TIME-FREQUENCY ANALYSIS

M2 Al — SIGNAL PROCESSING



M2 Al — SIGNAL PROCESSING — TIME-FREQUENCY ANALYSIS

FOURIER REMINDER

>~ Spectral analysis: frequency content of a function (Think about musical notes!)
>~ Measure the similarity (correlation, angle) between pure (complex) sine and a signal

> Sines are eigen signals of time-invariant linear systems (filters)

> Fourier analysis computes the correlation between the signal s(f) a pure sine at various frequencies v
S(v) = (s,e,)

> Limitation of Fourier analysis:

> We obtain a pure frequency content from a pure temporal content

> What is the difference between a sum of sine, and a succession of sines?
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FOURIER EXAMPLE: 1 SINE

Sine o5 X 10° Power spectrum
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FOURIER EXAMPLE: SUM OF 2 SINES
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FOURIER EXAMPLE: SUCCESSION OF 2 SINES
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SHORT-TIME FOURIER TRANSFORM (STFT)

v

ldea: perform a local spectral analysis of the signal thanks to a sliding window

v

Let w(¥) be a smooth window localized around ¢ = 0. Let the time-frequency atom

12t

@, (1) = w(t — 1)e

v

The time-frequency transform of a signal x computes its correlation with the time-frequency atom ¢_,():
+00 .
X(z,v) ={x,,,) = J x(O)w(t — 7)e?™dt

> It corresponds to the Fourier transform of the windowed signal x(©)w(t — 7)

v

Parameters of the STFT:
* The length (and shape) of the window
* The redundancy in time (hope size between two windows)

* The redundancy in frequency (length of the frequency transform inside one window)
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DISCRETE STFT (GABOR TRANSFORM)

> Letx € R! be a digital signal and let w € R be a window. The discrete STFT is given by

N—1
X[z, 1] = Z x[flw[t — arle’ !
=0

> a > 1 control the redundancy in time (the hope size, in samples, between two windows)
> M > N control the redundancy in frequency (usually M = L or M = 2L)

> Using the matrix notation, all the time-frequency coefficients X[z, 2] can be computed by the analysis operator
O: X = O*x

> Each column of @ is one time-frequency atom.

> The number K > T of columns depends on the time-frequency redundancy,
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DISCRETE INVERSE STFT

v

We do not have in general:

- 2y

A1 =Y X[z, vIwlt — arle "

v

With matrix notation:

x = OD*x

v

The invert of a Gabor dictionary @ is obtained by the canonical dual ®, which is also a Gabor transform constructed using a dual window W

- 2wy

x[f] = Y X[z, u]Wlt — atle’

v

With matrix notation:

x = ODO*x = OD*yx

v

If the Gabor dictionary is a Parseval Frame (or a normalized tight frame), then ® = ® and ||x||* = || X]|?
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SYNTHESIS OPERATION

> We have

- 27y

x[t] = Z X[z, v]w[t — at]e !

v

With X = ®*x, that is
x = ©X
> However, it exists an infinity of synthesis coefficients a such that
x = Pa
> Beware:

> In some implementations, the "invert" operator is the "synthesis" operation and must be performed with the appropriate dual
window

> Itis more useful to have access to the "synthesis" operator rather than the actual invert operator
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HOW TO CHOOSE THE PARAMETERS

> Heisenberg's uncertainty principle
> A signal cannot be both well localized in time and in frequency.

* Consequence: short windows are more adapted to “transient”, and long windows to “tonal”, “stationary”,
parts of the signal

> Common choices for a high-fidelity audio signal with a sampling frequency of 44.1 kHz with a window of size L
> Shape of the window: Hann, Hamming, Gaussian

> Length of the window: between 256 samples to 4096 samples. Common choice: 1024 samples

* Redundancy in time: overlap of 50% or 75% between two consecutive window

> Redundancy in frequency: FFT of size L or 2L
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STFT EXAMPLE: SUM OF 2 SINES

Sum of +10° Power spectrum: sum of two sines
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STFT EXAMPLE: SUCCESSION OF 2 SINES
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STFT EXAMPLE: GLOCKENSPIEL
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DENOISING IN THE TIME-FREQUENCY DOMAIN

* Let y be a noisy measure of a "clean" signal x corrupted by some additive noise n:
y=x+n

> |In the STFT domain, we have
Y[r,v] = X|[z,v]| + N|z, V]
E { Yz, v } = | X[z, 0] |* + S, []

" Proposed estimator
> Hard Thresholding

v B Y(r,v) if |Y(r,v)| > 1|S,(v)|
(@) = {o if |Y(z,v)| <1|S,)]

> Spectral subtraction

( 2218,) | )
X(t,v) =Y(r,v)| 1 — 5
| Y(z,v) |



M2 Al — SIGNAL PROCESSING — TIME-FREQUENCY ANALYSIS
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T0 DO: DENOISING IN THE STFT DOMAIN

* Data
> The 3 noises of the random chapter
> “Clean” music signal
* Todo
> Simulate a noisy version of the music using the noises at various SNR Level
> Implement the denoising by hard thresholding and spectral subtraction
> Denoise the different given noisy version of the clean signal

> Discuss the parameters



