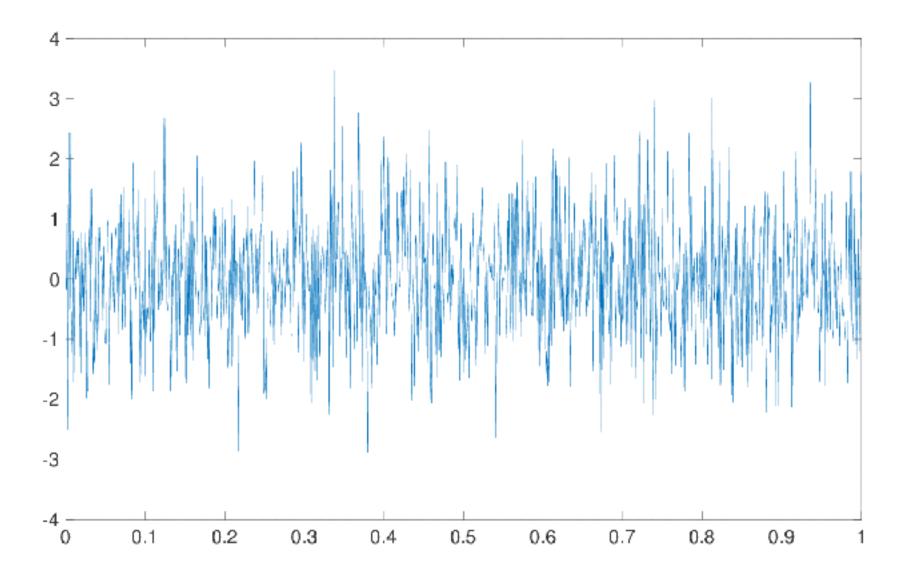

RANDOM SIGNALS


M2 AI — SIGNAL PROCESSING

INTRODUCTION

- Usefulness:
 - Noise modeling
 - Statistical estimation
 - Bayesian approach
- Different, but similar

DIGITAL RANDOM SIGNAL

- A digital random signal is a random process: X[t]
- For each t, X[t] is a random variable
- The random signal is, usually, assumed to be ergodic and stationary:
 - We can work with only one realization
 - The autocorrelation function $R_X[k n] = \mathbb{E} \{X[k]X[n]\}$ is deterministic
 - We can work with temporal statistics

• In practice we observe one (partial) trajectory, that is one realization $x = \{x[0], ..., x[N-1]\}$

SPECTRUM OF RANDOM SIGNAL

- Let X be a random signal
 - The Fourier transform of X is not meaningful
 - The spectrum of a random signal is the Fourier transform of its autocorrelation function:

- Can be difficult to estimate in practice
- Two estimators:
 - Periodogram estimator (power spectrum of the observed trajectory x)
 - Welch estimator (average of short-time power spectrum)

 $S(\nu) = \hat{R}_{x}[t]$

NOISE

- Gaussian white noise
 - All the random variables X[n] are i.i.d. from $\mathcal{N}(0,\sigma^2)$
 - Autocorrelation function: $R_x[t] = \sigma^2 \delta[t]$
 - Spectrum: $S(\nu) = \sigma^2$
- A Gaussian colored noise is a filtered white noise

LINEAR DENOISING

Let y be a noisy measure of a "clean" signal x corrupted by some additive noise n:

Signal to Noise Ratio (SNR):

 $SNR(y \mid x)$

- Goal: find the best (oracle) filter h such that $x_{est} = h * y$ is the best estimation of x
- Solution: Wiener filter, given in the frequency domain by

$$\hat{h}(\nu) = \frac{\mathbb{E}\{|\hat{x}(\nu)|^2\}}{\mathbb{E}\{|\hat{x}(\nu)|^2\} + \mathbb{E}\{|\hat{n}(\nu)|^2\}}$$

More on the numerical tour !! (See the linear image denoising tour)

y = x + n

$$0 = 20 \log \left(\frac{\|x\|}{\|y - x\|} \right)$$

M2 AI — SIGNAL PROCESSING — RANDOM SIGNALS

TO DO: NOISE SPECTRUM DENSITY ESTIMATION AND WIENER FILTERING

- Data
 - 3 noises
 - Audio file or image of your choice
- Todo
 - For each noise
 - Estimate the spectrum density by periodogram and Welsh method
 - Identify the color of the noise (white, pink, red, mixture of noises...)
 - With the image or audio file

 - Denoise the signal using the Wiener filter

Simulate a noisy version of the signal with various SNR (0dB, 5 dB, 10 dB, 15 dB, 20 dB), using a Gaussian white noise

