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DIRECT PROBLEM

> Let
» x € RN be the signal of interest (clean image, music, etc.)
> A € R"Y be a known linear operator (sensing matrix, mixing matrix, diffusion matrix, etc.)
> vy € RM be the (noisy) observed/measured signal

> ¢ € RM be some noise (assumed to be white Gaussian noise)

> The direct problem is :

y=Ax+n
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INVERSE PROBLEM

> The goal of the inverse problem is to estimate the original signal x from the measurement
y=Ax+n
> If M > Nthe problem is said (over)-determined

> It M < Nthe problem is said under-determined
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INVERSE PROBLEM: EXAMPLES

> Denoising: y=x+4+n

> Deconvolution:y=h*x+n=Hx+n or&ziz@fc+ﬁ

ImMage 10
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INVERSE PROBLEM: EXAMPLES

> Compressive sensing: A is a random matrix with M < N

> Inpaiting: A is a binary mask

” Imae fo - Observations y
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OPTIMIZATION FRAMEWORK

> We seek an estimation of x by
x = argmin, £(y, A, x) + AR (x)
> where

>~ L(y,A, x)is the loss: models the link between the signal x and the observation y through the

operator A
> R(x)is the loss: models the prior on the signal x

> 1 > 0 is some hyper-parameter
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OPTIMIZATION FRAMEWORK

* We seek an estimation of x by
x = argmin, £(y,A,x) + AR(x)
> Loss:

> %Hy — Ax||3: energy of the residual, adapted to white Gaussian noise

" ||y — Ax||,: robust regression

* Regularization:
] %||x||% energy of the signal
’ %”VX”% energy of the derivative
" ||x||,: sparsity of the signal

> $||Vx||,$ : sparsity of the derivative (total variation)
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USE OF A DICTIONARY

> R(x) can be difficult to chose

" Idea: use a dictionary (such as Wavelets or time-frequency), where the signal is known to be sparse (well represented by
few coefficients)

> Let @ € R be such a dictionary, with x = ®a. a are called the synthesis coefficients
* The direct problem writes
y=Ax+n=A®a+n

* The minimization becomes
1 ,
o = argmlnal\y — A(IDaH2 + Al|a|]

* and x = ©Oa
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INVERSE PROBLEM: ALGORITHM

> How to minimize
1 )
a = argmmEHy — A®al|5 + Allaf|4

> Itis a non-smooth convex problem

> Known as the Lasso or Basis-Pursuit Denoising

> Consider the "simple" denoising problem (e.g. ® is orthogonal)
a = al‘gmina\\y — a3 + Alall;

> We can show that the solution is given by the so-called Soft-Thresholding operator :

azé’ﬁ(y)zy(l ’ >+

|y
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INVERSE PROBLEM: ALGORITHM

> How to minimize
1 5
a = argmmEHy — A®al|5 + Allaf|4

> FISTA (Fast Iterative Shrinkage/Thresholding Algorithm)

> |nitialization: a® € RY, 7O e RN, L < ||A®||*, t =0

> Do until convergence :

(t+1) (1) 1 % A % (1)
» =CS)/1/L < +ZCDA (y—A(I)Z )

t
I+ 5

(1) — G+ |

- (a*D) — o)

> Remark: we have||[A®||? < ||A]|?||®]|% then if @ is a Parseval frame, we simply have L < ||A[|>.
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FISTA WITH WARM RESTART

> In practice, the algorithm must be run with various values of lambda.
> When 4 — 0 we havel||ly — A®a|| — 0.
> When A = [|®*A*y|| , the solutionisa = 0

> One can choose these values distributed on a log scale € [107%||®*A*y|| D*A*y|| ], with a

oos |

fixed number of 4, such aswe have 4, < 4, < ... < 4

> The idea is to initialize the algorithm for 4. with the results get from 4,_,
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FISTA WITH THRESHOLDING RULES

> The Soft-thresholding can be replaced by any thresholding rules

> Some examples:

> Hard Thresholding: #')(a) = al,, .,

_|_
2
o« o . . EW L A’
., Empirical Wiener: 57" (a) = « (1 | |2 )
a
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T0 DO (1/2): INPAINTING (DEADLINE: 31/12)

* Data
> Image or signal you want

> Todo

> Simulate various inpainting problems as follows

> Generate a random binary matrix A of the same size as the signal, with a parameter p controlling the Bernoulli law

> Add some white Gaussian noise (at various levels)

> Generate the direct problem y = Ax + b (where xis the original signal)

> Estimate x using the sparse approach (reminder: an audio signal (resp. image) is sparse in the time-frequency (resp. Wavelet) domain)

" Discuss the results obtained by changing:

4

the sparse representation (various wavelets, various STFT parameters...)

>

the thresholding rules (soft, hard, empirical Wiener)

> the choice of the 4 parameter

>

Discussion should be made concerning the value of p and the level of noise
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T0 DO (2/2): COMPRESS SENSING (DEADLINE: 31/12)

> Data

> Image or signal you want of size N

> Todo

* Simulate various compress sensing problems as follows

"~ Generate a random normal matrix A of size MxN, M < N, with a given mean and a given covariance matrix (start with a standard normal pdf)

> Add some white Gaussian noise (at various levels)

"~ Generate the direct problem y = Ax + b (where x is the original signal)

* Estimate x using the sparse approach (reminder: an audio signal (resp. image) is sparse in the time-frequency (resp. Wavelet) domain)

* Discuss the results obtained by changing:

>

the sparse representation (various wavelets, various STFT parameters...)

>

the thresholding rules (soft, hard, empirical Wiener)

> the choice of the A parameter

>

Discussion should be made concerning the size of A, its mean and its covariance matrix, as well as the level of noise.



