

Projet SYNTHEXU

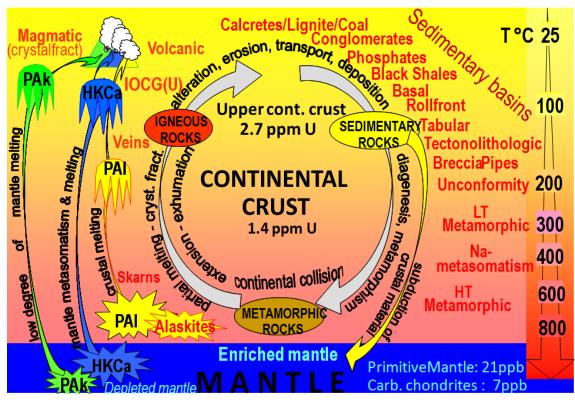
Etude expérimentale du fractionnement des éléments accompagnateurs entre fluide et oxyde d'uranium par précipitation contrôlée en condition hydrothermale

Appel à projet NEEDS

Julien Mercadier, Chantal Peiffert, Aurélien Randi, Jérôme Marin, Andreï Lecomte, Laurent Truche, Anne-Magali Seydoux-Guillaume

Journées U – Orsay – janvier 2022

Du fait de ces propriétés physico-chimiques spécifiques, l'U est trouvé dans de très nombreux types de gisements


Classification AIEA des gisements U

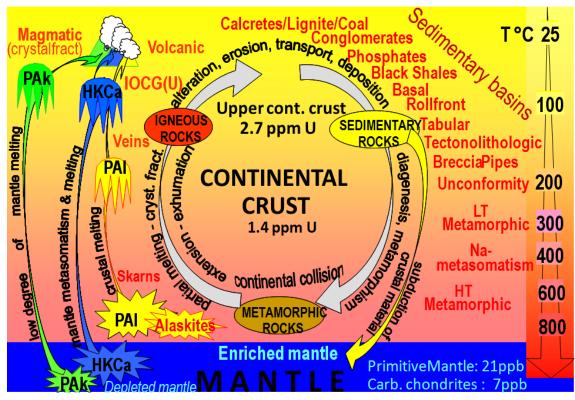
15 types de gisements définis

- Intrusive
- Granite-related
- Polymetallic iron-oxide breccia
- Volcanic-related
- Metasomatite
- Metamorphite
- Proterozoic unconformity
- Collapse-breccia pipe
- Sandstone
- paleo-quartz-pebble conglomerate
- Surficial
- Lignite and coal
- Carbonate
- Phosphate
- Black shale

Du fait de ces propriétés physico-chimiques spécifiques, l'U est trouvé dans de très nombreux types de gisements

Ces gisements sont associés à des conditions de formation très différentes...

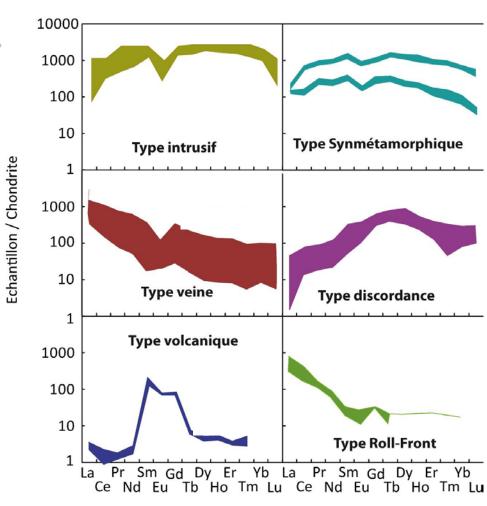
Cuney, 2011, Economic Geology, 105, 553-569


Classification AIEA des gisements U

15 types de gisements définis

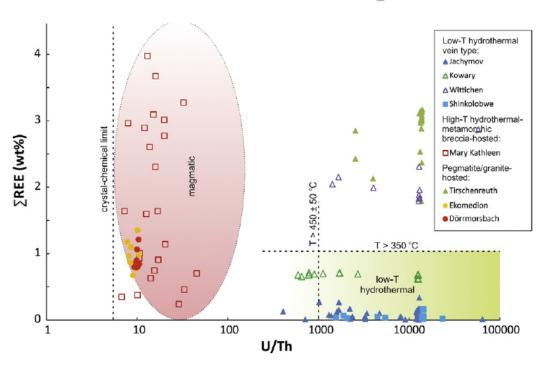
- Intrusive
- Granite-related
- Polymetallic iron-oxide breccia
- Volcanic-related
- Metasomatite
- Metamorphite
- Proterozoic unconformity
- Collapse-breccia pipe
- Sandstone
- paleo-quartz-pebble conglomerate
- Surficial
- Lignite and coal
- Carbonate
- Phosphate
- Black shale

Du fait de ces propriétés physico-chimiques spécifiques, l'U est trouvé dans de très nombreux types de gisements

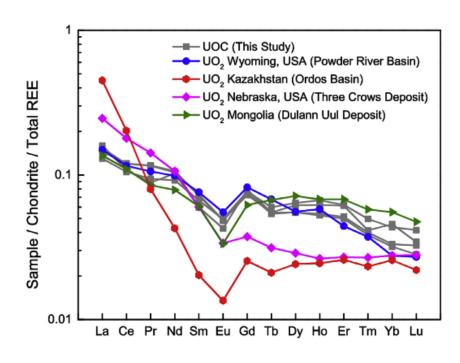

Ces gisements sont associés à des conditions de formation très différentes...

Cuney, 2011, Economic Geology, 105, 553-569

...qui sont à l'origine de compositions chimiques spécifiques des oxydes d'uranium en fonction des types de gisements


[ETR] dans UO₂

Mercadier et al. , 2011, Terra Nova, 23, 264-269

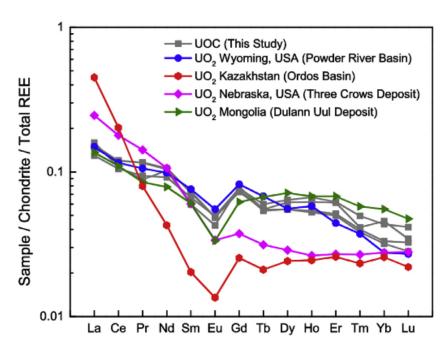

Les éléments accompagnateurs dans les UO₂ sont de plus en plus utilisés en <u>geosciences/exploration</u> pour étudier les gisements et dans la <u>filière nucléaire</u> pour le traçage des matériaux du cycle nucléaire

[ETR] et Th/U dans UO₂

Frimmel et al., 2014, Applied Geochemistry, 48, 104-121

[ETR] dans UOC (U ore concentrate)

Spano et al., 2017, Applied Geochemistry, 84, 277-285


Les éléments accompagnateurs dans les UO₂ sont de plus en plus utilisés en <u>geosciences/exploration</u> pour étudier les gisements et dans la <u>filière nucléaire</u> pour le traçage des matériaux du cycle nucléaire

[ETR] et Th/U dans UO₂

Frimmel et al., 2014, Applied Geochemistry, 48, 104-121

[ETR] dans UOC (U ore concentrate)

Spano et al., 2017, Applied Geochemistry, 84, 277-285

L'étude des éléments accompagnateurs dans les UO₂ est de première importance pour mieux comprendre les conditions géologiques de formation des gisements U. Leur analyse a aussi un rôle majeur pour un volet sécuritaire contre la contrebande des produits nucléaires

Limitations actuelles de l'utilisation des éléments accompagnateurs dans les oxydes d'uranium

De nombreux paramètres actifs au moment de la formation des gisements U peuvent influencer les concentrations en éléments accompagnateurs (EA) dans les UO₂. Ces facteurs sont par exemple :

- i) la nature des sources des éléments accompagnateurs
- ii) la chimie des fluides (salinité, nature des ligands,...)
- iii) les conditions de dépôt (T, P, pH, oxydo-réduction,...)
- iv) les contraintes d'ordre cristallochimique

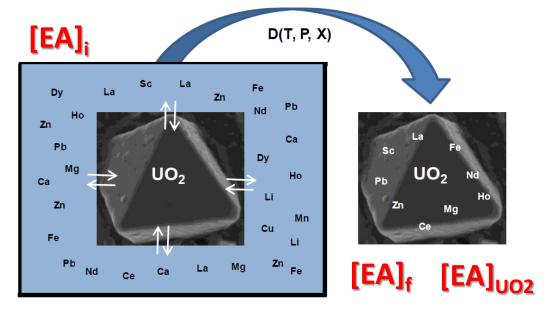


Schéma de principe du fractionnement des éléments accompagnateurs entre UO₂ et fluide

Limitations actuelles de l'utilisation des éléments accompagnateurs dans les oxydes d'uranium

De nombreux paramètres actifs au moment de la formation des gisements U peuvent influencer les concentrations en éléments accompagnateurs (EA) dans les UO₂. Ces facteurs sont par exemple :

- i) la nature des sources des éléments accompagnateurs
- ii) la chimie des fluides (salinité, nature des ligands,...)
- iii) les conditions de dépôt (T, P, pH, oxydo-réduction,...)
- iv) les contraintes d'ordre cristallochimique

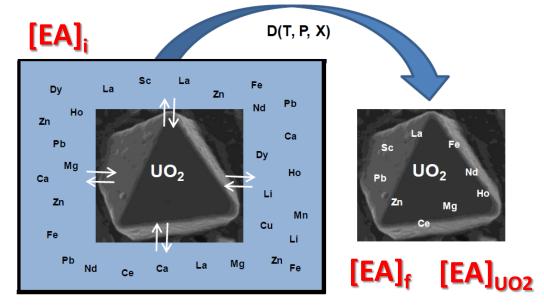
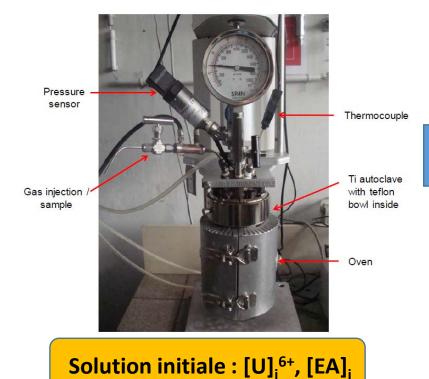


Schéma de principe du fractionnement des éléments accompagnateurs entre UO₂ et fluide

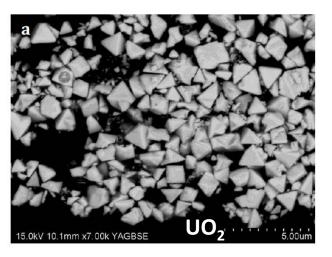
A l'heure actuelle, le rôle et l'influence de ces différents paramètres sur l'intégration des éléments accompagnateurs et donc la composition chimique des UO₂ ne sont pas maîtrisés

L'objectif du projet SYNTHEXU est d'apporter des réponses à ce questionnement scientifique

Le projet SYNTHEXU: une approche expérimentale innovante


Nous proposons d'étudier les mécanismes d'intégration des éléments accompagnateurs dans les UO₂ par une approche expérimentale multi-paramétrique

Cette approche permet de contrôler les conditions PVTX et ainsi de définir le rôle des différents paramètres sur le fractionnement des éléments accompagnateurs entre fluides et UO₂


Autoclave expérimentale Titane à GeoRessources

P T pH Salinité ligands

Agent Réducteur

 $UO_2: [EA]_{UO2}$

Solution finale : [U]_f⁶⁺, [EA]_f

Le projet SYNTHEXU: une approche expérimentale innovante

Nous proposons d'étudier les mécanismes d'intégration des éléments accompagnateurs dans les UO₂ par une approche expérimentale multi-paramétrique

Cette approche permet de contrôler les conditions PVTX et ainsi de définir le rôle des différents paramètres sur le fractionnement des éléments accompagnateurs entre fluides et UO₂

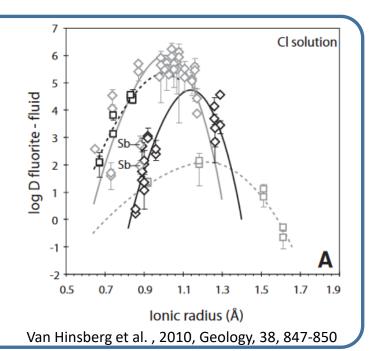
Conditions expérimentales:

P T pH Salinité ligands Pour chaque expérience, la mesure des concentrations en éléments accompagnateurs (EA) dans les solutions initiales ($[EA]_i$) et finales ($[EA]_f$) et dans les UO_2 ($[EA]_{UO_2}$) permet de déterminer les coefficients de fractionnement fluide- UO_2

Le projet SYNTHEXU: une approche expérimentale innovante

Nous proposons d'étudier les mécanismes d'intégration des éléments accompagnateurs dans les UO₂ par une approche expérimentale multi-paramétrique

Cette approche permet de contrôler les conditions PVTX et ainsi de définir le rôle des différents paramètres sur le fractionnement des éléments accompagnateurs entre fluides et UO₂


<u>Conditions</u> expérimentales:

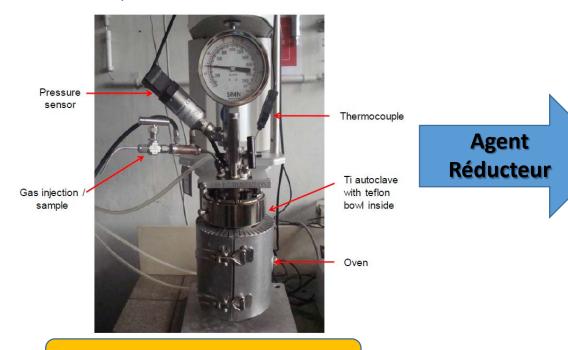
> T pH Salinité ligands

Pour chaque expérience, la mesure des concentrations en éléments accompagnateurs (EA) dans les solutions initiales ($[EA]_i$) et finales ($[EA]_f$) et dans les UO_2 ($[EA]_{UO_2}$) permet de déterminer les coefficients de fractionnement fluide- UO_2

Preuve du concept: l'exemple de la fluorite

La synthèse hydrothermale de fluorite (CaF₂) et le traçage des éléments accompagnateurs a permis de définir les coefficients de fractionnement fluide-fluorite qui sont aujourd'hui appliquer dans le cadre de la Lattice Strain Theory pour définir les conditions de formation de fluorites naturelles

Le projet repose sur deux axes :

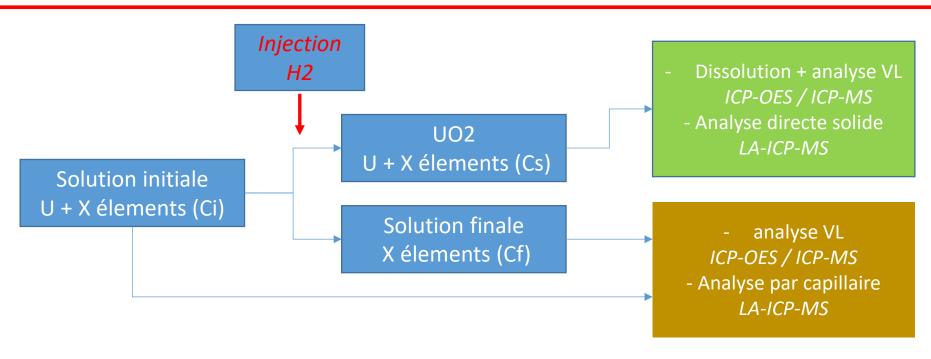

- Expérimental: capacité de contrôler nos conditions de synthèse et de produire des UO₂ « facilement » et « rapidement » pour toutes les conditions envisagées
- Analytique: capacité de mesurer de façon assez précise des concentrations élémentaires pour de nombreux éléments dans des solutions et minéraux, et pour de nombreuses expériences

Autoclave expérimentale Titane à GeoRessources

Solution initiale : [U]_i6+, [EA]_i

P T pH Salinité ligands

15.0kV 10.1mm x7.00k YAGBSE UO₂ 5.00um


UO₂: [EA]_{UO2}

Solution finale : [U]_f⁶⁺, [EA]_f

Le projet SYNTHEXU: mise en œuvre et problématiques

Le projet repose sur deux axes :

- Expérimental: capacité de contrôler nos conditions de synthèse et de produire des UO₂ « facilement » et « rapidement » pour toutes les conditions envisagées
- Analytique: capacité de mesurer de façon assez précise des concentrations élémentaires pour de nombreux éléments dans des solutions et minéraux, et pour de nombreuses expériences

Le projet SYNTHEXU: mise en œuvre et problématiques

Le projet repose sur deux axes :

- Expérimental: capacité de contrôler nos conditions de synthèse et de produire des UO₂ « facilement » et « rapidement » pour toutes les conditions envisagées
- Analytique: capacité de mesurer de façon assez précise des concentrations élémentaires pour de nombreux éléments dans des solutions et minéraux, et pour de nombreuses expériences

Des challenges majeurs:

- Reproductibilité du processus de précipitation des UO₂ en conditions variables
- Effet de matrice U vs. autres éléments en faibles concentrations [SI + UO₂]
- Quantification des éléments dans solution à forte concentration en ligand (CI) [SI + SF]
- Précision des mesures permettant la quantification de très faibles différences de concentrations [SI + SF]

L'étude des compositions chimiques des fluides géologiques, des UO₂ et des conditions géologiques associées ont permis de définir la gamme des éléments accompagnateurs ainsi que la gamme de leurs concentrations à tester pour nos expériences

L'étude des compositions chimiques des fluides géologiques, des UO₂ et des conditions géologiques associées ont permis de définir la gamme des éléments accompagnateurs ainsi que la gamme de leurs concentrations à tester pour nos expériences

Solution Initiale

- [U]i = 4600 ppm
- $[EA]^{1+}$: Li Na K = 20 ppm
- $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb = 5 ppm
- $[EA]^{3+}$: Al Ga Cr Sc ETR = 1 ppm

L'étude des compositions chimiques des fluides géologiques, des UO₂ et des conditions géologiques associées ont permis de définir la gamme des éléments accompagnateurs ainsi que la gamme de leurs concentrations à tester pour nos expériences

Solution Initiale

- [U]i = 4600 ppm
- $[EA]^{1+}$: Li Na K = 20 ppm
- $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb = 5 ppm
- $[EA]^{3+}$: Al Ga Cr Sc ETR = 1 ppm

Solution Finale

- [U]f ~ 0 ppm
- [EA]¹⁺: Li Na K < 20 ppm
- $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb < 5 ppm
- [EA]³⁺: Al Ga Cr Sc ETR < 1 ppm

L'étude des compositions chimiques des fluides géologiques, des UO₂ et des conditions géologiques associées ont permis de définir la gamme des éléments accompagnateurs ainsi que la gamme de leurs concentrations à tester pour nos expériences

Solution Initiale

- [U]i = 4600 ppm
- $[EA]^{1+}$: Li Na K = 20 ppm
- $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb = 5 ppm
- $[EA]^{3+}$: Al Ga Cr Sc ETR = 1 ppm

Solution Finale

- [U]f ~ 0 ppm
- [EA]¹⁺: Li Na K < 20 ppm
- $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb < 5 ppm
- [EA]³⁺: Al Ga Cr Sc ETR < 1 ppm

Les premiers travaux : capacité de mesurer ces éléments accompagnateurs (EA) à partir de solution synthétique

<u>Considération prioritaire</u>: [EA], [U], [U]/[EA] (effet de matrice U), salinité

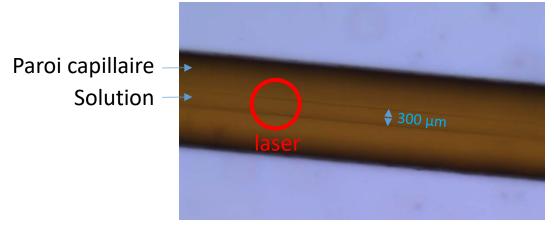
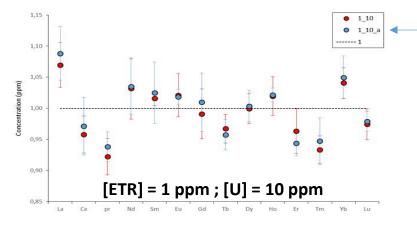

	série 1		série 2		série 3	
[U]	[REE]	[U]/[REE]	[REE]	[U]/[REE]	[REE]	[U]/[REE]
0,01	0,01	1	0,1	0,1	1	0,01
1,01	0,01	101	0,1	10,1	1	1,01
5,01	0,01	501	0,1	50,1	1	5,01
10,01	0,01	1001	0,1	100,1	1	10,01
25,01	0,01	2501	0,1	250,1	1	25,01
50,01	0,01	5001	0,1	500,1	1	50,01
100,01	0,01	10001	0,1	1000,1	1	100,01
300,01	0,01	30001	0,1	3000,1	1	300,01
1000,01	0,01	100010	0,1	10001	1	1000,1
3000,01	0,01	300010	0,1	30001	1	3000,1

Tableau récapitulatif des solutions expérimentales testées par VL/ICP-OES et par capillaires/LA-ICP-MS

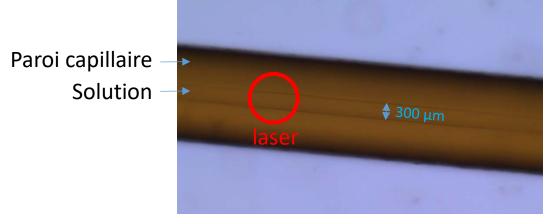
A) Solution analysée par capillaires + LA-ICP-MS



Laboratoire LA-ICP-MS à GeoRessources

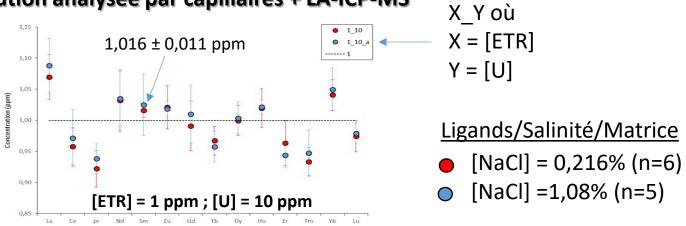
Capillaire de silice rempli de solution

A) Solution analysée par capillaires + LA-ICP-MS

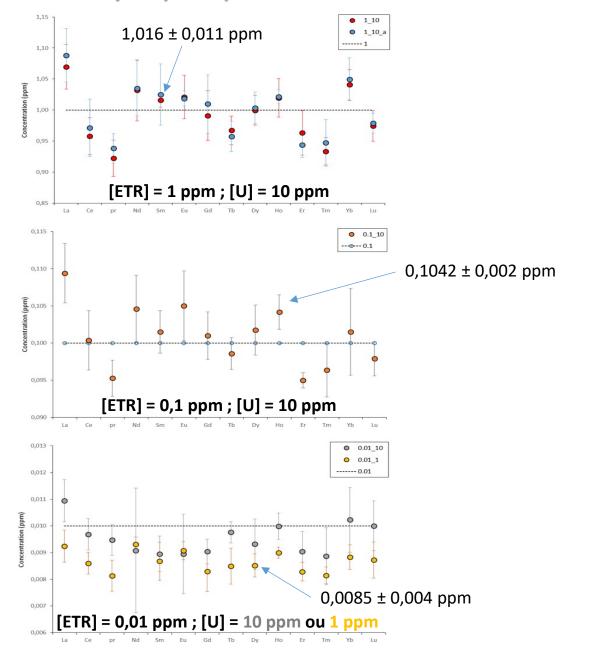


<u>Ligands/Salinité/Matrice</u>

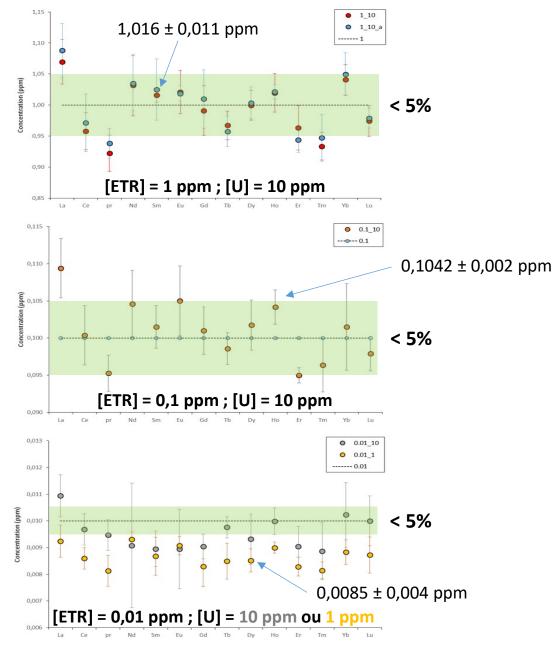
- \bullet [NaCl] = 0,216% (n=6)
- [NaCl] =1,08% (n=5)



Laboratoire LA-ICP-MS à GeoRessources


Capillaire de silice rempli de solution

A) Solution analysée par capillaires + LA-ICP-MS


1) Analyses des solutions

A) Solution analysée par capillaires + LA-ICP-MS

1) Analyses des solutions

A) Solution analysée par capillaires + LA-ICP-MS

- Méthodologie adaptée à la mesure des [EA] dans les solutions initiales considérées
 - [U]i = 4600 ppm
 - $[EA]^{1+}$: Li Na K = 20 ppm
 - $[EA]^{2+}$: Ni Cu- Mg Zn Fe Mn Sr Pb = 5 ppm
 - [EA]³⁺: AI Ga Cr Sc ETR = 1 ppm

 Effet [NaCl] non dominant dans la qualité de l'analyse, même si faible salinité testée (1,08% NaCl) vs. géologie

- Quantification faussée pour [EA] = 0,01 ppm, ce qui pourrait être les concentrations pour des solutions finales
- Questionnement sur la précision atteinte vs. Précision nécessaire pour calculs coefficients de partage

Tests avec [ETR] et [U] variables et U/REE entre 1 et 300001

				Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nd	Pr	Sm	Tb	Tm	Y (mg/l)	Yb
				Y (mg/l)														
10,	REE mg/L	U mg/L	U/REE															
),	0,01	0,01	1	0,007	0,008	0,009	0,010	0,007	0,009	0,012	0,010	0,010	0,010	0,007	0,007	0,004	0,010	0,010
0,01	0,01	1,01	101	0,008	0,010	0,010	0,010	0,008	0,009	0,011	0,010	0,009	0,011	0,008	0,008	0,005	0,010	0,011
0,0	0,01	5,01	501	0,007	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,009	0,012	0,010	0,009	0,005	0,010	0,010
0 8	0,01	10,01	1001	0,009	0,011	0,009	0,010	0,008	0,010	0,011	0,010	0,009	0,011	0,010	0,008	0,005	0,010	0,010
" ₹	0,01	25,01	2501	0,008	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,008	0,013	0,009	0,009	0,006	0,010	0,010
TR] = < [U]<	0,01	50,01	5001	0,005	0,011	0,010	0,010	0,008	0,009	0,010	0,010	0,008	0,010	0,009	0,010	0,007	0,010	0,010
 - \/	0,01	100,01	10001	0,011	0,013	0,011	0,010	0,010	0,010	0,011	0,010	0,009	0,010	0,009	0,009	0,009	0,010	0,010
ш	0,01	300,01	30001	0,021	0,013	0,012	0,010	0,014	0,013	0,010	0,010	0,011	0,006	0,011	0,011	0,017	0,010	0,010
] 10,	0,01	1000,01	100001	0,014	0,011	0,014	0,010	0,005	0,012	0,008	0,010	0,008	0,004	0,015	0,012	0,020	0,010	0,010
0,0	0,01	3000,01	300001	-0,061	0,025	0,003	0,009	-0,027	0,022	0,023	0,007	-0,019	0,016	0,013	-0,013	-0,018	0,006	0,037
1,	0,1	0,1	1	0,099	0,102	0,102	0,102	0,100	0,100	0,102	0,102	0,103	0,101	0,101	0,098	0,097	0,102	0,101
. 0	0,1	1,1	11	0,098	0,101	0,101	0,101	0,099	0,100	0,102	0,102	0,103	0,103	0,101	0,099	0,096	0,101	0,103
= 0,1 :3000,	0,1	5,1	51	0,099	0,103	0,102	0,102	0,101	0,100	0,103	0,103	0,103	0,105	0,101	0,101	0,097	0,102	0,103
30	0,1	10,1	101	0,098	0,101	0,103	0,102	0,100	0,102	0,103	0,103	0,101	0,100	0,100	0,099	0,099	0,103	0,102
II V	0,1	25,1	251	0,100	0,103	0,103	0,102	0,099	0,101	0,103	0,103	0,101	0,102	0,101	0,102	0,099	0,103	0,103
TR] [U]	0,1	50,1	501	0,103	0,105	0,103	0,102	0,102	0,102	0,103	0,104	0,102	0,100	0,100	0,101	0,099	0,103	0,104
	0,1	100,1	1001	0,105	0,105	0,103	0,102	0,101	0,102	0,103	0,103	0,102	0,101	0,101	0,099	0,101	0,103	0,103
<u>三</u> ~	0,1	300,1	3001	0,112	0,105	0,105	0,103	0,106	0,103	0,100	0,103	0,106	0,101	0,104	0,101	0,108	0,103	0,103
1,	0,1	1000,1	10001	0,106	0,100	0,102	0,103	0,099	0,102	0,097	0,101	0,103	0,092	0,102	0,103	0,113	0,102	0,099
0	0,1	3000,1	30001	0,018	0,109	0,090	0,096	0,042	0,113	0,112	0,091	0,060	0,081	0,100	0,059	0,072	0,091	0,037
	1	1	1	0,996	0,995	0,994	0,997	0,988	0,990	0,996	0,993	1,000	0,999	0,998	0,992	0,990	0,994	0,981
\vdash	1	2	2	1,001	1,000	0,997	1,001	0,995	0,992	0,999	0,996	1,003	1,001	1,002	0,993	0,993	0,999	0,981
1	1	6	6	1,012	1,011	1,007	1,009	1,002	1,005	1,005	1,004	1,011	1,008	1,014	1,002	1,003	1,008	0,994
]= 1 <3001	1	11	11	1,017	1,007	1,008	1,005	1,007	1,005	1,001	1,002	1,011	1,002	1,009	0,998	1,002	1,003	0,999
<u> </u>	1	26	26	1,018	1,014	1,011	1,012	1,008	1,008	1,008	1,010	1,012	1,009	1,017	1,005	1,010	1,013	1,006
ETR] ([U]<	1	51	51	1,019	1,024	1,021	1,018	1,016	1,018	1,012	1,021	1,020	1,011	1,021	1,013	1,019	1,021	1,008
	1	101	101	1,032	1,040	1,037	1,034	1,030	1,032	1,025	1,038	1,038	1,026	1,042	1,028	1,036	1,040	1,013
二 ~	1	301	301	1,024	1,027	1,020	1,019	1,014	1,018	1,006	1,022	1,024	1,003	1,028	1,013	1,026	1,022	1,010
1	1	1001	1001	1,022	1,031	1,016	1,019	1,009	1,017	1,000	1,015	1,030	1,004	1,034	1,008	1,037	1,016	0,982
	1	3001	3001	0,853	0,989	0,957	0,960	0,875	0,983	0,943	0,940	0,930	0,936	0,983	0,908	0,945	0,942	0,039

Tests avec [ETR] et [U] variables et U/REE entre 1 et 300001

				Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nd	Pr	Sm	Tb	Tm	Y (mg/l)	Yb
				Y (mg/l)														
01	REE mg/L	U mg/L	U/REE															
	0,0	1 0,01	1	0,007	0,008	0,009	0,010	0,007	0,009	0,012	0,010	0,010	0,010	0,007	0,007	0,004	0,010	0,010
0,01	0,0	1 1,01	101	0,008	0,010	0,010	0,010	0,008	0,009	0,011	0,010	0,009	0,011	0,008	0,008	0,005	0,010	0,011
0, 0	0,0	1 5,01	501	0,007	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,009	0,012	0,010	0,009	0,005	0,010	0,010
0.00	0,0	1 10,01	1001	0,009	0,011	0,009	0,010	0,008	0,010	0,011	0,010	0,009	0,011	0,010	0,008	0,005	0,010	0,010
II 💆	0,0	1 25,01	2501	0,008	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,008	0,013	0,009	0,009	0,006	0,010	0,010
E. [0]	0,0	1 50,01	5001	0,005	0,011	0,010	0,010	0,008	0,009	0,010	0,010	0,008	0,010	0,009	0,010	0,007	0,010	0,010
⊢ √	0,0	1 100,01	10001	0,011	0,013	0,011	0,010	0,010	0,010	0,011	0,010	0,009	0,010	0,009	0,009	0,009	0,010	0,010
ш	0,0	1 300,01	30001	0,021	0,013	0,012	0,010	0,014	0,013	0,010	0,010	0,011	0,006	0,011	0,011	0,017	0,010	0,010
] 01	0,0	1 1000,01	100001	0,014	0,011	0,014	0,010	0,005	0,012	0,008	0,010	0,008	0,004	0,015	0,012	0,020	0,010	0,010
0,0	0,0	1 3000,01	300001	-0,061	0,025	0,003	0,009	-0,027	0,022	0,023	0,007	-0,019	0,016	0,013	-0,013	-0,018	0,006	0,037
1,	0,	1 0,1	1	0,099	0,102	0,102	0,102	0,100	0,100	0,102	0,102	0,103	0,101	0,101	0,098	0,097	0,102	0,101
. 0	0,	1 1,1	11	0,098	0,101	0,101	0,101	0,099	0,100	0,102	0,102	0,103	0,103	0,101	0,099	0,096	0,101	0,103
1,0	0,	1 5,1	51	0,099	0,103	0,102	0,102	0,101	0,100	0,103	0,103	0,103	0,105	0,101	0,101	0,097	0,102	0,103
30	0,	1 10,1	101	0,098	0,101	0,103	0,102	0,100	0,102	0,103	0,103	0,101	0,100	0,100	0,099	0,099	0,103	0,102
II <u>V</u>	0,	1 25,1	251	0,100	0,103	0,103	0,102	0,099	0,101	0,103	0,103	0,101	0,102	0,101	0,102	0,099	0,103	0,103
[N]	0,	1 50,1	501	0,103	0,105	0,103	0,102	0,102	0,102	0,103	0,104	0,102	0,100	0,100	0,101	0,099	0,103	0,104
	0,	1 100,1	1001	0,105	0,105	0,103	0,102	0,101	0,102	0,103	0,103	0,102	0,101	0,101	0,099	0,101	0,103	0,103
当 >	0,	1 300,1	3001	0,112	0,105	0,105	0,103	0,106	0,103	0,100	0,103	0,106	0,101	0,104	0,101	0,108	0,103	0,103
	0,		10001	0,106	0,100	0,102	0,103	0,099	0,102	0,097	0,101	0,103	0,092	0,102	0,103	0,113	0,102	0,099
0	0,	1 3000,1	30001	0,018	0,109	0,090	0,096	0,042	0,113	0,112	0,091	0,060	0,081	0,100	0,059	0,072	0,091	0,037
		1 1	1	0,996	0,995	0,994	0,997	0,988	0,990	0,996	0,993	1,000	0,999	0,998	0,992	0,990	0,994	0,981
Ţ		1 2	2	1,001	1,000	0,997	1,001	0,995	0,992	0,999	0,996	1,003	1,001	1,002	0,993	0,993	0,999	0,981
= 1 :3001		1 6	6	1,012	1,011	1,007	1,009	1,002	1,005	1,005	1,004	1,011	1,008	1,014	1,002	1,003	1,008	0,994
3(1 11	11	1,017	1,007	1,008	1,005	1,007	1,005	1,001	1,002	1,011	1,002	1,009	0,998	1,002	1,003	0,999
		1 26	26	1,018	1,014	1,011	1,012	1,008	1,008	1,008	1,010	1,012	1,009	1,017	1,005	1,010	1,013	1,006
IR.		1 51	51	1,019	1,024	1,021	1,018	1,016	1,018	1,012	1,021	1,020	1,011	1,021	1,013	1,019	1,021	1,008
ш —		1 101	101	1,032	1,040	1,037	1,034	1,030	1,032	1,025	1,038	1,038	1,026	1,042	1,028	1,036	1,040	1,013
二 ~		1 301	301	1,024	1,027	1,020	1.019	1,014	1,018	1,006	1.022	1.024	1.003	1.028	1.013	1.026	1.022	1.010
1		1 1001	1001	1,022	1,031	1,016	1,019	1,009	1,017	1,000	1,015	1,030	1,004	1,034	1,008	1,037	1,016	0,982
		1 3001	3001	0,853	0,989	0,957	0,960	0,875	0,983	0,943	0,940	0,930	0,936	0,983	0,908	0,945	0,942	0,039

Différence vs. référence :

<10%

<20%

>20%

Méthodologie adaptée à la mesure des [EA] dans les solutions initiales considérées

Tests avec [ETR] et [U] variables et U/REE entre 1 et 300001

					Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nd	Pr	Sm	Tb	Tm	Y (mg/I)	Yb
					Y (mg/l)														
10	REE mg	g/L U	mg/L l	J/REE															
		0,01	0,01	1	0,007	0,008	0,009	0,010	0,007	0,009	0,012	0,010	0,010	0,010	0,007	0,007	0,004	0,010	0,010
7 %		0,01	1,01	101	0,008	0,010	0,010	0,010	0,008	0,009	0,011	0,010	0,009	0,011	0,008	0,008	0,005	0,010	0,011
0,01		0,01	5,01	501	0,007	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,009	0,012	0,010	0,009	0,005	0,010	0,010
		0,01	10,01	1001	0,009	0,011	0,009	0,010	0,008	0,010	0,011	0,010	0,009	0,011	0,010	0,008	0,005	0,010	0,010
		0,01	25,01	2501	0,008	0,010	0,009	0,010	0,009	0,009	0,011	0,010	0,008	0,013	0,009	0,009	0,006	0,010	0,010
王 ご		0,01	50,01	5001	0,005	0,011	0,010	0,010	0,008	0,009	0,010	0,010	0,008	0,010	0,009	0,010	0,007	0,010	0,010
⊢ √		0,01	100,01	10001	0,011	0,013	0,011	0,010	0,010	0,010	0,011	0,010	0,009	0,010	0,009	0,009	0,009	0,010	0,010
ш. Т.		0,01	300,01	30001	0,021	0,013	0,012	0,010	0,014	0,013	0,010	0,010	0,011	0,006	0,011	0,011	0,017	0,010	0,010
10,		0,01	1000,01	100001	0,014	0,011	0,014	0,010	0,005	0,012	0,008	0,010	0,008	0,004	0,015	0,012	0,020	0,010	0,010
0		0,01	3000,01	300001	-0,061	0,025	0,003	0,009	-0,027	0,022	0,023	0,007	-0,019	0,016	0,013	-0,013	-0,018	0,006	0,037
Ĺ		0,1	0,1	1	0,099	0,102	0,102	0,102	0,100	0,100	0,102	0,102	0,103	0,101	0,101	0,098	0,097	0,102	0,101
_ 0		0,1	1,1	11	0,098	0,101	0,101	0,101	0,099	0,100	0,102	0,102	0,103	0,103	0,101	0,099	0,096	0,101	0,103
1,0		0,1	5,1	51	0,099	0,103	0,102	0,102	0,101	0,100	0,103	0,103	0,103	0,105	0,101	0,101	0,097	0,102	0,103
: 0,1 3000,		0,1	10,1	101	0,098	0,101	0,103	0,102	0,100	0,102	0,103	0,103	0,101	0,100	0,100	0,099	0,099	0,103	0,102
11 <u>V</u>		0,1	25,1	251	0,100	0,103	0,103	0,102	0,099	0,101	0,103	0,103	0,101	0,102	0,101	0,102	0,099	0,103	0,103
		0,1	50,1	501	0,103	0,105	0,103	0,102	0,102	0,102	0,103	0,104	0,102	0,100	0,100	0,101	0,099	0,103	0,104
		0,1	100,1	1001	0,105	0,105	0,103	0,102	0,101	0,102	0,103	0,103	0,102	0,101	0,101	0,099	0,101	0,103	0,103
当 ~		0,1	300,1	3001	0,112	0,105	0,105	0,103	0,106	0,103	0,100	0,103	0,106	0,101	0,104	0,101	0,108	0,103	0,103
_ ←		0,1	1000,1	10001	0,106	0,100	0,102	0,103	0,099	0,102	0,097	0,101	0,103	0,092	0,102	0,103	0,113	0,102	0,099
0		0,1	3000,1	30001	0,018	0,109	0,090	0,096	0,042	0,113	0,112	0,091	0,060	0,081	0,100	0,059	0,072	0,091	0,037
		1	1	1	0,996	0,995	0,994	0,997	0,988	0,990	0,996	0,993	1,000	0,999	0,998	0,992	0,990	0,994	0,981
₹		1	2	2	1,001	1,000	0,997	1,001	0,995	0,992	0,999	0,996	1,003	1,001	1,002	0,993	0,993	0,999	0,981
100		1	6	6	1,012	1,011	1,007	1,009	1,002	1,005	1,005	1,004	1,011	1,008	1,014	1,002	1,003	1,008	0,994
3 3		1	11	11	1,017	1,007	1,008	1,005	1,007	1,005	1,001	1,002	1,011	1,002	1,009	0,998	1,002	1,003	0,999
<u> </u>		1	26	26	1,018	1,014	1,011	1,012	1,008	1,008	1,008	1,010	1,012	1,009	1,017	1,005	1,010	1,013	1,006
		1	51	51	1,019	1,024	1,021	1,018	1,016	1,018	1,012	1,021	1,020	1,011	1,021	1,013	1,019	1,021	1,008
		1	101	101	1,032	1,040	1,037	1,034	1,030	1,032	1,025	1,038	1,038	1,026	1,042	1,028	1,036	1,040	1,013
二 ~		1	301	301	1.024	1.027	1.020	1.019	1,014	1,018	1.006	1.022	1.024	1.003	1.028	1.013	1.026	1.022	1.010
⊣		1	1001	1001	1,022	1,031	1,016	1,019	1,009	1,017	1,000	1,015	1,030	1,004	1,034	1,008	1,037	1,016	0,982
		1	3001	3001	0,853	0,989	0,957	0,960	0,875	0,983	0,943	0,940	0,930	0,936	0,983	0,908	0,945	0,942	0,039

Différence vs. référence :

<10%

<20%

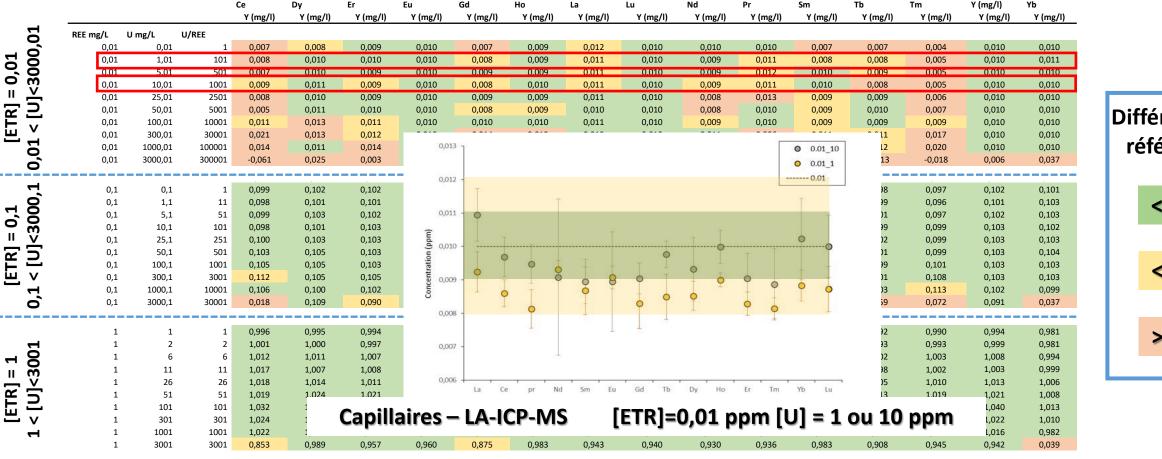
>20%

- Méthodologie adaptée à la mesure des [EA] dans les solutions initiales considérées
- Difficulté de quantifier [EA] ≤ 0,01 ppm, ce qui pourrait être les concentrations pour des solutions finales

Tests avec [ETR] et [U] variables et U/REE entre 1 et 300001

TOOOOE TOOO TOOO TOO	0 0,010 0 0,011 0 0,010 0 0,010 0 0,010 0 0,010
The color The	0 0,011 0 0,010 0 0,010 0 0,010 0 0,010
The color of the	0 0,011 0 0,010 0 0,010 0 0,010 0 0,010
0,01 25,01 2501 0,008 0,010 0,009 0,010 0,009 0,011 0,010 0,008 0,013 0,009 0,009 0,006 0,000 0,01 50,01 50,01 50,01 50,01 0,005 0,011 0,010 0,010 0,008 0,009 0,010 0,010 0,008 0,010 0,009 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,0	0 0,010 0 0,010 0 0,010 0 0,010
0,01 25,01 2501 0,008 0,010 0,009 0,010 0,009 0,011 0,010 0,008 0,013 0,009 0,009 0,006 0,000 0,01 50,01 50,01 50,01 50,01 0,005 0,011 0,010 0,010 0,008 0,009 0,010 0,010 0,008 0,010 0,009 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,0	0,010 0,010 0,010
0,01 25,01 2501 0,008 0,010 0,009 0,010 0,009 0,011 0,010 0,008 0,013 0,009 0,009 0,006 0,000 0,01 50,01 50,01 50,01 50,01 0,005 0,011 0,010 0,010 0,008 0,009 0,010 0,010 0,008 0,010 0,009 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,0	.0 0,010 .0 0,010
0,01 100,01 10001 0,011 0,013 0,011 0,010 0,010 0,011 0,010 0,010 0,010 0,010 0,009	.0 0,010
0,01 100,01 10001 0,011 0,013 0,011 0,010 0,010 0,011 0,000 0,009	
0,01 100,01 10001 0,011 0,013 0,011 0,010 0,010 0,011 0,000 0,009	0 010
0,01 1000,01 100001 0,014 0,011 0,014 0,010 0,005 0,012 0,008 0,010 0,008 0,004 0,015 0,012 0,020 0,001 3000,01 3000,01 3000,01 0,005 0,003 0,009 -0,027 0,022 0,023 0,007 -0,019 0,016 0,013 -0,013 -0,018 0,000	0,010
0,01 0,01 1000,01 100001 0,014 0,011 0,014 0,010 0,005 0,012 0,008 0,010 0,008 0,004 0,015 0,012 0,020 0,000 0,010	.0 0.010
0,01 3000,01 300001 -0,061 0,025 0,003 0,009 -0,027 0,022 0,023 0,007 -0,019 0,016 0,013 -0,013 -0,018 0,017 -0,019 0,010 0,101 0,101 0,010 0,010 0,101 0,101 0,101 0,010 0,010 0,101 0,101 0,010 0,010 0,101 0,10	.0 0,010
0,1 0,1 1 0,099 0,102 0,102 0,102 0,100 0,100 0,102 0,102 0,103 0,101 0,101 0,098 0,097 0,	0,037
4)	
0,1 1,1 11 0,098 0,101 0,101 0,099 0,100 0,102 0,102 0,103 0,103 0,101 0,099 0,096 0, 0,1 5,1 51 0,099 0,103 0,102 0,102 0,101 0,100 0,103 0,103 0,103 0,105 0,101 0,101 0,097 0, 0,1 10,1 101 0,098 0,101 0,103 0,102 0,100 0,102 0,103 0,103 0,103 0,101 0,100 0,100 0,099 0,099 0,	0,101
0,1 5,1 51 0,099 0,103 0,102 0,102 0,101 0,100 0,103 0,103 0,103 0,105 0,101 0,101 0,097 0, 0,1 10,1 101 0,098 0,101 0,103 0,102 0,100 0,102 0,103 0,103 0,103 0,101 0,100 0,100 0,099 0,099 0,	0,103
0,1 10,1 101 0,098 0,101 0,103 0,102 0,100 0,102 0,103 0,103 0,101 0,100 0,100 0,099 0,099 0,	0,103
	0,102
II <u>V</u> 0,1 25,1 251 0,100 0,103 0,103 0,102 0,099 0,101 0,103 0,103 0,101 0,102 0,010 0,102 0,099 0,	0,103
2 0,1 50,1 501 0,103 0,105 0,103 0,102 0,102 0,102 0,103 0,104 0,102 0,100 0,100 0,101 0,099 0, 0,1 100,1 1001 0,105 0,105 0,103 0,102 0,101 0,102 0,103 0,103 0,102 0,101 0,101 0,099 0,101 0,	
<u> </u>	
$ \leftarrow $ 0,1 1000,1 10001 0,106 0,100 0,102 0,103 0,099 0,102 0,097 0,101 0,103 0,092 0,102 0,103 0,113 0,0	
O,1 3000,1 30001 0,018 0,109 0,090 0,096 0,042 0,113 0,112 0,091 0,060 0,081 0,100 0,059 0,072 0,000 0	0,037
1 1 0,996 0,995 0,994 0,997 0,988 0,990 0,996 0,993 1,000 0,999 0,998 0,992 0,990 0,	0,981
	99 0,981
1 6 6 1,012 1,011 1,007 1,009 1,002 1,005 1,005 1,004 1,011 1,008 1,014 1,002 1,003 1,005 1,005 1,005 1,001 1,002 1,011 1,002 1,009 0,998 1,002 1,011 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,001 1,005 1,010 1,015	0,994
II 6 1 11 11 1,017 1,007 1,008 1,005 1,007 1,005 1,001 1,002 1,011 1,002 1,009 0,998 1,002 1,011 1,002 1,009 0,998 1,002 1,011 1,012	0,999
$\stackrel{\dots}{\longrightarrow}$ $\stackrel{\textbf{V}}{}$ 1 26 26 1,018 1,014 1,011 1,012 1,008 1,008 1,008 1,010 1,012 1,009 1,017 1,005 1,010 1,	1,006
E	
— 1 101 101 1,032 1,040 1,037 1,034 1,030 1,032 1,025 1,038 1,038 1,026 1,042 1,028 1,036 1,	
1 301 301 1,024 1,027 1,020 1,019 1,014 1,018 1,006 1,022 1,024 1,003 1,028 1,013 1,026 1,013 1,026 1,013 1,026 1,013 1,014 1,018 1,015 1,	22 1.010
- 1 1001 1001 1,022 1,031 1,016 1,019 1,009 1,017 1,000 1,015 1,030 1,004 1,034 1,008 1,037 1,015	
1 3001 3001 <mark>0,853</mark> 0,989 0,957 0,960 <mark>0,875</mark> 0,983 0,943 0,940 0,930 0,936 0,983 0,908 0,945 0,9	.6 0,982

Différence vs. référence :


<10%

<20%

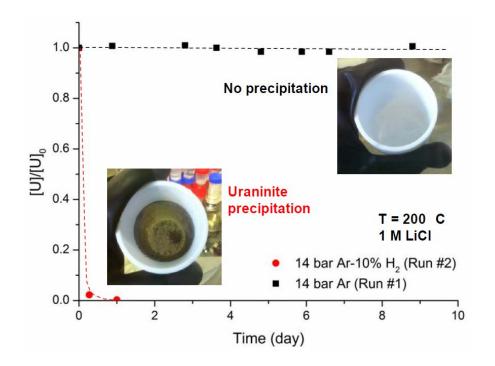
>20%

- Méthodologie adaptée à la mesure des [EA] dans les solutions initiales considérées
- Difficulté de quantifier [EA] ≤ 0,01 ppm, ce qui pourrait être les concentrations pour des solutions finales
- Effet de Matrice pour [U] = 3000 ppm et [ETR] ≤ 0,1 ppm, mais cas non attendu

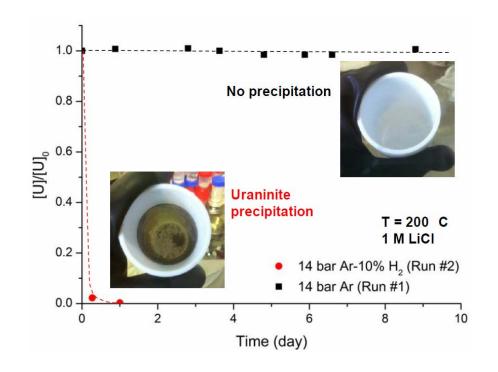
Tests avec [ETR] et [U] variables et U/REE entre 1 et 300001

Différence vs. référence :

<10%


<20%

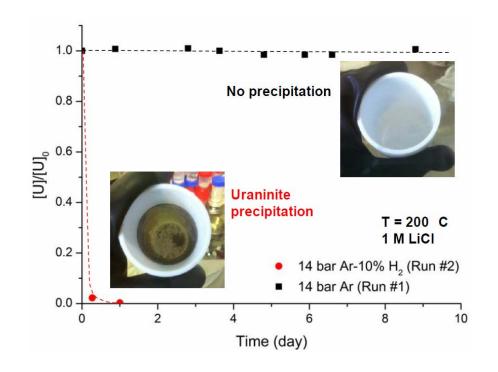
>20%


Capacité assez similaire des deux approches, facilité de mise en œuvre pour capillaire + LA-ICP-MS

Questionnement sur les spécificités des solutions finales

Preuve de concept de la réduction U par H₂ : thèse + post-doc M. Dargent (CREGU)

Preuve de concept de la réduction U par H₂ : thèse + post-doc M. Dargent (CREGU)



Utilisation du même protocole et même instrumentation

Tests de différentes conditions: H₂ dilué ou pur [P_{H2} variables], avec ou sans bol téflon [oxydant], ajout d'un nucléus minéral [graphite], durée de l'expérience

Expé	Solut	tions			С	onditions				Quantité prélevée à		
	Nature	Quantité (mL)	Gaz	Pression vap st (bar)	Pression TOTALE (bar)	Pression H ₂ (bar)	Pression H ₂ S (bar)	Température (°C)	Durée (jours)	chaud	Précipités	Remarques
1	Eau pure	100	H2(10%%mol) /Argon	6,9	48,4	4,15		170	6	50mL	NON	
2	Stest	100	H2(10%%mol) /Argon	8,4	53,9	4,55		170	6	40mL	NON	
3	Stest	200	H2 pur	15	35,5	20		180	6	100mL	NON	Barbottage à l'H2 pendnat 1h avant batch
4	Stest	100	H2(10%%mol) /Argon	8,1	54,4	4,63		170	8	40mL	NON	Pas de teflon dans l'experience
5	Stest	170	H2(10%%mol) /Argon	10	61,4	5,14		180	6	40mL	NON	
6	Stest	100	H2(10%%mol) /Argon	8,7	54,3	4,56		180	1	40mL	NON	Présence de Graphite pur

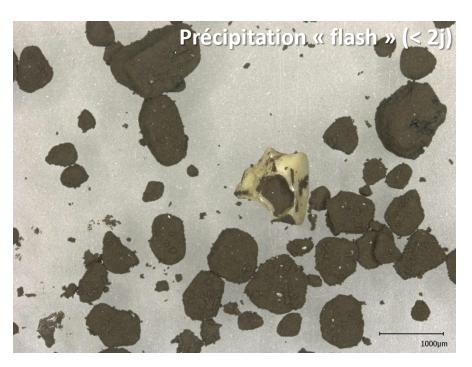
Preuve de concept de la réduction U par H₂ : thèse + post-doc M. Dargent (CREGU)

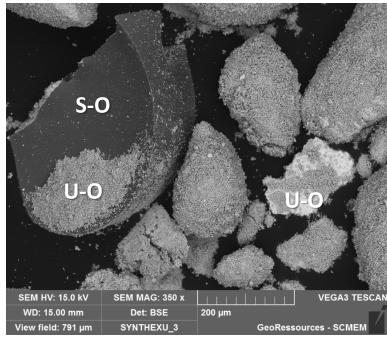
Utilisation du même protocole et même instrumentation

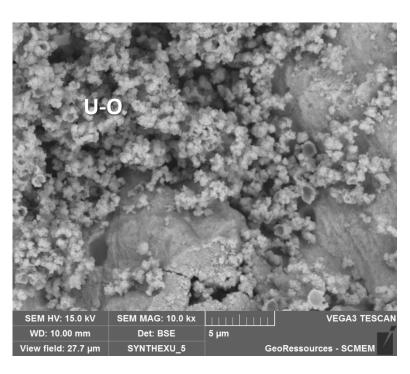
<u>Tests de différentes conditions</u>: H₂ dilué ou pur [P_{H2} variables], avec ou sans bol téflon [oxydant], ajout d'un nucléus minéral [graphite], durée de l'expérience

Résultat: aucune précipitation d'UO₂

Aucune explication à cet échec

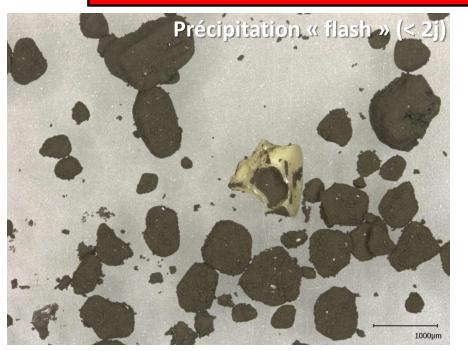

Expé	Solut	ions			С	onditions				Quantité prélevée à		
	Nature	Quantité (mL)	Gaz	Pression vap st (bar)	Pression TOTALE (bar)	Pression H ₂ (bar)	Pression H ₂ S (bar)	Température (°C)	Durée (jours)	chaud	Précipités	Remarques
1	Eau pure	100	H2(10%%mol) /Argon	6,9	48,4	4,15		170	6	50mL	NON	
2	Stest	100	H2(10%%mol) /Argon	8,4	53,9	4,55		170	6	40mL	NON	
3	Stest	200	H2 pur	15	35,5	20		180	6	100mL	NON	Barbottage à l'H2 pendnat 1h avant batch
4	Stest	100	H2(10%%mol) /Argon	8,1	54,4	4,63		170	8	40mL	NON	Pas de teflon dans l'experience
5	Stest	170	H2(10%%mol) /Argon	10	61,4	5,14		180	6	40mL	NON	
6	Stest	100	H2(10%%mol) /Argon	8,7	54,3	4,56		180	1	40mL	NON	Présence de Graphite pur

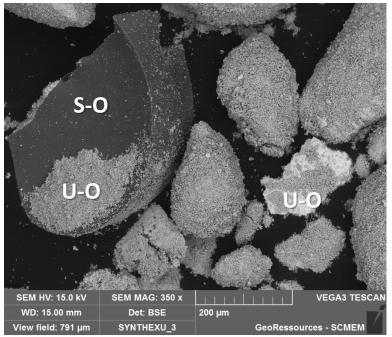

Test de réduction U par un autre gaz : H₂S (suspicion de réduction rapide UO₂)

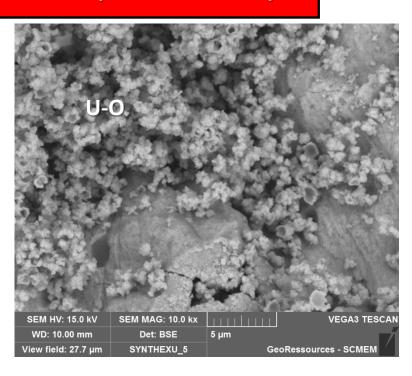

Expé	Solut	ions			С	onditions				Quantité prélevée à		
	Nature	Quantité (mL)	Gaz	Pression vap st (bar)	Pression TOTALE (bar)	Pression H ₂ (bar)	Pression H ₂ S (bar)	Température (°C)	Durée (jours)	chaud	Précipités	Remarques
1	Eau pure	100	H2(10%%mol) /Argon	6,9	48,4	4,15		170	6	50mL	NON	
2	Stest	100	H2(10%%mol) /Argon	8,4	53,9	4,55		170	6	40mL	NON	
3	Stest	200	H2 pur	15	35,5	20		180	6	100mL	NON	Barbottage à l'H2 pendnat 1h avant batch
4	Stest	100	H2(10%%mol) /Argon	8,1	54,4	4,63		170	8	40mL	NON	Pas de teflon dans l'experience
5	Stest	170	H2(10%%mol) /Argon	10	61,4	5,14		180	6	40mL	NON	
6	Stest	100	H2(10%%mol) /Argon	8,7	54,3	4,56		180	1	40mL	NON	Présence de Graphite pur
7	Stest	100	H2S pur	8,6	10,9		2,3	180	2	60mL	OUI	

Test de réduction U par un autre gaz : H₂S (suspicion de réduction rapide UO₂)

Expé	Solu	tions			С	onditions				Quantité prélevée à		
	Nature	Quantité (mL)	Gaz	Pression vap st (bar)	Pression TOTALE (bar)	Pression H ₂ (bar)	Pression H ₂ S (bar)	Température (°C)	Durée (jours)	chaud	Précipités	Remarques
1	Eau pure	100	H2(10%%mol) /Argon	6,9	48,4	4,15		170	6	50mL	NON	
2	Stest	100	H2(10%%mol) /Argon	8,4	53,9	4,55		170	6	40mL	NON	
3	Stest	200	H2 pur	15	35,5	20		180	6	100mL	NON	Barbottage à l'H2 pendnat 1h avant batch
4	Stest	100	H2(10%%mol) /Argon	8,1	54,4	4,63		170	8	40mL	NON	Pas de teflon dans l'experience
5	Stest	170	H2(10%%mol) /Argon	10	61,4	5,14		180	6	40mL	NON	
6	Stest	100	H2(10%%mol) /Argon	8,7	54,3	4,56		180	1	40mL	NON	Présence de Graphite pur
7	Stest	100	H2S pur	8,6	10,9		2,3	180	2	60mL	OUI	

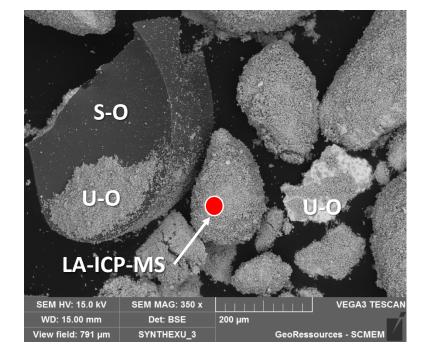


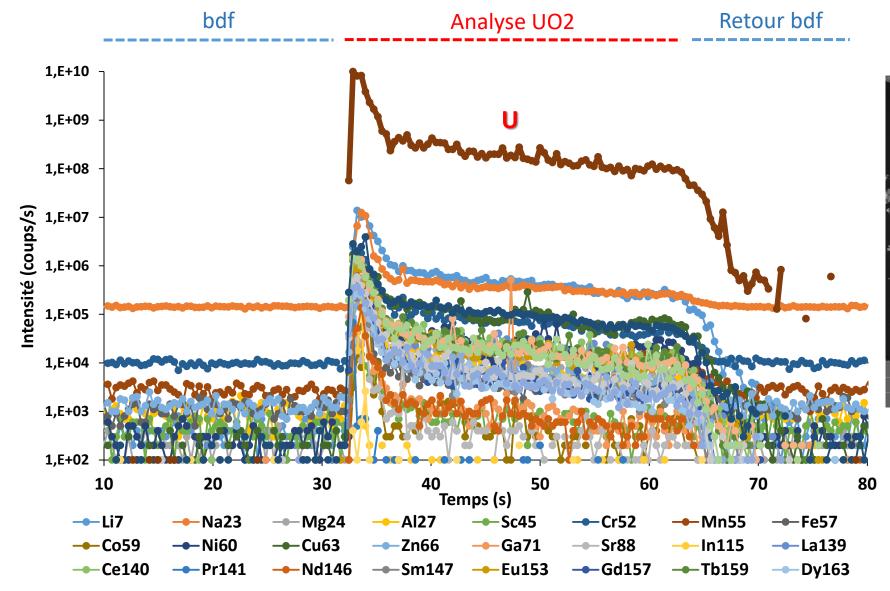

Test de réduction U par un autre gaz : H₂S (suspicion de réduction rapide UO₂)

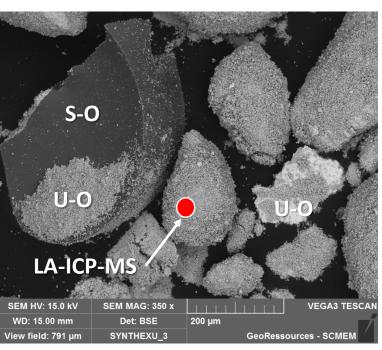

Capacité de synthétiser des UO₂ en utilisant H₂S dans des conditions adaptées à nos objectifs : quantité importante, rapide, récupérable

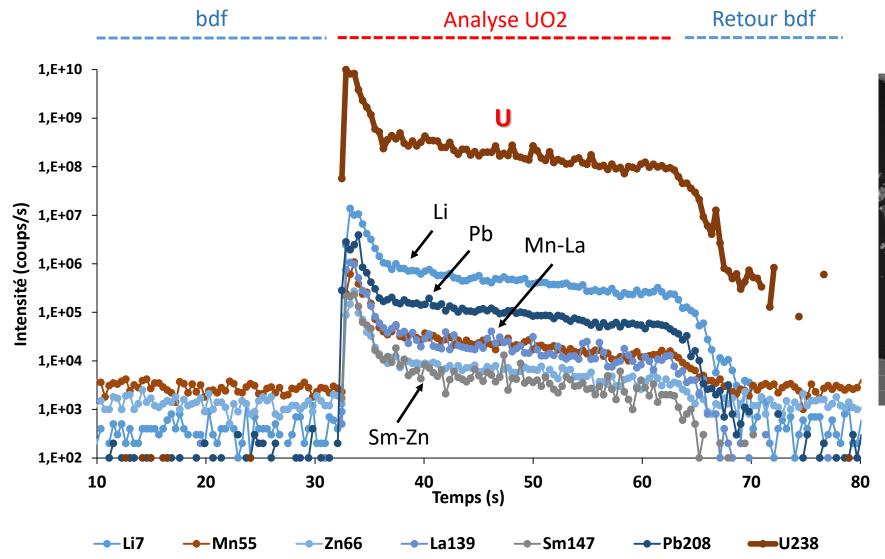
!! Limitation majeure !!: synthèse de minéraux porteurs de soufre (à identifier) mais dont la précipitation fausse l'évaluation des coefficients de partage UO₂ – fluide par incorporation probable d'une partie des éléments accompagnateurs

Conclusion : Synthèse des UO₂ n'est pas encore maîtrisée, à la recherche de conseils (si vous en avez...)

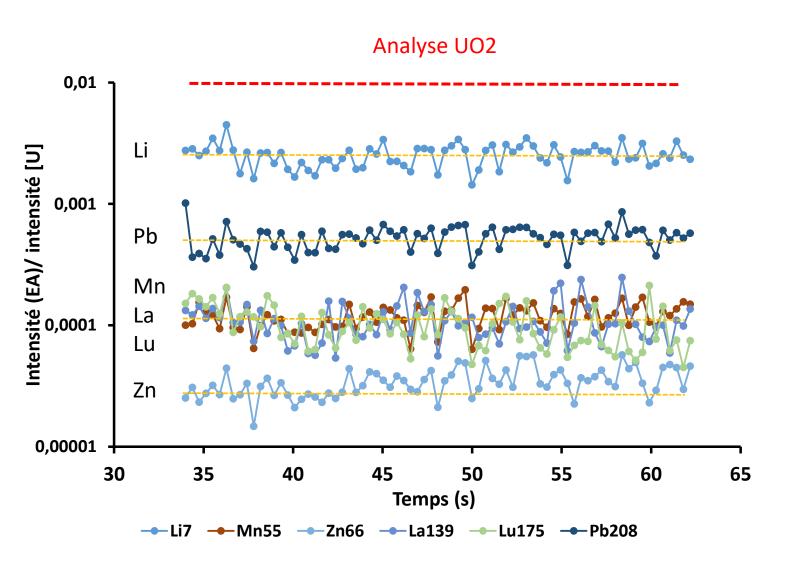


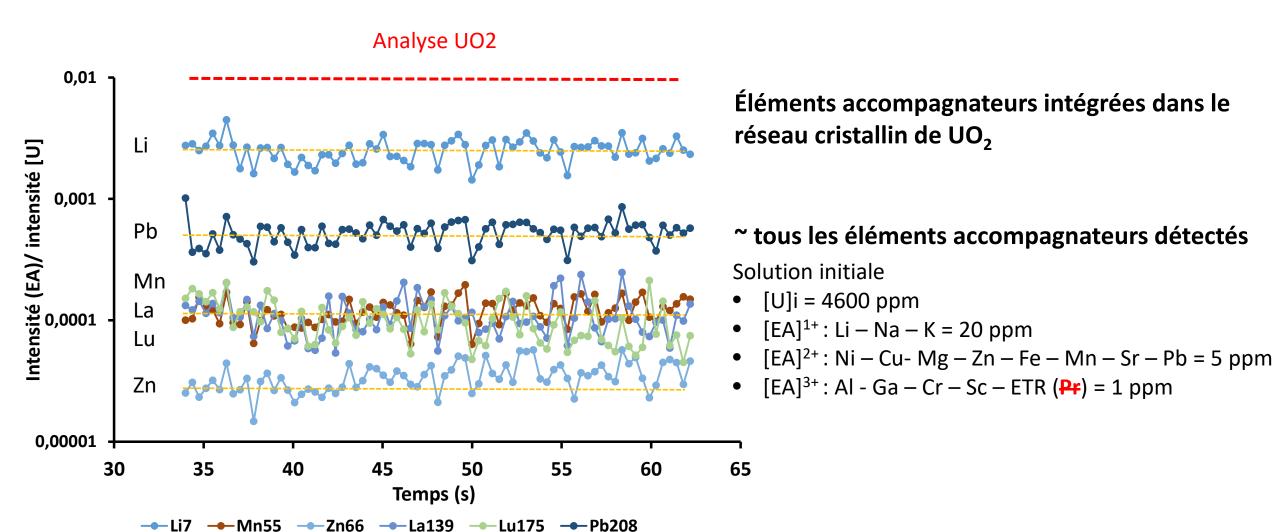

Test de mesure des [EA] dans les produits de l'expérience 7 (H₂S)


Méthode:

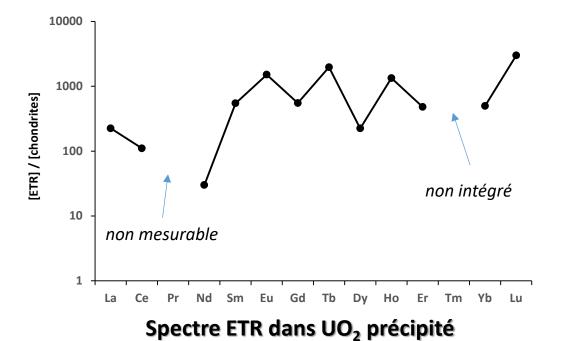

Solution finale [EA]_f: capillaires + LA – ICP-MS


• UO₂ [EA]_{UO2} : LA-ICP-MS





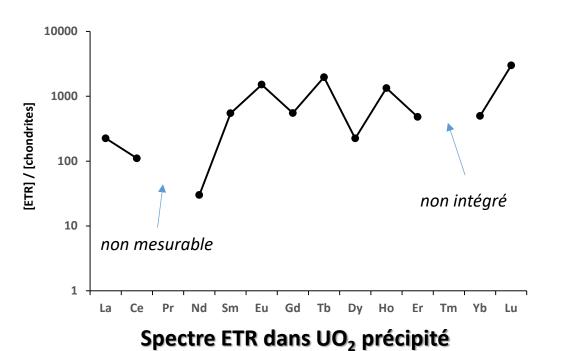
Concentrations mesurées dans UO₂ (n=5)

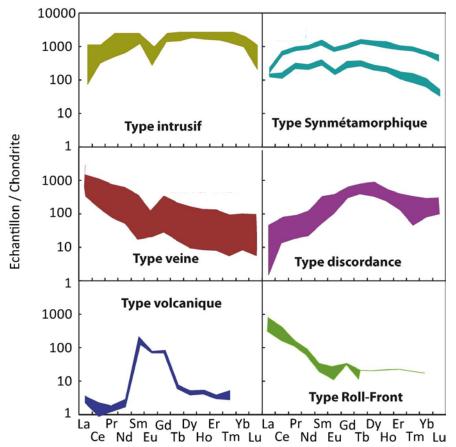

	Li	Na	Mg	Al	K	Sc	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga
M (ppm)	2504,31	939,37	65,93	167,50	4997,86	0,96	204,58	48,54	316,61	1,95	370,96	632,73	139,82	13,84
σ	709,91	490,61	27,31	289,53	3377,17	0,04	22,39	5,80	106,26	1,62	298,09	188,00	52,68	20,72
Sol Ini	20	20	5	1	20	1	1	5	5	5	5	5	5	1

	Sr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
M (ppm)	1,19	54,96	70,41	0,09	14,19	84,16	87,70	112,47	73,73	56,96	75,82	79,84	81,94	75,80
σ	0,74	4,96	3,86	0,11	1,61	8,27	4,98	16,56	9,69	9,04	7,59	12,21	9,73	12,99
Sol Ini	5	1	1	1	1	1	1	1	1	1	1	1	1	1

Concentrations mesurées dans UO₂ (n=5)

	Li	Na	Mg	Al	K	Sc	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga
M (ppm)	2504,31	939,37	65,93	167,50	4997,86	0,96	204,58	48,54	316,61	1,95	370,96	632,73	139,82	13,84
σ	709,91	490,61	27,31	289,53	3377,17	0,04	22,39	5,80	106,26	1,62	298,09	188,00	52,68	20,72
Sol Ini	20	20	5	1	20	1	1	5	5	5	5	5	5	1


	Sr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
M (ppm)	1,19	54,96	70,41	0,09	14,19	84,16	87,70	112,47	73,73	56,96	75,82	79,84	81,94	75,80
σ	0,74	4,96	3,86	0,11	1,61	8,27	4,98	16,56	9,69	9,04	7,59	12,21	9,73	12,99
Sol Ini	5	1	1	1	1	1	1	1	1	1	1	1	1	1



Concentrations mesurées dans UO₂ (n=5)

	Li	Na	Mg	Al	K	Sc	Cr	Mn	Fe	Со
M (ppm)	2504,31	939,37	65,93	167,50	4997,86	0,96	204,58	48,54	316.61	1.95
σ	709,91	490,61	27,31	289,53	3377,17	0,04	22,39	5,80		
Sol Ini	20	20	5	1	20	1	1	5		

	Sr	La	Ce	Pr	Nd	Sm	Eu	Gd
M (ppm)	1,19	54,96	70,41	0,09	14,19	84,16	87,70	112,47
σ	0,74	4,96	3,86	0,11	1,61	8,27	4,98	16,56
Sol Ini	5	1	1	1	1	1	1	1

Ni

370.96

Cu

632.73

[ETR] dans UO₂

Zn

139.82

Ga

Projet ambitieux et novateur pour répondre à une question scientifique de premier ordre dans le domaine de la géochimie des oxydes d'uranium

Projet ambitieux et novateur pour répondre à une question scientifique de premier ordre dans le domaine de la géochimie des oxydes d'uranium

2 ans de travaux en dents de scie (Covid et pas de chercheurs dédiés au projet) avec une équipe compétente et équipée dans les domaines expérimentaux et analytiques visés

Projet ambitieux et novateur pour répondre à une question scientifique de premier ordre dans le domaine de la géochimie des oxydes d'uranium

2 ans de travaux en dents de scie (Covid et pas de chercheurs dédiés au projet) avec une équipe compétente et équipée dans les domaines expérimentaux et analytiques visés

Des objectifs atteints (capacité de mesure des éléments accompagnateurs) à confirmer pour des contextes géologiques hydrothermaux « difficiles » (par exemple haute salinité ou haute température) mais un blocage majeur inattendu sur le protocole de précipitation via H₂ (pas de solution à l'actuel)

Projet ambitieux et novateur pour répondre à une question scientifique de premier ordre dans le domaine de la géochimie des oxydes d'uranium

2 ans de travaux en dents de scie (Covid et pas de chercheurs dédiés au projet) avec une équipe compétente et équipée dans les domaines expérimentaux et analytiques visés

Des objectifs atteints (capacité de mesure des éléments accompagnateurs) à confirmer pour des contextes géologiques hydrothermaux « difficiles » (par exemple haute salinité ou haute température) mais un blocage majeur inattendu sur le protocole de précipitation via H₂ (pas de solution à l'actuel)

Après 2 ans de soutien par NEEDS et un investissement important,

SYNTHEXU est un projet au milieu du gué