Let $E$ be a complex vector space. A norm on $E$ is given by the following definition
Norm A norm $\Vert.\Vert$ is a real positive function such that $\forall x\in E, \ \Vert x\Vert \geq 0$ $\forall x\in E, \ \Vert x\Vert = 0 \Leftrightarrow x = 0$ $\forall \lambda\in\mathbb{C},\ \Vert \lambda x\Vert = |\lambda| \Vert x\Vert$ $\forall x,y\in E,\ \Vert x+y\Vert\leq \Vert x\Vert + \Vert y\Vert$
The most used norms are
On peut alors définir des espaces vectoriels normés couramment utilisés:
Espace $L^p(E)$ The set of functions $f$ of $E$ with a finite $p$-Norm is denoted by $L^p(E)$
In particular, we will be interested by the space $L^2(\mathbb{R})$ of functions with a finite energy. We can define similarly the space $\ell^p(\mathbb{Z})$ of sequences with a finite energy.
A norms allows one to define the notion of distance. Moreover, a norm allows one to define the notion of convergence.
Convergence in norm Let $E$ be a complex vector space with the norm $\Vert .\Vert $. A sequence ${f_n}_{n\in\mathbb{N}}$ of $E$ converges to $f\in E$ iff $$ \lim_{n\rightarrow +\infty}\Vert f_n -f\Vert = 0\ . $$ we will denote by $$ \lim_{n\rightarrow +\infty} f_n = f $$
The notion of convergence depends then of the chosen norm. The three most usefull convergences are
Finally, a vector space $E$ with a norm is said to be a Banach space, is every Cauchy’s sequence is a convergent sequence.