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Abstract. A topological group is amenable if any of its continuous actions on a com-
pact Hausdorff space admits an invariant probability measure. This class of groups
is originated in the study Banach-Tarski paradox and has assumed an important role
in topological dynamics since then. In this note, one shows that amenable groups can
never admit a continuous action of general type by isometries on a geodesic separable
Gromov hyperbolic space.
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1 Introduction

Let G be a topological group. It is amenable if whenever G acts continuously on a compact
Hausdorff space K, there exists a probability measure µ on K such that it is G-invariant
in the sense that µ(gA)=µ(A) for every measurable subset A⊆K and every g∈G.

A metric space (X,d) is Gromov hyperbolic if it satisfies Gromov four points condition
(2.1). Using the Gromov products in 2.1, one can define a Gromov boundary ∂X for these
spaces. If in addition, the Gromov hyperbolic space (X,d) is proper, i.e. each bounded
subset is compact, then the Gromov boundary ∂X is compact [5, 13].

This note mainly concerns the following folklore result: the continuous action by isome-
tries of an amenable group on a Gromov hyperbolic space can never be of general type. Some
special cases of this result are long known to people.

Let G be an amenable group acting continuously by isometries on a Gromov hyper-
bolic space (X,d). Then this action can be extended continuously to the Gromov bound-
ary ∂X. If X is proper, then the arguments of Lemma 4.1 will show that this action cannot
be of general type. When the space (X,d) is not proper, this result also holds for locally
compact amenable groups, deducing from the existence of a Schottky subgroup, which
will witness the non-amenability of locally compact groups [3].

In this note, we will prove the following result for amenable groups that are not nec-
essarily locally compact under the non-proper setting:
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Theorem 1.1. Let X be a separable geodesic space that is also δ-hyperbolic. Let G be an amenable
topological group acting continuously on X by isometries. Then this cannot be of general type.

The proof of Theorem 1.1 mainly uses the horicompactification defined as in [6]. It
is sometimes also known as metric functional compactification [11] or horofunction boud-
nary [1], although these notions have slight nuances in its way of definition or as topo-
logical spaces. The elements in horicompactification are called horivectors. For a separable
geodesic Gromov hyperbolic space X, we first show that each horivector is either asso-
ciated to a bounded subset or a unique point on its Gromov boundary ∂X. For those
who are associated to a bounded subset, we call them finite horivectors; otherwise ther
are called infinite. We first prove that there is a continuous and surjective mapping from
the infinite part of horicompactification to the Gromov boundary. Then we show that
an Isom(X)-invariant probability measure on the horicompactification must supported
on its infinite part. Hence the push-forward probability measure will yield an Isom(X)-
invariant measure on the Gromov boundary and this goes back to the classical case of
Lemma 4.1.

2 Preliminaries

2.1 Gromov hyperbolic space

Originally introduced in [9], a metric space (X,d) is Gromov hyperbolic or δ-hyperbolic for
some δ≥0 if it satisfies the Gromov four points condition, namely

⟨x,y⟩o ≥min{⟨x,z⟩o,⟨z,y⟩o}−δ (2.1)

for all x,y,z,o∈X. Here ⟨x,y⟩o := 1
2

(
d(x,o)+d(y,o)−d(x,y)

)
is called the Gromov product.

Roughly speaking, the Gromov product measures the distance from the based point o
to a geodesic (in fact, any geodesic) connecting x to y. If the space is δ-hyperbolic and
geodesic, then we have

d(o,[x,y])−δ≤⟨x,y⟩o ≤d(o,[x,y]), (2.2)

where [x,y] is any geodesic between x and y, see for example [2, III.H.1].
A sequence (xn)n≥0 in δ-hyperbolic space is Cauchy-Gromov if ⟨xn,xm⟩o →∞ as n,m→

∞. Two Cauchy-Gromov sequences (xn)n≥0 and (ym)m≥0 are equivalent if ⟨xn,ym⟩o→∞ as
n,m→∞. The Gromov boundary of a δ-hyperbolic space consists of all equivalent classes
of Cauchy-Gromov sequences and is denoted ∂X. The Gromov product can be extended
to ∂X by defining for all x∈X and ξ∈∂X,

⟨x,ξ⟩o :=sup
(

liminf
n→∞

⟨x,xn⟩o

)
,
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where the supremum is taken among all Cauchy-Gromov sequences converging to ξ∈∂X,
and also by setting for all η,ξ∈∂X,

⟨η,ξ⟩o :=sup
(

liminf
n,m→∞

⟨ym,xn⟩o

)
in a similar way. In particular, note that ⟨ξ,ξ⟩o =∞ for all ξ ∈X∪∂X. One also remarks
that for any ξ,η∈∂X and any two sequences xn → ξ and ym →η, we have

⟨ξ,η⟩o−2δ≤ liminf
n,m→∞

⟨xn,ym⟩o ≤⟨ξ,η⟩o. (2.3)

Readers may refer to [13, §7.2, Remarque 8]. The Gromov boundary is equipped with
a uniform structure induced by the Gromov product, namely generated by the basis of
entourages in form of

{
(η,ξ)∈∂X×∂X :⟨η,ξ⟩o≥R

}
. Moreover, we can regard the shadows

So(x,R) :={y∈X : ⟨x,y⟩o ≥R}

as a neighbourhood of ξ∈∂So(x,R) in the topological space X∪∂X.
A (λ,k)-quasi-geodesic is a (not necessarily continuous) map γ : I → X, where I is an

interval in R, such that for all s and t in I,

1
λ
|s−t|−k≤d

(
γ(s),γ(t)

)
≤λ|s−t|+k.

A (1,0)-quasi-geodesic reduces to a geodesic and similarly, we call γ a quasi-geodesic
line, ray or segment respectively if I is R, [0,∞) or [a,b].

Geometrically, a geodesic δ-hyperbolic space is where all geodesic triangles are δ-
slim and if we allow geodesics to deform slightly into quasi-geodesics [2, III.H, Corollary
1.8], it will yield a very interesting result about the stability of quasi-geodesics (see [13,
Chapitre 5] for example), referred as the Morse Lemma:

Proposition 2.1. Let X be a δ-hyperbolic space. There exists a function M:[1,∞)×[0,∞)→[0,∞)
depending on δ so that given any pair (λ,k)∈ [1,∞)×[0,∞) and any two points x,y∈X∪∂X, all
(λ,k)-quasi-geodesics connecting x to y are within Hausdorff distance M(λ,k) of each other.

Finally, let X be a Gromov hyperbolic space and g∈ Isom(X) be an isometry. A tri-
chotomy for such an isometry g is established by characteriing the behavior of g at infin-
ity. To be precise, an isometry g is:
▶ elliptic if and only if ⟨g⟩ has bounded orbits;
▶ parabolic if and only if d(x,gnx)/n→0 as n→∞, and in this case there is a unique fixed

point ξ∈∂X by g;
▶ hyperbolic if and only if d(x,gnx)/n→ c> 0 as n→∞, in this case there are a pair of

points ξ±∈∂X that is g-invariant.
If a group G acts on a Gromov hyperbolic space X by isometries, then only the following
cases will happen:
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• elementary and

▶ bounded if it has bounded orbits;
▶ horocyclic if it is unbounded and has no hyperbolic elements;
▶ lineal if it has hyperbolic elements but any two hyperbolic elements have the same

endpoints;
• non-elementary and

▶ focal if it has hyperbolic elements, is not lineal, and any two of its hyperbolic ele-
ments have one common endpoint;

▶ general type if it has hyperbolic elements with no common endpoint.
For these classifications, reader can find the detail in [4, 5, 13] under different settings.

2.2 Amenable group

A topological group is amenable if and only if any of its continuous actions on a compact
Hausdorff space admits an invariant probability measure. There are many different but
equivalent characterisation for amenable groups, see for example [8].

The amenability of a group relies on its topology. For a fixed group G, a group topol-
ogy τ is an amenable topology for G if G becomes amenable carrying τ. Note that every
group is amenable if it is equipped with the trivial topology and any coarser group topol-
ogy on a given group than an amenable topology is still amenable.

A group G is said discretely amenable if it is so when the discrete topology is endowed.
Among them are the finite groups, the abelian groups, the nilpotent groups, the solv-
able groups and any groups containing a finite-index subgroup of those types. So these
groups remain amenable no matter what group topology they are carrying.

Amenable groups enjoy several hereditary properties. Say, every open subgroup of
an amenable group is also amenable and every closed subgroup of a locally compact
amenable group is also amenable. Also, the directed union of amenable groups is still
amenable. Readers can refer to [8]. Moreover, it is well-knwon that the non-abelian free
group F2 on two generators is not discretely amenable.

Now we will give some examples of amenable topological groups that are not dis-
cretely amenable.

Example 2.1. Let H be an infinite dimensional separable complex Hilbert space and
U(H) be its unitary group. If one endows it with the strong operator topology, then
it is amenable it contains a dense subgroup U(∞), which is a directed union of amenable
groups U(n). Meanwhile, any countable group Γ is isomorphic to a discrete, thus closed,
subgroup of U(H), in particular F2. Hence U(H) is amenable with strong operator topol-
ogy but not discretely amenable. See [8, Lemma 5.1, Proposition 5.2] for details.

Example 2.2. Let S∞ be the infinite symmetric group over N. We endow it with the
permutation topology, i.e. the topology generated by neighbourhoods of the identity
element {σ∈S∞ : σ(A)= A} for finite subsets A⊆N. Then the group becomes a Polish
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group. With this topology, the group S∞ is amenable since it is the directed union of
amenable closed subgroups Sn, the symmetric group over {1,2,.. .,n}. If we identify N

with the elements in the free group F2 on two generators at the level of sets, then F2
can be embedded into S∞. The stabliser of the identity element Id∈F2 is an open set in
S∞ whilst the only element of F2 that falls into this open set is Id∈F2 itself. So F2 is a
non-amenable discrete (thus closed) subgroup of the amenable group S∞.

3 Compactifications of metric space

3.1 Horicompactification and others

First, consider the following mapping from the metric space X to a huge product of com-
pact intervals

Φ : X−→ ∏
y,z∈X×X

[−d(y,z),d(y,z)]

x 7−→
(

d(x,y)−d(x,z)
)
(y,z)∈X×X

and define a compactification of X, denoted Xv, by the closure of Φ(X) in the product
space. An immediate application of Tychonoff’s theorem implies that Xv is indeed com-
pact. Following the usage from [6], this compactification is called the horicompactification
of X. An element of Xv will be called a horivector in what follows. One remarks that
v(y,z)=v(y,x)−v(z,x) and v(x,y)=−v(y,x) for any horivector v.

Remark 3.1. In [9, §7.5.E], such an object is given a name of “differentials of horofunc-
tions” due to the property v(y,z)=v(y,x)−v(z,x).

Another slightly different compactification of metric spaces, denoted Xh, is the clo-
sure of the image of X under the following mapping

Ψo : X−→ ∏
y∈X

[−d(y,o),d(y,o)]

x 7−→
(

d(x,y)−d(x,o)
)

y∈X

with a fixed base point o and it is called the metric compactification of X in [10, 14] for
instances. The elements in Xh adopt the name of metric functional following [11].

One other related notion is Busemann function associated with a geodesic ray γ, namely
βγ(x)= limt→∞ [d(x,γ(t))−t]. In fact, the quantity d(x,γ(t))−t is monotonically decreas-
ing in t > 0 and bounded from below by −d(x,γ(0)), see [2, II, Lemma 8.18]. It is by
definition a metric functional based at γ(0).

The following lemma shows that the horicompactification and metric compactifica-
tion are essentially the same topological object and that the definition of metric compact-
ification does not depend on the choice of the base point.
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Proposition 3.1. Let (X,d) be a metric space. For any base point o∈X, the two spaces Xv and
Xh are homeomorphic.

Proof. Let A = ∏y∈X[−d(y,o),d(y,o)] and B = ∏y∈X,z ̸=o[−d(y,z),d(y,z)]. Let πA be the
projection from the product A×B to A. Since B is compact, the projection πA is a closed
mapping (also referred as Kuratowski’s theorem, see [7, Theorem 3.1.16]). Hence, we
have the inclusion πA(Xv

) = πA
(
Φ(X)

)
⊆ Ψo(X) = Xh per definition of closure. Con-

versely, any converging net
(
Φ(xa)

)
a in A×B yields a converging net

(
Ψo(xa)

)
a in A,

which further implies that πA(Xv
)⊇ Xh. Therefore πA is a continuous sujection from

Xv to Xh. As Xv is compact and Xh is Hausdorff, in order to show that πA is a homeo-
morphism, it suffices to show that πA is injective on Xv. Indeed, given two horivectors
v,w∈Xv satisfying v(x,o)=w(x,o) for any x∈X, we have

v(y,z)−w(y,z)=v(y,o)−v(z,o)−w(y,o)+w(z,o)=0

for any y,z∈X.

The following observation is essential for continuous group actions by isometries on
metric spaces:

Proposition 3.2. Let (X,d) be a metric space and G be any topological group acting on X con-
tinuously by isometries. Then the action of G on Xv is continuous, i.e. Xv is a G-flow.

Proof. As horivectors are 1-Lipschitz in both variables, it soon yields that the mapping Φ
is continuous and it turns out that Xv is an Isom(X)-flow for the pointwise convergence
topology of Isom(X) ( [6, Lemma 2.5]). Now let G acts continuously by isometries on
(X,d). Then there is a continuous homomorphism G → Isom(X), which further makes
Xv a G-flow.

horofunctions or Busemann functions have served as replacement for linear function-
als when the space is not linear. In a recent paper [11], Karlsson establishes a similar result
for metric functionals. Thanks to the homeomorphism that we establish in Proposition
3.1, we can reformulate his result in terms of horivectors without difficulty.

Proposition 3.3 (Hahn-Banach for horivectors). Let (Y,d) be a metric space and X be a sub-
space of Y. Then for every horivector v∈Xv, there exists a horivector V∈Yv that extends v in the
sense that V(y,z)=v(y,z) for all y,z∈X.

3.2 Busemann sequences

Now we will adapt some results from [12] in terms of horivectors.
In what follows, we will refer to O(δ) an additive error at most a multiple of δ, viz.

if we write f (x)= g(x)+O(δ), then it means | f (x)−g(x)|< Mδ for some uniform M>0
independent of x. Errors O(δ) appear in different places can be different.
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Let us introduce the notion of orientation of a geodesic γ, which is a strict total order
on the points of γ induced by an isometric parameter γ+ : I→X. Suppose that x=γ+(t),
y= γ+(s) and we say that x ≥ y if and only if t≥ s. Then given a fixed orientation, the
signed distance function on a geodesic is defined by

d+γ (x,y)=

{
d(x,y), if x≤y
−d(x,y), if x≥y

.

Proposition 3.4. Let X be a δ-hyperbolic space and γ be a geodesic in X. For any horivector
v∈Xv, up to an additive error at most a multiple of δ and independent of γ, either there exists a
p∈γ such that

v(y,z)=v(p,z)+d(y,p)+O(δ), (∀y∈γ), (3.1)

or there is an orientation for γ so that for every p∈γ

v(y,z)=v(p,z)+d+γ (y,p)+O(δ), (∀y∈γ). (3.2)

Proof. It follows from [12, Proposition 3.6].

Remark 3.2. From the proof we can see that, whenever the concerned geodesic γ is a seg-
ment, the case (3.1) will always hold. The case (3.2) can happen only when a Busemann
sequence is fellow-travelling with a geodesic ray, and in that case this sequence will be
Cauchy-Gromov.

For a metric space (X,d), we say that a sequence (xn)n≥0 is Busemann at base point o
if Ψo(xn) converges to a metric functional in Xh; it is Busemann if Φ(xn) converges to a
horivector in Xv. Note that if a sequence is Busmann, then it is Busmann at any point
o∈X.

Busemann sequences can be used to give a classification for horivectors, as well as
metric functionals, on a δ-hyperbolic space. The first type of Busemann sequence is
Cauchy-Gromov.

Lemma 3.1. Let X be a δ-hyperbolic space and (xn)n≥0 be a Busemann sequence in it. Assume
that (xn)n≥0 has a Cauchy-Gromov subsequence, then it is itself also Cauchy-Gromov.

Proof. Suppose that it has a subsequence (xnk)k≥0 converging to ξ ∈ ∂X. By assumption,
for any K>0, there exists a x∈X with d(x,o) much larger than 2K such that xnk ∈So(x,2K)
for large enough k, i.e. for any M>0, there exists m>M such that ⟨xm,x⟩o≥2K. Since the
sequence is Busemann, there exists N>0 such that for all n,m>N

|Φ(xn)(x,o)−Φ(xm)(x,o)|=2|⟨xn,x⟩o−⟨xm,x⟩o|<K.

In particular, by taking a particular xm ∈So(x,2K), we can deduce that ⟨xn,x⟩o ≥K and
that by consequence xn∈So(x,K) for all n≥N. This implies that xn converge to ξ∈∂X as
a Cauchy-Gromov sequence.
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The following lemma will finish establishing a dichotomy for Busemann sequences
and also horivectors in a δ-hyperbolic space.

Lemma 3.2. Let X be a δ-hyperbolic space and (xn)n≥0 be a Busemann sequence in it. Suppose
in addition that (xn)n≥0 converges to a horivector v∈ Xv and is not Cauchy-Gromov, then the
function v(·,z) is bounded from below for any z∈X.

Proof. Fix any z ∈ X. Suppose for contradiction that v(·,z) is not bounded from below.
Then for any M > 0, there exists an y ∈ X such that v(y,z)<−2M. In terms of limit, it
means that there is an N > 0 such that d(xn,y)−d(xn,z)<−M for all n≥ N. So for any
n,m≥N, we will have

⟨xn,xm⟩z =
1
2
(d(xn,z)+d(xm,z)−d(xn,xm))

>
1
2
(d(xn,y)+d(xm,y)+2M−d(xn,xm))>M,

which implies that (xn)n≥0 must be Cauchy-Gromov. Contradiction!

3.3 Horiboundary

For horicompactification, we can define the horiboundary by Xv\Φ(X), denoted ∂Xv.
Previously we give a dichotomy for Busemann sequences in a δ-hyperbolic space. The

same dichotomy for horivectors can be established by passing to limits.
Let Xv

∞ be the subset of ∂Xv so that any of its elements is not not bounded from below.
Also denote by Xv

f the set of horivectors v such that v(·,z) is bounded below for any z∈X.
We note that Xv

=Xv
∞∪Xv

f and Xv
∞ ⊆∂Xv.

On one hand, each horivector in Xv
f is uniquely corresponded to a bounded part in

X. Let v∈Xv
f . Define the coarse minima based at z of v by

L(v,z) :=
{

y∈X : v(y,z)≤ inf
x∈X

v(x,z)+1
}

.

Similarly, its coarse minima L(v) is then defined as the union of L(v,z) for all z∈X. The
same arguments for [12, Lemma 3.13] will yield the following result:

Proposition 3.5. Let X be a geodesic δ-hyperbolic space and v∈∂Xv
f . Then there exists a constant

K only depending on δ such that diam
(
L(v)

)
≤K.

On the other hand, using minimising sequence for such horivector v ∈ Xv
∞, i.e. a se-

quence (yn)n≥1 such that v(yn,z)→−∞ as n→∞, one can construct a boundary correspon-
dence Ξ : Xv

∞ → ∂X between the infinite part of horboundary and Gromov boundary [12,
Lemma 3.10].

Proposition 3.6 ( [12]). Let X be a separable geodesic Gromov hyperbolic space. Then the bound-
ary correspondence Ξ : Xv

∞ →∂X is continuous and surjective.
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4 Dynamics of amenable groups

Let X be a separable geodesic δ-hyperbolic space and D be a dense subset in X. Then the
projection

Xv → ∏
x,y∈D

[−d(x,y),d(x,y)]

is a homeomorphism. Hence we need only to treat the valuation of horivectors on the
dense subset D with base point o∈D. As a result, the expression

Xv
∞ =

⋂
N>0

⋃
x∈D

{
v∈Xv : v(x,o)<−N

}
implies that Xv

∞ and Xv
f =Xv\Xv

∞ are Borel sets in Xv.
Suppose that G is an amenable group acting continuously by isometries on X. Propo-

sition 3.2 asserts that the action of G on the horicompactification Xv is continuous. Hence
there exists a G-invariant probability measure µ on Xv.

Proposition 4.1. Let X be a separable geodesic δ-hyperbolic space. Suppose that G is a group
acting continuously by isometries on X and suppose that the action is unbounded. Let µ be a
G-invariant probability measure on Xv. Then µ(Xv

f )=0.

Proof. Let D be a dense subset in X and o∈D be a base point. For a fixed q∈Q and two
distinct points x,y∈D, the open set

V(x,y,q)=Xv∩

[−d(x,o),q)×(q,d(y,o)]× ∏
(z,w) ̸=(x,o),(y,o)

[−d(z,w),d(z,w)]


is the collection of all horivectors v in Xv such that v(x,o)<q<v(y,o). Therefore, the union
Vx,y =

⋃
q∈QV(x,y,q) is the collection of the horivectors v∈Xv such that v(x,o)<v(y,o).

Let R>0 be a positive real number that is larger than the uniform diameter K of coarse
minima L(v) from Proposition 3.5. For any z∈D, we define

Y(z,R)=
{

v∈Xv
f :L(v)∩B(z,R) ̸=∅

}
where B(z,R) = {p ∈ X : d(z,p)< R}. One remarks that L(v) contains L(v,o). So if v ∈
Y(z,R), then L(v,o) will be contained in B(z,2R). By consequence, for every y /∈B(z,2R),
we will have

v(y,o)> inf
x∈X

v(x,o)+1> inf
x∈X

v(x,o)= inf
x∈B(z,2R)

v(x,o).

By the density of D in X, it turns out that there must be some x∈ B(z,2R)∩D such that
v(x,o)<v(y,o). So if one sets B(z,2R)c to be the complement of B(z,R) in X and

Y′(z,R)=
{

v∈Xv
f :∀y∈B(z,2R)c∩D∃x∈B(z,2R)∩D so that v(x,o)<v(y,o)

}
,
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then Y(z,R)⊆Y′(z,R). In fact, the set Y′(z,R) remains the same even if one removes the
constraint of x,y being in D from the definition. But the definition above means that we
have the following expression

Y′(z,R)=
⋂

y∈B(z,2R)c∩D

 ⋃
x∈B(z,2R)∩D

Vx,y

.

This shows that Y′(z,R) is a Borel set in Xv.
Let g ∈ G be any isometry. For any v ∈ Y′(z,R), we can see that for any g−1y /∈

B(g−1z,2R), there exists a g−1x∈B(g−1z,2R) such that(
gv
)
(y,o)=v(g−1y,g−1o)

=v(g−1y,o)+v(o,g−1o)

>v(g−1x,o)+v(o,g−1o)

=v(g−1x,g−1o)

=
(

gv
)
(x,o),

which implies that gv ∈ Y′(g−1z,R). Hence gY′(z,R) ⊆ Y′(g−1z,R). If we apply the
same argument for g−1 and Y′(g−1z,R), then the inclusion above is actually equality,
i.e. gY′(z,R)=Y′(g−1z,R).

Now we claim that µ
(
Y′(z,R)

)
=0 for all z∈X. Indeed, suppose ab absurdo that there is

a point z∈X such that µ
(
Y′(z,R)

)
>0. Note that if v∈Y′(z,R), then L(v,o)∩B(z,2R) ̸=∅,

which further implies that L(v)⊂B(z,3R). So if d(z1,z2)>6R, then Y′(z1,R)∩Y′(z2,R)=∅.
As the action of G on X is unbounded, by picking a sequence (gn)n∈N of elements in G
such that d(gnz,gmz)>6R for every n ̸=m, we will have

1=µ
(

Xv
)
≥µ

( ⋃
n∈N

Y′(gnz,R)

)
= ∑

n∈N

µ
(
Y′(gnz,R)

)
= ∑

n∈N

µ
(
Y′(z,R)

)
=∞,

which is not possible!
Finally, by density of D in X, we have Xv

f ⊆
⋃

z∈D Y(z,R). So we get

0≤µ
(

Xv
f

)
≤µ

(⋃
z∈D

Y(z,R)

)
≤ ∑

z∈D
µ
(
Y(z,R)

)
≤ ∑

z∈D
µ
(
Y′(z,R)

)
=0.

This completes the proof.

Now we shall prove the following general result:

Lemma 4.1. Let X be a δ-hyperbolic space and let G act on X by isometries. Suppose that there
exists a G-invariant probability measure ν on ∂X. Then the action of G cannot be of general type.



Long Y. 11

Proof. Suppose for contradiction that the action of G on X is of general type. Then G has
no finite orbit on ∂X. Because ν is G-invariant, so ν is atomless, otherwise the total mea-
sure of ∂X under ν will exceed 1. Moreover, there exists at least one hyperbolic isometry
g in G. Let ∂X⟨g⟩={ξ±}. Since ξ± are not atoms, we can find open neighbourhoods U±
of ξ± respectively such that ν(U±)<1/3. This means that ν(∂X\U−)>2/3. Yet by North-
South dynamic of g (see [5, §6.1]), there exists n>0 such that gn (∂X\U−) is contained in
U+. Hence we have

2
3
<ν(∂X\U−)=ν(gn (∂X\U−))≤ν(U+)<

1
3

.

This is absurd!

Now we are able to prove Theorem 1.1:

Proof of Theorem 1.1. Suppose that G is an amenable group act continuously by isometries
on a separable geodesic Gromov hyperbolic space (X,d). Then there is a G-invariant
probability measure on Xv, denoted µ. By Proposition 4.1, the probability measure µ

must supported on Xv
∞. The continuous boundary correspondence Ξ : Xv

∞ → ∂X from
Proposition 3.6 will yield a G-invariant probability measure Ξ∗(µ) by pushing-forward.
Now the result comes immediately from Lemma 4.1.
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