if (FALSE) { # Run this part of the code only once install.packages("embryogrowth") install.packages("https://hebergement.universite-paris-saclay.fr/marcgirondot/CRAN/HelpersMG.tar.gz", repos=NULL, type="source") install.packages("https://hebergement.universite-paris-saclay.fr/marcgirondot/CRAN/embryogrowth.tar.gz", repos=NULL, type="source") } library(embryogrowth) Lepidochelys.olivacea = subset(DatabaseTSD, Species=="Lepidochelys olivacea" & (!is.na(Sexed) & Sexed!=0)) colnames(Lepidochelys.olivacea) unique(Lepidochelys.olivacea$RMU.2023) nrow(Lepidochelys.olivacea) Lepidochelys.olivacea.WA = subset(Lepidochelys.olivacea, subset=RMU.2023 == "West Atlantic") nrow(Lepidochelys.olivacea.WA) # Here the intersexes are excluded from the analysis tsdF = tsd(df=Lepidochelys.olivacea.WA, equation = "flexit**", parameters.initial = c(P=30, SH=1, SL=1)) plot(tsdF) priorsN = tsd_MHmcmc_p(result = tsdF, default = "dnorm", accept = TRUE) priorsU = tsd_MHmcmc_p(result = tsdF, default = "dunif", accept = TRUE) priors = rbind(priorsN[1, , drop=FALSE], priorsU[2:3, ]) priors[1, "Prior1"] = 30 priors[2:3, c("Prior1", "Min")] = 0 priors[2:3, c("Prior2", "Max")] = 10 priors tsdF_mcmc = tsd_MHmcmc(result = tsdF, parametersMCMC = priors, n.iter = 20000, thin = 10, n.adapt=1000) plot(tsdF_mcmc, parameters = "P", what="MarkovChain") plot(tsdF_mcmc, parameters = "SL", what="MarkovChain", main="SL") plot(tsdF_mcmc, parameters = "SH", what="MarkovChain", main="SH") as.parameters(x=tsdF_mcmc, index = "quantile", probs = c(0.025, 0.5, 0.975)) as.parameters(x=tsdF_mcmc, index = "quantile", probs = c(0.25, 0.5, 0.75)) plot(tsdF, resultmcmc = tsdF_mcmc, replicate.CI = 2000)