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FOURIER REMINDER

‣ Spectral analysis: frequency content of a function (Think about musical notes!) 

‣ Measure the similarity (correlation, angle) between pure (complex) sine and a signal 

‣ Sines are eigen signals of time-invariant linear systems (filters) 

‣ Fourier analysis computes the correlation between the signal ￼   a pure sine at various frequencies ￼  

￼  

‣ Limitation of Fourier analysis: 

‣ We obtain a pure frequency content from a pure temporal content 

‣ What is the difference between a sum of sine, and a succession of sines?

s(t) ν

̂s(ν) = ⟨s, eν⟩
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FOURIER EXAMPLE: 1 SINE
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FOURIER EXAMPLE: SUM OF 2 SINES
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FOURIER EXAMPLE: SUCCESSION OF 2 SINES
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SHORT-TIME FOURIER TRANSFORM (STFT)
‣ Idea: perform a local spectral analysis of the signal thanks to a sliding window 

‣ Let ￼  be a smooth window localized around ￼ . Let the time-frequency atom  

￼  

‣ The time-frequency transform of a signal ￼  computes its correlation with the time-frequency atom ￼ :  

￼  

‣ It corresponds to the Fourier transform of the windowed signal ￼  

‣ Parameters of the STFT: 

‣ The length (and shape) of the window  

‣ The redundancy in time (hope size between two windows) 

‣ The redundancy in frequency (length of the frequency transform inside one window)

w(t) t = 0

φτ,ν(t) = w(t − τ)ei2πνt

x φτ,ν(t)

X(τ, ν) = ⟨x, φτ,ν⟩ = ∫
+∞

−∞
x(t)w(t − τ)ei2πνtdt

x(t)w(t − τ)
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DISCRETE STFT (GABOR TRANSFORM)

‣ Let ￼  be a digital signal and let ￼  be a window. The discrete STFT is given by  

￼  

‣ ￼  control the redundancy in time (the hope size, in samples, between two windows) 

‣ ￼  control the redundancy in frequency (usually ￼  or ￼ )  

‣ Using the matrix notation, all the time-frequency coefficients ￼   can be computed by the analysis operator 
￼ : ￼  

‣ Each column of ￼  is one time-frequency atom. 

‣ The number ￼  of columns depends on the time-frequency redundancy,

x ∈ ℝT w ∈ ℝL

X[τ, ν] =
N−1

∑
t=0

x[t]w[t − aτ]ei 2πν
M t

a ≥ 1

M ≥ N M = L M = 2L

X[τ, ν]
Φ X = Φ*x

Φ

K > T
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DISCRETE INVERSE STFT
‣ We do not have in general:  

￼  

‣ With matrix notation: 

￼  

‣ The invert of a Gabor dictionary ￼  is obtained by the canonical dual ￼ , which is also a Gabor transform constructed using a dual window ￼  

￼  

‣ With matrix notation: 

￼  

‣ If the Gabor dictionary is a Parseval Frame (or a normalized tight frame), then ￼  and ￼

x[t] = ∑
τ,ν

X[τ, ν]w[t − aτ]ei 2πν
M t

x ≠ ΦΦ*x

Φ Φ̃ w̃

x[t] = ∑
τ,ν

X[τ, ν]w̃[t − aτ]ei 2πν
M t

x = Φ̃Φ*x = ΦΦ̃*x

Φ̃ = Φ ∥x∥2 = ∥X∥2
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SYNTHESIS OPERATION
‣ We have 

￼  

‣ With ￼ , that is 

￼  

‣ However, it exists an infinity of synthesis coefficients ￼  such that  

￼  

‣ Beware:  

‣ In some implementations, the "invert" operator is the "synthesis" operation and must be performed with the appropriate dual 
window 

‣ It is more useful to have access to the "synthesis" operator rather than the actual invert operator

x[t] = ∑
τ,ν

X̃[τ, ν]w[t − aτ]ei 2πν
M t

X̃ = Φ̃*x

x = ΦX̃

α

x = Φα
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HOW TO CHOOSE THE PARAMETERS
‣ Heisenberg’s uncertainty principle 

‣ A signal cannot be both well localized in time and in frequency. 

‣ Consequence: short windows are more adapted to “transient”, and long windows to “tonal”, “stationary”, 
parts of the signal 

‣ Common choices for a high-fidelity audio signal with a sampling frequency of 44.1 kHz with a window of size ￼  

‣ Shape of the window: Hann, Hamming, Gaussian 

‣ Length of the window: between 256 samples to 4096 samples. Common choice: 1024 samples 

‣ Redundancy in time: overlap of 50% or 75% between two consecutive window 

‣ Redundancy in frequency: FFT of size ￼  or ￼

L

L 2L
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STFT EXAMPLE: SUM OF 2 SINES
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STFT EXAMPLE: SUCCESSION OF 2 SINES
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STFT EXAMPLE: GLOCKENSPIEL
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DENOISING IN THE TIME-FREQUENCY DOMAIN
‣ Let ￼  be a noisy measure of a "clean" signal ￼  corrupted by some additive noise ￼ :  

￼  

‣ In the STFT domain, we have 

￼  

‣ Proposed estimator 

‣ Hard Thresholding 

￼  

‣ Spectral subtraction 

￼

y x n

y = x + n

Y[τ, ν] = X[τ, ν] + N[τ, ν]

𝔼 { |Y[τ, ν |2 } = |X[τ, ν] |2 + Sn[ν]

X(τ, ν) = {Y(τ, ν) if |Y(τ, ν) | > λ |Sn(ν) |
0 if |Y(τ, ν) | ≤ λ |Sn(ν) |

X(τ, ν) = Y(τ, ν)(1 −
λ2 |Sn(ν) |2

|Y(τ, ν) |2 )
+
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TO DO: DENOISING IN THE STFT DOMAIN

‣ Data 

‣ The 3 noises of the random chapter 

‣ “Clean” music signal 

‣ Todo 

‣ Simulate a noisy version of the music using the noises at various SNR Level 

‣ Implement the denoising by hard thresholding and spectral subtraction 

‣ Denoise the different given noisy version of the clean signal 

‣ Discuss the parameters
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