FILTERING

M2 AI — SIGNAL PROCESSING

SIGNAL AND SYSTEMS

- A signal is recorded, and distorted, by a sensor
- A signal is (almost) always linked to the notion of "system"
- signal after applying a function to the input signal

$$x(t)$$
 \longrightarrow S -

S is a "functional" that applies to a signal, and returns another signal

System: Functional block that reacts to an input excitation signal and produces a response

FILTERS: LINEAR SYSTEMS INVARIANT IN TIME

- A filter is a linear system that is invariant over time
- Let S be a filter with an impulse response h[t]. Then

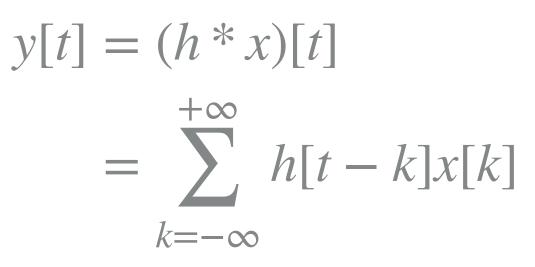
y[t] =

- For finite sequences (digital signals) of size N, 2 possibilities
 - Zeros-padding: h[t] = 0 and $x[t] = 0 \forall t \notin \{0, \dots, N-1\}$

$$= S\{x\}[t]$$

= $(h * x)[t]$
= $\sum_{k=-\infty}^{+\infty} h[t - k]x[k]$

• Circular convolution: h and x are supposed to be periodic (different results if the period is chosen to be N or 2N!)



FILTERING IN THE FOURIER DOMAIN

Let a filter with an impulse response h :

then (if the Fourier transform exists):

- done after zeros-padding !
- Filtering a signal acts directly on the spectrum

 $\hat{y}[\nu] = \hat{h}[\nu]\hat{x}[\nu]$

• For finite sequences (digital signals), the underlying convolution is circular: Fourier transform must be

IDEAL FILTERS AND REALIZABLE FILTERS

- pass and Band cut filter.
- A filter is realizable iff its impulse response is stable and causal
- Ideal filters are not realizable (not causal)
- Two kind of realizable numerical filters:

, Infinite Impulse Response (IIR) filters: y[t] =

Ideal filter cut some frequencies while other are preserved. 4 types of filters: Low pass, High pass, Band

$$\sum_{n=0}^{K-1} h[n]x[t-n]$$

$$\sum_{n=0}^{+\infty} h[n]x[t-n] = \sum_{n=0}^{M-1} b[n]x[t-n] - \sum_{n=1}^{N-1} a[n]y[t-n]$$

DIGITAL FILTERS

- Ideal filters can be implemented in the frequency domain (but not in real time)
- FIR filters are stable, but need a lot of coefficients
- IIR filters can be unstable, but accurate.
- Classical IIR filters: Butterworth, Tchebychev I & II, Elliptical

TO DO: FIR DELAY EFFECT

Data:

Any (short) sound file

• Goal:

The FIR filter for delay effect can be implement thanks to the following input-output equation (e[t] is the input and s[t] is the output):

Where $\alpha > 0$ is the attenuation factor and D is the time delay

- Implement the delay effect in the time domain
- Determine the impulse response of the filter (numerically)
- Provide the Frequency response of the filter (numerically)

```
s[t] = e[t] + \alpha e[t - D]
```


M2 AI — SIGNAL PROCESSING — FILTERING

TO DO: IIR DELAY EFFECT

Data:

Any (short) sound file

• Goal:

The IIR filter for delay effect can be implement thanks to the following input-output equation (e[t] is the input and s[t] is the output):

Where $\alpha > 0$ is the scaling factor, $\beta > 0$ is the attenuation factor and D is the time delay

- Implement the delay effect in the time domain
- Determine the impulse response of the filter (numerically)
- Provide the Frequency response of the filter (numerically)
- Is this implementation always stable ?
- Discuss the parameters
- Compare with the FIR implementation

 $s[t] = \alpha e[t] + \beta s[t - D]$

M2 AI — SIGNAL PROCESSING — FILTERING

TO DO: IMAGE FILTERING

Data:

Any image

► Goal:

For a given image, implement the following filters and discuss their effects

- Gradient filter
- Sobel filter
- Averaging filter
- Gaussian filter

