La photoémission résolue en angle

Carte de la structure électronique dans l'espace réciproque Très directe pour les matériaux 2D avec une bonne qualité de surface.

- \Rightarrow Dispersion des bandes, vitesse de Fermi, surface de Fermi
- \Rightarrow Etude des transitions (apparition de gaps par exemple)
- ⇒ Etude des interactions : déviations par rapport à un modèle de bande simple

L'effet photoélectrique : la découverte de Hertz

⇒ Propagation des ondes électromagnétiques (théories de Maxwell)

⇒Observe aussi que l'étincelle est plus intense si le récepteur voit l'étincelle de l'émetteur

 \Rightarrow effet photoélectrique !!

L'effet photoélectrique et la nature quantique de la lumière

Expérience ultérieures (notamment Von Lenard)

• L'énergie maximum des électrons émis est proportionnelle à la fréquence de la lumière, pas à son intensité.

• Il y a une énergie minimum à fournir (le travail de sortie, qq eV) pour arracher des électrons à un métal, elle est différente pour chaque matériau.

Expliqué par Einstein en 1905... \Rightarrow Il existe des photons d'énergie hv

L'effet photoélectrique

Expérience ultérieures (notamment Von Lenard)

• L'énergie maximum des électrons émis est proportionnelle à la fréquence de la lumière, pas à son intensité.

• Il y a une énergie minimum à fournir (le travail de sortie, qq eV) pour arracher des électrons à un métal, elle est différente pour chaque matériau.

Expliqué par Einstein en 1905... \Rightarrow Il existe des photons d'énergie hv

Description moderne

Niveaux d'énergie dans un solide

$$E_{kin} = h \, v - W - \left| E_B \right|$$

Que peut apporter la photoémission comme information ?

La photoémission résolue en angle : exemple

$$E_{kin} = h \, v - W - \left| E_B \right|$$

Hole pockets in Ba(Fe_{0.92}Co_{0.08})As₂

2- Conservation du moment parallèle à la surface : $\hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \sin \theta$

 \Rightarrow E_{kin} vs k_{//} : Structure de bandes

NB : l'information sur k $_{perp}$ est perdue

La photoémission résolue en angle, un siècle plus tard

Electron analyser 7 hv **e**⁻ **Crystal** Une technique de surface !! => environnement ultra-vide Libre parcours moyen (AA) $\mathsf{E}_{kin} \sim h\nu$ -----"universal" curve 500 1000 5 50 100 5000 10 Energie cinétique des électrons (eV)

Photons from : Synchrotrons : 10-100eV He lamp : 21 eV Laser : 6-7eV

La photoémission résolue en angle : exemple

$$E_{kin} = h v - W - |E_B|$$

$$\hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \sin \theta$$

Carte de la structure électronique Très directe pour les matériaux 2D avec une bonne qualité de surface.

⇒ Etude des transitions (existence de gaps par exemple)

Hole pockets in Ba(Fe_{0.92}Co_{0.08})As₂

Exemple : Gap supraconducteur mesuré par photoémission dans les cuprates

Early determination (Bi2212, Tc=87K)

М

Energy

=> Le gap est anisotrope (« d-wave »), c'est une caractéristique inhabituelle et importante de la supraconductivité dans ces matériaux.

Exemple d'information sur les interactions du système de N électrons

La probabilité d'arracher un électron dépend de la manière dont il est lié aux autres électrons.

Le système des N-1 électron réagit au trou laissé par le photoélectron. Ceci peut conduire des états excités.

Exemple d'information sur les interactions du système de N électrons

=> La position et l'intensité du satellite renseignent sur le couplage entre les bandes d et s et la force des corrélations dans la bande d.

Interactions électron-phonon

L'état d'équilibre du système à N ou N-1 électrons peut être différent.

Spectre de photoémission pour une molécule H₂

Dans un solide => élargissement. La forme du spectre renseigne sur l'intensité du couplage électron-phonon.

La règle d'or de Fermi

On calcule la probabilité d'arracher un électron d'énergie cinétique ω et de vecteur d'onde k au système de N électrons.

$$I(k, \omega) = \sum_{i, f} \frac{2\pi}{\hbar} \left| \left\langle \psi_{f}^{N} \middle| \mathcal{H}_{int} \middle| \psi_{i}^{N} \right\rangle \right|^{2} \delta(E_{f}^{N} - E_{i}^{N} - h\nu)$$

N-1 électrons
en interaction N électrons

+ électron libre ($\hbar\omega$, k)

en interaction

La règle d'or de Fermi

Le processus de photoémission

$$\boldsymbol{M}_{i,f} = \left| \left\langle \boldsymbol{\varphi}_{f}^{k} \middle| \boldsymbol{H}_{\text{int}} \middle| \boldsymbol{\varphi}_{i}^{k} \right\rangle \right|^{2} \qquad \boldsymbol{H}_{\text{int}} = \frac{e}{mc} \overrightarrow{\boldsymbol{A}} \overrightarrow{\boldsymbol{P}}$$

Pour avoir $M \neq 0$

- $\Rightarrow \Psi_{\rm f}$ pair / plan de symétrie
 - Soit : Ψ_i pair et A pair
 - Soit : Ψ_i impair et A impair

 \Rightarrow Choix de la symétrie des orbitales

Le processus de photoémission

$$\boldsymbol{M}_{i,f} = \left| \left\langle \boldsymbol{\varphi}_{f}^{k} \middle| \boldsymbol{H}_{\text{int}} \middle| \boldsymbol{\varphi}_{i}^{k} \right\rangle \right|^{2} \qquad \boldsymbol{H}_{\text{int}} = \frac{e}{mc} \vec{A}.\vec{p}$$

- Excitation vers un état de haute énergie (en général mal connu)
- Trajet jusqu'à la surface
- Passage de la surface

Problèmes liés à k_{perp}

k_{perp} n'est pas conservé lors du passage de la surface

=> La photoémission est plus compliquée dans les matériaux 3D, en particulier pour interpréter les largeurs de raie

Le terme d'interaction

Fonction spectrale A(k,ω)

$$A(k,\omega) = \sum_{f} |\langle \psi_f^{N-1} | c_k | \psi_i^N \rangle|^2 \ \delta(E_f^{N-1} - E_i^N - \omega)$$

 $A(k,\omega)$ décrit la probabilité de trouver un électron en k et ω

A partir de la fonction de Green :

Expérience de pensée

$$G(r1, r2, t1, t2) = -i\langle \psi_N | T[c_{r1t1}c^+_{r2t2}] | \psi_N \rangle$$

$$A(k,\omega) = -\frac{1}{\pi}G''^{ret}(k,\omega)$$

Fonction spectrale A(k,ω)

$$A(k,\omega) = \sum_{f} |\langle \psi_f^{N-1} | c_k | \psi_i^N \rangle|^2 \ \delta(E_f^{N-1} - E_i^N - \omega)$$

 $A(k,\omega)$ décrit la probabilité de trouver un électron en k et ω

Exprimer A(k,ω) à l'aide de la self-énergie électronique

$$G(k,\omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k,\omega)} \qquad \qquad \Sigma(k,\omega) = \text{self énergie électronique}$$

$$A(k,\omega) = -\frac{1}{\pi}G''^{ret}(k,\omega)$$

$$A(k,\omega) = \frac{1}{\pi} \frac{\Sigma''(\mathsf{k},\omega)}{(\omega - \varepsilon_k - \Sigma'(\mathsf{k},\omega))^2 + \Sigma''(\mathsf{k},\omega)^2}$$

« Ressemble » à une lorentzienne centrée à $\varepsilon_k + \Sigma'(\mathbf{k}, \omega)$ et de largeur $\Sigma''(\mathbf{k}, \omega)$

=> Développement limité autour du pôle $\omega_p = \varepsilon_k + \Sigma'(\mathbf{k}, \omega)$

Exprimer A(k,ω) à l'aide de la selfénergie électronique

 $A(k,\omega) = Z_k \frac{Z_k \Sigma''(\mathsf{k},\omega_{\mathsf{p}})/\pi}{(\omega - \varepsilon_k - \Sigma'(\mathsf{k},\omega_{\mathsf{p}}))^2 + (Z_k \Sigma''(\mathsf{k},\omega_{\mathsf{p}}))^2} + (1 - Z_k) A_{inc}(k,\omega)$ avec $Z_k = 1/\left|1 - \frac{\partial \Sigma'}{\partial \omega}(k, \omega_p)\right|$ Pic de quasiparticule sans interaction $\delta(\omega - \varepsilon_k)$ renormalisation Transfert de poids spectral Temps de vie pour un composé 2D Binding Energy (eV)

Dans les cuprates...

Les spectres ARPES sont très différents dans les régions nodales et antinodales

Exprimer A(k,ω) à l'aide de la selfénergie électronique

 $A(k,\omega) = Z_k \frac{Z_k \Sigma''(\mathsf{k},\omega_{\mathsf{p}})/\pi}{(\omega - \varepsilon_k - \Sigma'(\mathsf{k},\omega_{\mathsf{p}}))^2 + (Z_k \Sigma''(\mathsf{k},\omega_{\mathsf{p}}))^2} + (1 - Z_k) A_{inc}(k,\omega)$ avec $Z_k = 1/\left|1 - \frac{\partial \Sigma'}{\partial \omega}(k, \omega_p)\right|$ Pic de quasiparticule sans interaction $\delta(\omega - \varepsilon_k)$ renormalisation Transfert de poids spectral Temps de vie pour un composé 2D Binding Energy (eV)

Self-énergie due au couplage électron-phonon

$$\Sigma''(\omega) \propto \int_0^\omega \alpha^2 F(\Omega) d\Omega$$

 $\Sigma'(\omega)$ by Kramers Kronig λ = couplage électron-phonon

 $\omega < \omega_D$: Renormalisation de la dispersion, les électrons apparaissent « plus lourds » : m*= m / (1+ λ)

 $\omega > \omega_D$: Excitation possible de phonons => élargissement des spectres de l'ordre de $\lambda \omega_D$.

Etat de surface de Mo(110) (T. Valla et al., PRL 1999)

Test de comportements liquide de Fermi

Dans un liquide de Fermi, on s'attend à : $\frac{1}{\tau} \propto A(\omega^2 + T^2)$

Mo(110) surface state (T. Valla et al., PRL 1999)

Variation en ω^2

NB : on ne peut pas faire ce genre d'études dans les liquides de Fermi les plus standards, qui sont tridimensionnels.

Finalement

Avantages :

- Résolution dans l'espace réciproque
- Sensibilité aux interactions

Inconvénients :

- Sensibilité à la surface
- Plutôt pour des matériaux 2D et métalliques
- Impossible en présence de champ magnétique ou sous pression
- Difficile d'atteindre les très basses températures (T < 5K)