if (FALSE) { # Run this part of the code only once install.packages("embryogrowth") install.packages("https://hebergement.universite-paris-saclay.fr/marcgirondot/CRAN/HelpersMG.tar.gz", repos=NULL, type="source") install.packages("https://hebergement.universite-paris-saclay.fr/marcgirondot/CRAN/embryogrowth.tar.gz", repos=NULL, type="source") } library(embryogrowth) Lepidochelys.olivacea <- subset(DatabaseTSD, Species=="Lepidochelys olivacea" & (!is.na(Sexed) & Sexed!=0)) ########################################### # Here the intersexes are included as males ########################################### males <- Lepidochelys.olivacea$Males + ifelse(is.na(Lepidochelys.olivacea$Intersexes), 0, Lepidochelys.olivacea$Intersexes) females <- Lepidochelys.olivacea$Females temperatures <- Lepidochelys.olivacea$Incubation.temperature.set tsdF_Intersexes <- tsd(males = males , females = females , temperatures = temperatures , equation = "flexit**", parameters.initial = c(P=30, SH=1, SL=1)) priorsN = tsd_MHmcmc_p(result = tsdF_Intersexes, default = "dnorm", accept = TRUE) priorsU = tsd_MHmcmc_p(result = tsdF_Intersexes, default = "dunif", accept = TRUE) priors = rbind(priorsN[1, , drop=FALSE], priorsU[2:3, ]) priors[1, "Prior1"] = 30 priors[2:3, c("Prior1", "Min")] = 0 priors[2:3, c("Prior2", "Max")] = 10 tsdF_Intersexes_mcmc = tsd_MHmcmc(result = tsdF_Intersexes, parametersMCMC = priors, n.iter = 20000, thin = 10, n.adapt=1000) plot(tsdF_Intersexes, resultmcmc = tsdF_Intersexes_mcmc, replicate.CI = 2000, xlim=c(24, 36)) #################################################### # Here the intersexes are excluded from the analysis #################################################### males <- Lepidochelys.olivacea$Males females <- Lepidochelys.olivacea$Females temperatures <- Lepidochelys.olivacea$Incubation.temperature.set tsdF_NoIntersexes <- tsd(males = males , females = females , temperatures = temperatures , equation = "flexit**", parameters.initial = c(P=30, SH=1, SL=1)) priorsN = tsd_MHmcmc_p(result = tsdF_NoIntersexes, default = "dnorm", accept = TRUE) priorsU = tsd_MHmcmc_p(result = tsdF_NoIntersexes, default = "dunif", accept = TRUE) priors = rbind(priorsN[1, , drop=FALSE], priorsU[2:3, ]) priors[1, "Prior1"] = 30 priors[2:3, c("Prior1", "Min")] = 0 priors[2:3, c("Prior2", "Max")] = 10 tsdF_NoIntersexes_mcmc = tsd_MHmcmc(result = tsdF_NoIntersexes, parametersMCMC = priors, n.iter = 20000, thin = 10, n.adapt=1000) plot(tsdF_NoIntersexes, resultmcmc = tsdF_NoIntersexes_mcmc, replicate.CI = 2000, xlim=c(24, 36))