Simulation of water flows in a tailings pile at the former uranium mine at Le Cellier (Lozère, France)

Ahmeda Ouédraogo¹, Anno Jost¹ Valário Plagnos¹

Anne Jost¹, Valérie Plagnes¹, Pierre L'Hermite¹, Isabelle Blanc-Potard², Camille Chautard³, Michael Descostes^{3,4}

1 Sorbonne Université, CNRS, EPHE, METIS, F-75005 Paris, France

2 AMF, Orano Mining, France

3 Environmental R&D Department, Orano Mining, France

4 Centre de Géosciences, MINES ParisTech, PSL University, 35 rue St Honoré, 77300 Fontainebleau, France

Le Cellier open pit mine in operation (1974)

***** Mine tailings

• Pile deposited (10 to 150 m) as a result of mining and/or ore treatment

***** Issues associated with tailings

- Sometimes exposed at the surface by atmospheric conditions
- Unsaturated area

Transferts of pollutants Acid leaching Acid mine drainage

Objectives

- Develop a 2D model that describes the flow in a tailings pile
- Understand the water content repartition within the pile

https://www.srk.com/en/services/mine-waste-management

***** Site description

- Le Cellier : a former uranium mine site managed by ORANO
- 2283 tons of uranium metal from 1956 to 1988

Mining Activities

- Underground and open pit (OP) mining
- Ore processing (static and dynamic leaching)
- Tailings piles (Pile 1, Pile 2, Pile 3)

***** Site description

- Le Cellier : a former uranium mine site managed by ORANO
- 2283 tons of uranium metal from 1956 to 1988

Mining Activities

- Underground and open pit (OP) mining
- Ore processing (static and dynamic leaching)
- Tailings piles (Pile 1, Pile 2, Pile 3)

• Pile 2

- Pile 2: a residual pile from static leaching
- Impluvium (135 000 m²)
- Materials: granite gravel, sand

***** Available data from 2008- 2010

Available data from 2008- 2010

***** Water balance of pile 2

At a pile scale :

 $\mathbf{P} - \mathbf{ETa} = \mathbf{R} + \mathbf{I} = \mathbf{Q}_{d}$

• Budget is acceptable for most of the years

Annual water balance

***** Water balance of pile 2

At a pile scale :

 $\mathbf{P} - \mathbf{ETa} = \mathbf{R} + \mathbf{I} = \mathbf{Q}_{d}$

• Budget is acceptable for most of the years

• A reaction time of the pile?

Annual water balance

8

***** Correlations of discharges (Q)

• Autocorrelation functions decrease synchronously on all drains , a cyclical pattern;

2008-2018: 120 observations

* Correlations of discharges (Q)

- Autocorrelation functions decrease synchronously on all drains , a cyclical pattern;
- Significant correlation functions (> 0.2) at a time lag equal to 1 month
- Heavy (above-average) rainfall can result in high discharge the next month
- Semi-annual cycle between rainfall and flow rates, in adequation with the time lag already observed between the calculated EXD and observed Q_d .
- Similar dynamic for all drains

2008-2018: 120 observations

MODELING

Objective: Reproduce the observed drains discharges and have a view on the water content evolution in the pile.

Software: HYDRUS 2D

• Richards (1931) equation governs water transfers in variably saturated porous media :

$$\frac{\partial}{\partial x} \left[K_x(h) \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial z} \left[K_z(h) \frac{\partial h}{\partial z} \right] - \frac{\partial K_z(h)}{\partial z} = -\mathbf{c}(h) \frac{\partial h}{\partial t}$$

 $c(h) = \frac{\partial \theta}{\partial h}$

- Geometry of the pile
- Requires $\theta(h)$ and K(h) relationships

* Model geometry, boundary and initial conditions

• Geometry

Transversal topographic profile of pile 2 from A Digital Elevation Model (DEM)

• Initial conditions

h = -1,2 m which corresponds to a water content near to the residual water content

Input data

P, ETR at daily step but constrained with average monthly rainfall and evapotranspiration for each day

Nodes:	3764	
1D-Elements:	438	Discretization of Curves (edges)
2D-Elements:	7180	Discretization of Surfaces (faces)
3D-Elements:	0	Discretization of Solids (volumes)
Boundary mesh:		
Nodoc:	346	Nodes on domain boundary
Noues.		

***** Hydraulic parameters: θ(h) and K(h) relationships

where *n* is the total number of data, Q_{si} is the simulated value, Q_{oi} is the observed value and \overline{Q}_o is the average of observed data.

13

***** Hydraulic parameters: θ(h) and K(h) relationships

***** Model geometry, boundary and initial conditions

• Homogeneous materials

Parameters	θ_r	$ heta_s$	α (m ⁻¹)	n	$k_s(m.j^{-1})$	l
Cellier	0	0. 29	30	3.4	73.44	0.5

* Model geometry, boundary and initial conditions

• Homogeneous materials

Parameters	$\overline{\theta}_r$	$ heta_s$	α (m ⁻¹)	п	$k_s(m.j^{-1})$	l
Cellier	0	0.29	30	3.4	73.44	0.5

*due to acid injection through h*orizontal deposits during static leaching : *stochastic vertical correlation approach*

Logσ	Correlation	Heterogenous materials
0.25	Cor X	100
	Cor Y	5

Scaling factors for horizontal related to hydraulic conductivity

* Observed and simulated discharges are compared

Statistics	Homogeneous	Horizontal	
Criterion			
NSE Q	0,64	0,64	
NSE $ln(Q)$	0,36	0,37	
NSE (\sqrt{Q})	0,56	0,57	

good

- Flow dynamics reproduced
- High and low flow periods not reproduced very well in some periods throughout the simulations
- Small difference between homogeneous et heterogenous approaches (not significant statistically)
 - o Low Hydraulic conductivity sensitive to discharges

Simulation of water content

- Low water content (Max : 2.9 % homogeneous and 3.2 % heterogenous simulations)
- Seasonal distribution of water content
- Water retention areas in heterogeneous simulation

Simulation of water content

- From May to December, low impact of the atmospheric conditions on the water content below 15 m
- More fluctuation of water content from January to April

Conclusion

- Knowledge of the site (history of deposits, granulometry)
- **Daily / Monthly data of the site** (P, T et Q)
- Flow simulation with Hydrus en 2D
 - Simulation of discharges from pile 2
 - o Low water content in the pile
 - o Seasonal distribution of water content

Conclusion

- Knowledge of the site (history of deposits, granulometry)
- **Daily / Monthly data of the site** (P, T et Q)
- Flow simulation with Hydrus en 2D
 - Simulation of discharges from pile 2
 - o Low water content in the pile
 - o Seasonal distribution of water content

Next steps: NEEDS 2021-2022

• Model improvement

- Additional field study (geophysics and material characteristics)
- Daily measurements on site (P, Q)
- Coupling with reactive transport, heat transfer and gas movements

• Other modeling approaches

- o Dual porosity
- o Fractured aquifers (macro-pores)

Measurements of discharges

INTRODUCTION DATA ANALYSIS MODELING RESULTS AND DISCUSSION CONCLUSION

Open pit mining (1974)

Le Cellier site (1978)

Le Cellier site (1981)

Le Cellier site (1991)

THANK YOU FOR YOUR ATTENTION

Current view of Le Cellier Site (2010)