ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

Véronique Brouet, Alessandro Nicolaou

Laboratoire de Physique des Solides d'Orsay

M. Zacchigna (Elettra), A. Tejeda (Nancy) A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran (SOLEIL)

Samples : S. Hébert, W. Kobayashi, H. Muguerra, D. Grebille (CRISMAT Caen, France)

Experiments carried out at :

Swiss Light Source

Elettra

SOLEIL

SIS : L. Patthey M. Shi

APE : I. Vobornik BACH : M. Zacchigna CASSIOPEE : A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran

Outline

Na_xCoO₂ and misfit cobaltates

Counter-intutive evolution of the correlation strength with doping

Nature of low energy excitations in cobaltates ?

Study of ARPES lineshapes

=> Consistent with strong correlations (Z = 0.15 at x=0.7).

=> Increasing correlations near x=1, towards the band insulator.

Influence of the 3D environment on electronic orderings in CoO₂ planes ?
=> Deviation from the rigid band filling picture at high x
=> Consistent with partial electronic localization induced by the Na or misfit potentials

Cobaltates : triangular planes of Co filled by a variable number of electrons

Metallic phases with charge, spin, orbital degrees of freedom... How do they interact ? Does Na plays a role ?

From Mott insulator to band insulator...

Na_xCoO₂

Magnetic correlations seem to appear near the band insulator !

Competing degrees of freedom

Triply degenerate band, hybridization with oxygen, triangular geometry may frustrate AF correlations...

Possibility of coupled spin-orbital-lattice excitations => spin-orbital-polarons ?

« The low-lying magnetic states of Co^{3+} , accessible for electrons via the intersite hopping, provide an extra dimension in physics of Na_xCoO₂. »

Khaliullin and Chaloupka PRB 77, 104532 (2008)

An additional degree of freedom : role of Na ?

Na induced correlations ?

Marianetti and Kotliar PRL **98**, 176405 (2007)

NMR detects inequivalent Co sites at high x

I.R. Mukhamedshin et al., PRL 2005

The charge order is induced by Na order

H. Alloul et al., EPL 2009

Two families of cobaltates : Na and misfits

 $[Bi_2A_2O_4] [CoO_2]_{b1/b2}$

- Charge transfer from Rock-Salt planes to CoO₂ planes
- Doping equivalent to x=0.7-0.9
- Different 3D environment (better surface quality for ARPES)

Electronic properties of misfit cobaltates

& different charge order / disorder ?

Electronic structure as seen from ARPES

Band structure of a CoO₂ plane (from LDA)

Surface de Fermi

Singh et al., PRB 2000; Lee et al., PRB 2004

Same low energy electronic structure in Na and misfit cobaltates (BiBaCo)

ARPES in Na_xCoO₂ : M.Z. Hasan *et al.*, PRL2004, D. Qian *et al.*, PRL2006 H.B. Yang *et al.*, PRL 2004, 2005

How to interpret the lineshape in BiBaCo?

- Strongly renormalized a_{1g} band

How to interpret the lineshape in BiBaCo?

- Strongly renormalized a_{1g} band
- Or kink ? (of what origin ?)
- Or interactions between a_{1g} and e'_{g} bands ? (hybridization gap) => Depending on the interpretation : $1.5 < m^*/m < 6$

Using light polarization to observe different orbitals

ARPES intensity proportional to :

$$\langle \phi_f^{\mathbf{k}} | \mathbf{A} \cdot \mathbf{p} | \phi_i^{\mathbf{k}} \rangle \begin{cases} \phi_i^{\mathbf{k}} \text{ even } \langle + | + | + \rangle \Rightarrow \mathbf{A} \text{ even} \\ \phi_i^{\mathbf{k}} \text{ odd } \langle + | - | - \rangle \Rightarrow \mathbf{A} \text{ odd.} \end{cases}$$

The structure of a_{1g} is not due to interaction with e'_{g}

LDA bands

Horizontal

 $a_{1g} + e'_{g2}$

Experimental dispersion

Intrinsic peak-dip-hump structure of a_{1g}

BiBaCo

Manganites La_{1.2}Sr_{1.8}Mn₂O₇

N. Mannella *et al.*, Nature **438**, 474 (2005) « Waterfall » in cuprates

 $Ca_2CuO_2Cl_2$

F. Ronning et al. PRB 2005

The distribution of spectral weight imply strong many-body effects

A. Nicolaou et al., PRL 2010

In this case, spectral weight information is more direct than self-energy fits

Dispersion - $\Sigma'(\omega)$

Width - Σ ''(ω)

Typical fits of width increase and dispersion renormalization fail toreproduce the HP weight at E_F A. Nicolaou *et al.*, PRL 2010

The QP « disappears » at high temperature

Typical behavior of a strongly correlated system

The QP « disappears » when doping increases

• The correlations seem to increase near the band insulator.

• Why are there strong correlations in this limit ? => Polaronic lineshape ? => Electronic orderings ?

x increases towards band insulator

Electronic orderings at high dopings ?

H. Alloul et al., EPL 2009

Misfit cobaltates : Evidence for coupling between Rock-Salt and CoO₂ planes

[Bi₂Ba₂O₄]₂CoO

Rock-Salt structure

Inequivalent Co sites with respect to Ba²⁺ positions. => Situation may be analogous to Na_xCoO₂ => Co³⁺ may form directly below a Ba²⁺

The number of metallic holes in the band can be deduced from the FS area

The number of metallic holes in the band can be deduced from the FS area

Deviation from Luttinger theorem in cobaltates

- Deviation from the rigid band filling at high *x*.

- More holes than expected = consistent with presence of Co^{3+} .

Localization with structure depending on the potential inprinted by neighboring planes

Different metallic structure may explain different evolution of metallicity A. Nicolaou et al., EPL 2010

New electronic orderings ?

Conclusions

- Misfit cobaltates offer an alternative opportunity to study CoO_2 slabs. $Na_{0.7}CoO_2$ and BiBaCo show a very similar electronic structure.

- Excitations have a strong many-body character (« peak-diphump » structure).

=> The QP energy scale is 0.2eV.

- There is a systematic deviation from Luttinger theorem, suggesting inhomogeneous charge order in CoO_2 plane. Its periodicity might depend on the intercalated structure.

=> Role on CW susceptibilities and high TEP ?