INVERSE PROBLEMS

M2 AI — SIGNAL PROCESSING

DIRECT PROBLEM

- Let
 - $x \in \mathbb{R}^N$ be the signal of interest (clean image, music, etc.)
 - $A \in \mathbb{R}^{MN}$ be a known linear operator (sensing matrix, mixing matrix, diffusion matrix, etc.)
 - $y \in \mathbb{R}^M$ be the (noisy) observed/measured signal
 - $e \in \mathbb{R}^M$ be some noise (assumed to be white Gaussian noise)
- The direct problem is :

y = Ax + n

INVERSE PROBLEM

- If $M \ge N$ the problem is said (over)-determined
- If M < Nthe problem is said under-determined</p>

The goal of the inverse problem is to estimate the original signal x from the measurement

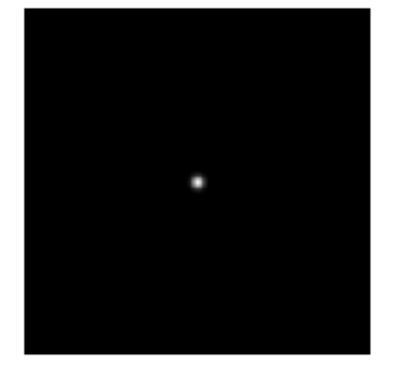
y = Ax + n

INVERSE PROBLEM: EXAMPLES

• Denoising: y = x + n

• Deconvolution: y = h * x + n = Hx + n or $\hat{y} = \hat{h} \odot \hat{x} + \hat{n}$

Filter



Fourier transform

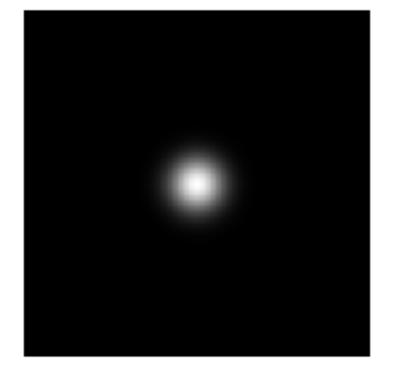
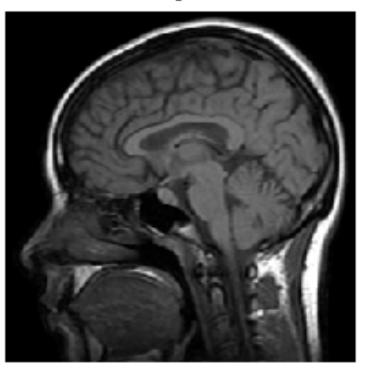
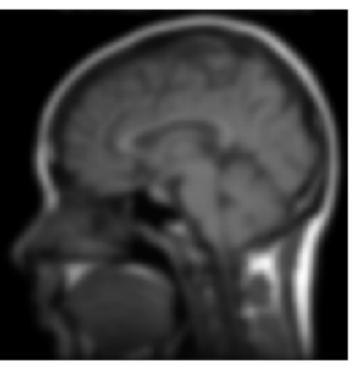


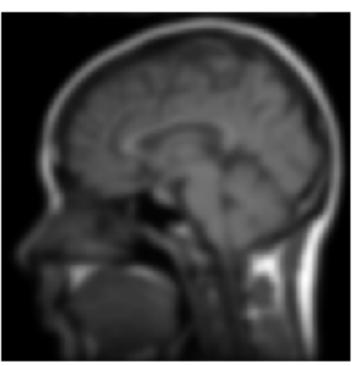
IMage t0

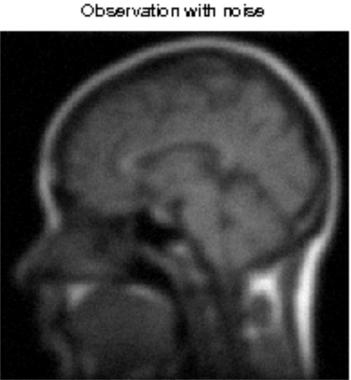


Observation without noise



Observation without noise





INVERSE PROBLEM: EXAMPLES

- Compressive sensing: A is a random matrix with M < N
- Inpaiting: A is a binary mask

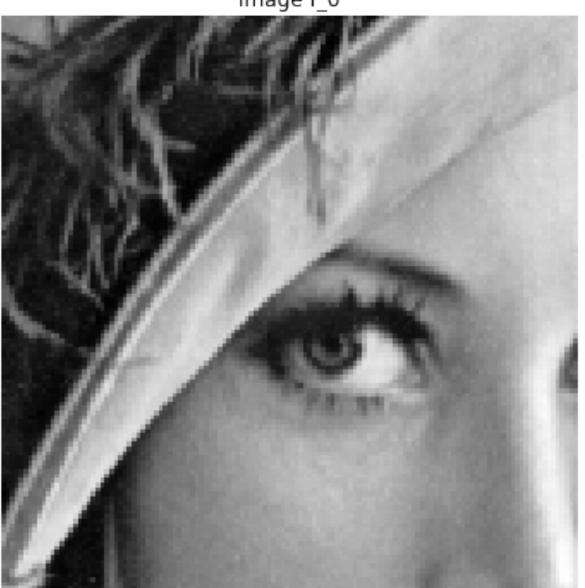


Image f_0

Observations y 13NGG ...

OPTIMIZATION FRAMEWORK

We seek an estimation of x by

- where
 - operator A
 - $\mathscr{R}(x)$ is the loss: models the prior on the signal x
 - $\lambda > 0$ is some hyper-parameter

$x = \operatorname{argmin}_{x} \mathscr{L}(y, A, x) + \lambda \mathscr{R}(x)$

• $\mathscr{L}(y, A, x)$ is the loss: models the link between the signal x and the observation y through the

OPTIMIZATION FRAMEWORK

We seek an estimation of x by

- Loss:
 - $\frac{1}{2} ||y Ax||_2^2$: energy of the residual, adapted to white Gaussian noise
 - $||y Ax||_1$: robust regression
- Regularization:
 - $\frac{1}{2} ||x||_2^2$: energy of the signal
 - $\frac{1}{2} \|\nabla x\|_2^2$: energy of the derivative
 - $||x||_1$: sparsity of the signal
 - $\|\nabla x\|_1$: sparsity of the derivative (total variation)

 $x = \operatorname{argmin}_{x} \mathscr{L}(y, A, x) + \lambda \mathscr{R}(x)$

USE OF A DICTIONARY

- $\mathscr{R}(x)$ can be difficult to chose
- few coefficients)
- Let $\Phi \in \mathbb{R}^{NK}$ be such a dictionary, with $x = \Phi \alpha$. α are called the synthesis coefficients
- The direct problem writes

y = Ax

The minimization becomes

 $\alpha = \operatorname{argmin}$

• and $x = \Phi \alpha$

Idea: use a dictionary (such as Wavelets or time-frequency), where the signal is known to be sparse (well represented by

$$+n = A\Phi\alpha + n$$

$$\frac{1}{2} \|y - A\Phi\alpha\|_2^2 + \lambda \|\alpha\|_1$$

INVERSE PROBLEM: ALGORITHM

How to minimize

 $\alpha = \operatorname{argmin}_{-}$

- It is a non-smooth convex problem
- Known as the Lasso or Basis-Pursuit Denoising
- Consider the "simple" denoising problem (e.g. Φ is orthogonal)

 $\alpha = \operatorname{argmin}$

• We can show that the solution is given by the so-called Soft-Thresholding operator :

$$\alpha = \mathscr{S}_{\lambda}(y) = y\left(1 - \frac{\lambda}{|y|}\right)^{+}$$

$$\frac{1}{2} \|y - A\Phi\alpha\|_2^2 + \lambda \|\alpha\|_1$$

$$\frac{1}{2} \|y - \alpha\|_{2}^{2} + \lambda \|\alpha\|_{1}$$

INVERSE PROBLEM: ALGORITHM

How to minimize

 $\alpha = \operatorname{argmin}_{-}$

- FISTA (Fast Iterative Shrinkage/Thresholding Algorithm)
 - Initialization: $\alpha^{(0)} \in \mathbb{R}^N$, $z^{(0)} \in \mathbb{R}^N$, $L \leq ||A\Phi||^2$, t = 0
 - Do until convergence :

•
$$\alpha^{(t+1)} = \mathcal{S}_{\lambda/L} \left(z^{(t)} + \frac{1}{L} \Phi^* A^* \left(y - A \Phi z^{(t)} \right) \right)$$

•
$$z^{(t+1)} = \alpha^{(t+1)} + \frac{t}{t+5} \left(\alpha^{(t+1)} - \alpha^{(t)} \right)$$

• Remark: we have $||A\Phi||^2 \le ||A||^2 ||\Phi||^2$, then if Φ is a Parseval frame, we simply have $L \le ||A||^2$.

$$\frac{1}{2} \|y - A\Phi\alpha\|_2^2 + \lambda \|\alpha\|_1$$

FISTA WITH WARM RESTART

- In practice, the algorithm must be run with various values of lambda.
- When $\lambda \to 0$ we have $||y A\Phi\alpha|| \to 0$.
- When $\lambda = \|\Phi^*A^*y\|_{\infty}$ the solution is $\alpha = 0$
- fixed number of λ , such as we have $\lambda_1 < \lambda_2 < \ldots < \lambda_I$
- The idea is to initialize the algorithm for λ_i with the results get from λ_{i-1}

• One can choose these values distributed on a log scale $\in [10^{-4} \| \Phi^* A^* y \|_{\infty}, \| \Phi^* A^* y \|_{\infty}]$, with a

FISTA WITH THRESHOLDING RULES

- The Soft-thresholding can be replaced by any thresholding rules
- Some examples:
 - Hard Thresholding: $\mathscr{H}_{\lambda}(\alpha) = \alpha \mathbf{1}_{|\alpha| < :\lambda}$

Empirical Wiener: $S_{\lambda}^{EW}(\alpha) = \alpha \left(1 - \frac{\lambda^2}{|\alpha|^2}\right)^+$

M2 AI — SIGNAL PROCESSING — INVERSE PROBLEMS

TO DO (1/2): INPAINTING (DEADLINE: 31/12)

- Data
 - Image or signal you want
- Todo
 - Simulate various inpainting problems as follows
 - Generate a random binary matrix A of the same size as the signal, with a parameter *p* controlling the Bernoulli law
 - Add some white Gaussian noise (at various levels)
 - Generate the direct problem y = Ax + b (where x is the original signal)
 - Estimate x using the sparse approach (reminder: an audio signal (resp. image) is sparse in the time-frequency (resp. Wavelet) domain)
 - Discuss the results obtained by changing:
 - the sparse representation (various wavelets, various STFT parameters...)
 - the thresholding rules (soft, hard, empirical Wiener)
 - the choice of the λ parameter
 - Discussion should be made concerning the value of p and the level of noise

TO DO (2/2): COMPRESS SENSING (DEADLINE: 31/12)

- Data
 - Image or signal you want of size N
- Todo
 - Simulate various compress sensing problems as follows

 - Add some white Gaussian noise (at various levels)
 - Generate the direct problem y = Ax + b (where x is the original signal)
 - Estimate x using the sparse approach (reminder: an audio signal (resp. image) is sparse in the time-frequency (resp. Wavelet) domain)
 - Discuss the results obtained by changing:
 - the sparse representation (various wavelets, various STFT parameters...)
 - the thresholding rules (soft, hard, empirical Wiener)
 - the choice of the λ parameter
 - Discussion should be made concerning the size of A, its mean and its covariance matrix, as well as the level of noise.

• Generate a random normal matrix A of size MxN, M < N, with a given mean and a given covariance matrix (start with a standard normal pdf)

