and modularity emerge during growth

[46] and whether one constrained the other or vice-versa. It is possible that, if stored muscle syner-

gies are hardwired in the CNS, they would limit the kind of optimality that can be attained (unless

perhaps they have been precisely shaped to match the desired optimality conditions); this would

suggest that motor development is the parallel process of finding both efficient limb trajectories and

efficient representations of them, which would be partly dictated by evolutionary/homeostatic and

neuroanatomical/biomechanical constraints. On a timescale of hours, it seems that motor learn-

ing is constrained by the existence of precoded/habitual solutions and that humans are not very

good at finding global optima for new (never experienced) tasks [55, 123, 100]. It must however be

noted here that recent studies actually undermine this temporal limitation [31, 131, 61, 50]. Yet,

at least over long learning periods, a process of re-optimization may occur [81], possibly requiring

the creation of new primitives, which would take a long time to acquire [35, 9].

5 Conclusion and perspectives

Hierarchical motor control, in particular grounded on the concepts of optimality and modularity, is

an appealing theory to explain the formation of muscle patterns from task parameters. Although

it is unclear whether global optimality, in a strict sense is the immediate and primary goal of the

human motor system when adapting to a new task on a short-time scale, daily life behaviors (such

as reaching for a cup of coffee) undeniably display optimal-like signatures. Inverse optimal control

offers a normative framework to formalize action selection and give the rationale for choosing one

limb trajectory over another. The difficulties that the CNS faces in order to discover a global

optimum when coping with a certain new motor task may be related to the way action planning is

implemented; what is stored or learned versus what is specified on-the-fly. How the CNS seamlessly

generates adequate motor commands in a fraction of a second might rely on modularity, i.e. the

storage of muscle synergies that can be recalled and combined in a task-dependent manner to build

genuine motor signals. If muscle activity conforms in some sense to higher-level optimality principles,

it is not surprising that low-dimensional structures can be found in EMG-based studies. Classical

empirical studies of muscle activity are undoubtedly useful for providing ensemble descriptions of

muscle patterns, yet their implementation in neural networks (third Marr’s level of analysis) remains
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putative despite remarkable efforts [68, 112]. At the same time we remain quite ignorant of what the

(neural) nature of a motor building block (should it be called primitive, module or muscle synergy)

is. The nature of the modules extracted from matrix factorization techniques applied to EMG

data is often guided by the limitations of the method itself. For instance, NMF-based methods

will only give rise to feedforward synergies. If synergies are posture-dependent as suggested in

[118], this would mean that more advanced machine learning methods should be used. Towards

an anthropomorphic motion factory and effective applications in robotics, we believe that there

is still place for the proposal of new frameworks. The development of such a novel framework

requires interdisciplinarity and will require advanced musculoskeletal models, neurophysiological

data, psychophysical experiments and mathematics.

A generic framework capturing the essence of both optimality and modularity could be useful to

advance our understanding of human movement control. Importantly, the mathematical formalism

should be suited to port the main findings to robotics and engineering in order to improve the

production of efficient movements in artificial systems in a rapid, robust and adaptive way. The

idea of hierarchy being central and ubiquitous in motor control, it may be the cornerstone of such a

framework. Based on previous experimental and computational results, a model relying on a cascade

of optimal control problems could be envisioned. The problems could be solved recursively by the

CNS: each problem could integrate a nominal trajectory coming from the previous problem and

serving as a reference trajectory to the current level. An example of such a hierarchical framework

connecting task-level to muscle level via skeleton level, could be as follows:

xref (·) built from task (task level)

↓ xref

minτ(·)
´ T

0 [h(q, τ, t) + c(q, xref )]dt (skeleton level)

↓ τref

minu(·)
´ T

0 [H(η, u, t) + C(η, τref )]dt (muscle level)

↓ uref (motoneurons)

(4)

In Eq. 4, x would be the position/orientation of the end-effector in Cartesian space, xref would

be a reference trajectory (either a fixed target location, a geometric path such as a geodesic or
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a full trajectory potentially coming from a least action principle or imposed by the task with a

metronome). At the skeleton level, q would be the joint angles, τ the joint torques. A reference

torque profile could be predicted by optimal control principles. At the muscle level, η would be

the muscle forces and u the motoneuron inputs. An optimization problem could even be solved at

this level if the spatiotemporal characteristics of the torque profiles are already set up. The core

ingredient would be that each level would lead to a reference trajectory that could be tracked in

the subsequent level. The tracking is implemented via the tracking costs c(q, xref ) and C(η, τref ),

for instance by choosing at the skeleton level c(q, xref ) = c(‖ϕ(q) − xref‖) where x = ϕ(q) is the

forward kinematics (and something similar at the muscle level). Because of the existence of reference

trajectories, the resolution of each optimal control problem may turn out to be faster and simplified

(e.g. linearization or reduction of the search space). In this framework, we might insert other levels,

introduce stochastic models and so on, but the structure is rich enough to incorporate a number of

practical motor control problems.

Synergies may contribute to resolve each of these problems more efficiently, which could by the

way explain why researchers have talked about modularity at various levels (kinematic, dynamic,

muscular or even neural). Such a cascade of optimal control problems could be able to explain

several experimental observations but this would remain to be investigated. This formulation may

be reminiscent of an alternative formulation of hierarchical optimal control which has been proposed

recently and in which a first optimal control problem giving rise to an infinity of solutions is solved

before a subsequent optimal control problem is solved within the subspace of the optimal solutions of

the previous level and so on [122, 62]. The present hierarchical framework may be flexible although it

relies on the weighting of complementary objectives, thereby contrasting with the concept of a stack

of tasks. Furthermore, this framework could account for the observation of kinematic persistence

observed in some motor tasks, especially when controlling a visual cursor on a screen or adapting

to microgravity, which may reflect the influence of task-space high-level goals in certain contexts

[59, 33, 100, 61].
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Appendix

In this appendix, we provide a tutorial example illustrating the concepts of optimality and modu-

larity that we discussed in the main text.

To this aim, we consider a simple controlled pendulum whose dynamic equation is

θ̈ = −θ + u

where θ is the angular position and u the input torque. This may represent a simplified human arm

model in the gravity field (with normalized anthropometry and small angle assumption).

We define an optimal control problem as follows: find the controller that drives the system from

a given state x0 = (θ0, θ̇0) to a final state xf = (θf , θ̇f ) in time T and minimizes the cost function

C(u) =
ˆ T

0
[u2 + θ2 + θ̇2]dt.

This is a linear-quadratic (LQ) problem of the form ẋ = Ax + Bu (linear dynamics) and

C(u) =
´ T

0 uTRu + xTQxdt (quadratic optimality criterion) where the matrices are identified as

follows:

A =

 0 1

−1 0

 , B =

 0

1

 , R = 1, Q = I.

It can be shown that the optimal control can be written formally as (see [51] for mathematical

proofs):

u(t) = −BTP+eA+tp−BTP−eA−(t−T )q (5)

where P+ and P− are the maximal and minimal solutions of the associated Riccati equation PA+

ATP − PBBTP + Q = 0. The matrices A+ and A− are defined as A+ = A − BBTP+ and

A− = A − BBTP−, and p and q are some vectors depending on the initial/final states and on

movement duration T . Importantly, the matrices P± and A± just depend on the optimal control

problem specification, i.e. the matrices A,B,R, andQ.

The optimal control u(t) can thus be written as a function of the eigenvalues of A±. Simple

computations show that the 4 eigenvalues are of the form ±α ± iβ with α =
√

(2
√

2− 1)/2 and

β =
√

(2
√

2 + 1)/2.
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Therefore, the optimal control can be rewritten as the following linear combination:

u(t) = a1e−αt cos(βt) + a2eαt cos(βt) + a3e−αt sin(βt) + a4eαt sin(βt),

where the coefficients (ai)1≤i≤4 have to be adjusted depending on the constraints x(0) = (θ0, θ̇0) andx(T ) =

(θf , θ̇f ).

In summary, this simple example illustrates that for this system all optimal motor commands

can be decomposed as follows:

u(t) =
4∑
i=1

aivi(t)

where the functions vi(t) are time-varying primitives that are invariants of the problem and can

thus be stored once for all (modularity). In contrast, the activation coefficients ai must be set for

each single movement in order to start/end in the adequate states and times. Note the similarity

between the present equations and Equation 3 in the main text. Storing invariant building blocks vi

and adjusting activation coefficients ai in order to produce controllers that allow task achievement

in an optimal fashion are the core concepts discussed in the present Chapter. It is worth noting

that the same conclusion could actually be drawn for any well-defined LQ problem given the general

form of Equation 5.
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