Comment on "Using Ni Substitution and ¹⁷O NMR to Probe the Susceptibility $\chi'(q)$ in Cuprates"

In a recent letter, Bobroff *et al.* [1] presented novel ¹⁷O NMR measurements for YBa₂(Cu_{1-x}Ni_x)₃O_{6+y}. They observed a strong T-dependent broadening of the ¹⁷O NMR lines which they attributed to the oscillatory electron spin polarization induced by Ni impurities. Their experiment offers a new probe of the momentum dependence of the static spin susceptibility $\chi'(\mathbf{q})$, complementary to the NMR observation of the Gaussian component of the transverse relaxation time, T_{2G} , of planar Cu [2].

To understand the strong T dependence of the NMR linewidth $\Delta \nu(T)$, Bobroff et al. performed calculations to simulate the NMR line shape by assuming a Gaussian form for the electron spin susceptibility $\chi'_G(\mathbf{q}) = 4\pi \chi^* \xi^2 \exp[-(\mathbf{q} - \mathbf{Q})^2 \xi^2]$ with $\mathbf{Q} = (\pi, \pi)$. They found that the $^{17}\mathrm{O}$ linewidth $\Delta \nu$ is independent of the antiferromagnetic correlation length ξ . For the overdoped sample (y = 1), where $\Delta \nu = \chi^* f(\xi)$ is only very weakly T dependent, they conclude that χ^* is basically T independent. However, for the underdoped samples (y = 0.6) they find that the strong T-dependence of $\Delta \nu$ can be explained *only* with a T-dependent χ^* . Combining these results with the T-dependence of $T_{2G}^{-1} \sim \chi^* \xi$, they pointed out that this implies a T-independent ξ for the underdoped samples. They also remark that a Lorentzian model $\chi'_{L}(\mathbf{q}) = 4\pi \chi^* \xi^2 / [1 + (\mathbf{q} - \mathbf{Q})^2 \xi^2]$ gives similar results. This is in contradiction to the spin fluctuation scenario of cuprate superconductors [3], which is based on the Lorentzian form $\chi'_{\rm L}(\mathbf{q})$.

Stimulated by their experiment we also performed calculations to simulate the ¹⁷O NMR line shape. For the Gaussian susceptibility $\chi'_{G}(\mathbf{q})$, we obtain the same results as Bobroff et al. However, we obtain a strong ξ dependence of the ¹⁷O linewidth with the Lorentzian form of $\chi'_{\rm L}(\mathbf{q})$. Our results using $\chi'_{\rm L}(\mathbf{q})$ are shown in Fig. 1, where we plot the ξ dependence of $\Delta \nu$. Because of the 1/Tdependence of the Ni magnetic moment, $(\Delta \nu - 1)$ corresponds to $T\Delta\nu_{\rm imp}$ in Ref. [1]. The inset shows our results for $\chi'_{G}(\mathbf{q})$. Our results obtained with $\chi'_{L}(\mathbf{q})$ [curve (a)] demonstrate that the experimental results of Bobroff et al. are clearly compatible with a T-dependent ξ [3]. Furthermore, including in addition to the nearest-neighbor Cu-O hyperfine coupling C a next-nearest-neighbor coupling C'[4] [curves (b), (c), and (d)] we obtain a flattening of $\Delta \nu(\xi)$ for $\xi = 1-2$. This provides a possible explanation for the different behavior of overdoped ($\xi = 1-2$) and underdoped ($\xi = 2-4$) systems.

Because of the location of the $^{17}{\rm O}$ between two $^{63}{\rm Cu}$ sites, the local field at the $^{17}{\rm O}$ site behaves as $\sim \partial \tilde{\chi}(r)/\partial r$, where $\hat{\chi}(r)$ is the envelope of the real space susceptibility (see Fig. 4 in Ref. [1]). Our analytical computations show that for the Gaussian form $\chi'_{\rm G}({\bf q}), \, \Delta \nu(\xi)$ is approximately constant for a realistic range of ξ . For the

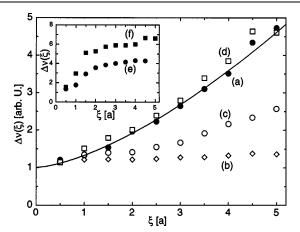


FIG. 1. The ¹⁷O linewidth $\Delta \nu$ as a function of ξ . Curve (a) shows the result for x=2% Ni doping and C'=0. The solid line is fit with $\Delta \nu=1.0+0.32\xi^{3/2}$. Curves (b), (c), and (d) correspond to x=0.5, 2, and 4% Ni doping, respectively, and C'/C=0.25. The inset represents the results for $\chi'_{\rm G}({\bf q})$ with curves (e) x=2% and (f) x=4% Ni doping.

Lorentzian form $\chi'_{\rm L}(\mathbf{q}), \Delta\nu(\xi) \sim \xi^{3/2}$, in agreement with our numerical results (see solid line in Fig. 1).

Taking the T_{2G} data from [5] (corrected for T_1 contributions [6]) and $T\Delta\nu$ for the underdoped sample from [1], we computed the product $T_{2G}T\Delta\nu$, which is independent of χ^* , and which for any form of $\chi'(q)$ depends solely on ξ . In contrast to [1] we find that this product is strongly T dependent, dropping by more than a factor of 2 between 100 and 200 K. For a Gaussian this implies that ξ increases as T increases, an unreasonable result. For a Lorentzian, ξ increases with increasing T. We, therefore, believe that a Gaussian form of $\chi'(q)$ is unlikely.

This work has been supported by STCS under NSF Grant No. DMR91-20000, the U.S. DOE Division of Materials Research under Grant No. DEFG02-91ER45439 (C. P. S. and R. S.), and the Deutsche Forschungsgemeinschaft (J. S.).

 D. K. Morr, J. Schmalian, R. Stern, and C.P. Slichter University of Illinois at Urbana-Champaign Loomis Laboratory of Physics 1110 West Green Urbana, Illinois 61801

Received 23 October 1997 [S0031-9007(98)05826-8] PACS numbers: 74.25.Nf, 74.62.Dh

- [1] J. Bobroff et al., Phys. Rev. Lett. 79, 2117 (1997).
- [2] C. H. Pennington and C. P. Slichter, Phys. Rev. Lett. 66, 381 (1991).
- [3] D. Pines, Z. Phys. B **103**, 129 (1997), and references therein.
- [4] Y. Zha, V. Barzykin, and D. Pines, Phys. Rev. B 54, 7561 (1996).
- [5] M. Takigawa, Phys. Rev. B 49, 4158 (1994).
- [6] N. Curro et al., Phys. Rev. B 56, 877 (1997).