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ABSTRACT

A simple physical explanation is given for the formation of Cooper pairs in
a superconducting metal, for the origin of the attractive force causing the
binding of the pairs, for the forming of a degenerate Bose gas by the Cooper
pairs, for the finite energy gap that prevents the ensemble of electrons to
change its quantum state at low temperatures, and for the existence of
permanent currents in a superconducting wire.
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I. INTRODUCTION

<

The basic phenomenon of superconductivity in metals is the formation of
weakly bound states between pairs of electrons. These states are often con-
sidered as a surprising phenomenon in view of the fact that two particles of
equal charge should repel each other. Where does the attraction between
electrons come from? This attraction has long since been explained by.
Bardeem, Cooper and Schrieffer as an effect of the interaction between the
electrons and the lattice. However, these calculations do not appeal to
direct physical intuition. In this essay we propose a simple physical picture
of the effects that bring about that attraction which is easily visualized.:
Our description is fundamentally identical with the BCS theory; it is formu-
lated in a way which may make it easier to see how an attraction between oppo-
sitely moving electrons comes about. It is shown that our formulation leads
to the same expression of the binding energy of Cooper pairs as the usual
calculations.

We also discuss in simple terms how the ensemble of Cooper pairs forms
a Bose gas, whose lowest quantum state is stable as long as the energy trans-
fer per electron pair is smaller than the binding energy A of the Cooper
pair. This state, therefore, will be dominant as long as kT<A. Furthermore,
it will be shown why this state leads to permanent currents in the presence
of magnetic fields. Indeed, the magnetic field produced by the current in a
superconducting wire is just sufficient to maintain the current that produced
it,

The presentation does not contain any new ideas as to the theory of
superconductivity. It attempts to formulate the theory in such a way that
the physical effects become more apparent. Only Chapters III to VI contain
new pedagogical ways of presenting the situation. Chapter VII, regarding
the properties of a current in a superconducting wire, does not make use of
any unconventional formulations.



IT. SEMIQUANTITATIVE RELATIONS

We consider a metal as a cubic lattice of positive ions (charge +1)
filled with a degenerate gas of free electrons at zero temperature. The
lattice distance d is of the order of a few Bohr radii. Therefore we observe
the approximate identity*):

e?2 h? e? _ . h?
T Tt f peral f>1 (1)

€A

£ = . (1a)
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Here m is the mass of the electron, and ap is the Bohr radius**z The constant
f is somewhat larger than unity. €p is an atomic energy of the order of a
few electron volts. The momentum of the fastest electrons on top of the

Fermi distribution is

Pp ~ % [pF - a.g , a = 3.1] (2)

and therefore their velocity is

“h - ..h
Ve ~ md [Ve = a ﬁaj . (2a)
This velocity is of the order of the speed of electrons in atoms.

We are going to describe the mechanics of the lattice in the simplest
possible terms: every ion is an independent oscillator with mass M and fre-
quency wy (the Debye frequency). Let us determine this frequency. We expect

2,2

the potential energy %Mwa of a displacement x to be ~€p if x~d. Hence we

get from (1):

*) Here and in the following we deal with approximate equalities. In order
to follow up the accumulation of approximate relations, we introduce
numerical constants of the order unity such as f. At the end we will be
able to estimate the combinations of such quantities as they appear in
the final results. The "exact" expressions containing these constants
are put in square brackets.

*%) Throughout this paper the letter h stands for #, that is Planck's
constant divided by 2m.



[wD = p 2 ] (3a)

%
where b is a number somewhat larger than unity ). The square root of the

mass ratio will play an important role; we call it

s= /3. 3500 . (3b)

By the way, B is the "Mach number" of the electron motion, since the sound
velocity obviously is Ve o~ d-wD.

%) In deriving the magnitude of Wy Eq. (3) really should read %Mw;(d/2)2~e

since a displacement by d/2 should already give rise to energy charges
of the order €yt This would make b ~ 8., 1Indeed b lies between 5 and 10

in most metals.

A’



I1I. THE POTENTIAL TUBE BEHIND THE ELECTROM

We now study the effect of the electron motion on the lattice. Consider
an electron on top of the Fermi distribution. It spends the time
T = %— within a distance ~d from a given ion. During this time it transfers
e
a momentum

p ~ te?/d? (4)
[p = cere?/d?)

to a neighboring ion, in the direction towards the electron (c is a constant
near unity). Thus, the ion moves towards the electron path by a distance

. *
§, calculable from the dynamics of an oscillator ): § = p/(MwD). We

therefore get from Eqs. (2), (3) and (4)

d e? 1 1 e? h m d
st e fRe-§ (5)
e d D e /mM e

A

54
~—5EB .

Thus the ions close to the electron path are displaced by § toward the path.
They will not stay forever in this displaced position; they will again return
to their position after a time of the order wﬁ’, say s-wﬁl. Again s is a

numerical constant of order unity. Therefore the displacements of the ions

%) This calculation is valid only for a classical oscillator. Such a
classical calculation may be questionable, since the amplitude of the
zero-point oscillation GO~B‘ d is larger than the displacement §.

However, as frequently happens with oscillators, a quantum mechanical
calculation of the effect of a momentum transfer p to an oscillator in
its ground state, gives the same displacement § as the classical one.
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towards the path extend over a distance 2 behind the electron*) which is
given by (see (2) and (3))

g~ -2 . pd (6)

The displacements of the positive ions towards the path of the electron
create a negative (attractive) potential U for any other electron. This
potential is contained within a thin tube of length % and of diameter .d,
and follows the electron when moving through the lattice (see Fig., 1).

Let us now determine the potential U in that tube relative to the
average potential within the crystal. A displacement § changes the ordinary

potential -~ -e2?/d of an ion at a distance ~d by

U.-S6-%3 (7

This follows from (5); g is a new numerical constant larger than unity since
the average distances from the ions are less than d, and there is more than
one ion near a given point in the tube. f, b and a are also larger than
unity, so that we expect k~1. Thus the electron produces behind itself a
potential tube of length & and diameter d with a small negative potential
(7). Note that, according to (7), (3b), (3) and (1): -U~th.

- d >
€

4} Q e

Fig. 1 There will be a negative potential behind the electron e
moving towards the right, within a cylinder of length £ and dia-
meter ~d.

*) In order to understand the argument we must be aware that T=0 and, there-
fore, the electrons cannot transfer energy to the ion vibrations. The

ions return to their original state after a time of the order wB from

the encounter with the electron. The displacements § do not spread over
the lattice as sound waves. They are part of the quantum state of the
electron in a lattice which is different from that of a free electron.
The electron is accompanied by a "tail" of ions displaced towards its
path. This is a property of the "quasi-particle'" which the electron re-
presents when it moves in a lattice.

This tail contributes to the effective mass of the electron. A simple
estimate of the energy contained in the tail of displaced ions shows that

it is of the order of B~le
mass.

A; that is negligible compared to the electron



IV, THE COOPER PAIRS

How does this potential tube contribute to the interaction of two elec-
trons? Only the electrons near the Fermi surface can make use of such weak
interactions since the ones below are '"frozen'"; they cannot change their quan-
tum state. In order to feel the full extent of the potential, they must move
head-on coming from opposite directions. By "head-on'" we understand a motion
in which the closest distance of approach is equal to or less than d. But d is
of the order of the wavelength X of the electrons on the Fermi surface. Thus
the two electrons must be in a relative S-state (L=0, where L is the quantum
number of their relative orbital angular momentum.) If they had a relative
L#0, their closest distance of approach would be ~LX. Since X~d they would
miss their mutual pbtential tubes if L#0. Thus only elgctron pairs in S-
states are subject to this potential to its full extent ).

We therefore express the mutual potential in the form (see Fig. 2)

_ 1 e? '
=-3 K =T 6L0 for r<®

v(r) ~ ~ 0 for r>2 (8)

where the delta-function indicates that the potential acts only in S-states**).
We now understand the physical reason why the potential of the lattice defor-
mation binds electron pairs and why it does so only in relative S-states. A
further consequence is the fact that the two electrons must have opposite
spin, in order to fulfil the Pauli principle, since the S-state is symmetric.

4

'~ /’
U{ S _

~ P
-~ -
—_—— - ——

Fig. 2 The potential within the tube of Fig. 1, as function of the
distance r behind the moving electron. This is the potential felt
by another electron. The solid line is our approximation; actu-
ally it will have a form similar to the broken line, since the ions
take some time after the passing of the electron before they move
the full distance §.

*) It may seem that two electrons moving in almost the same direction
should also be subject to this potential. Appendix I shows why this is
not so.

**) Here we face a peculiar situation: The potential acts only when the
electrons leave each other (that is, when £>0) and not when they
approach., This 1is because the "tails" trail the electrons. Hence we
do not use a factor 2 -in (8) coming from the effects of both electrons.
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Fig. 3a Shows the function ry of two non-interacting electrons near the Fermi surface
in a relative S-state as function of their distance r without any interaction.

™ -~
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Fig. 3b Shows the wave function r¥ of two electrons with interaction. This is the
wave function of a Cooper pair. Ay is about twice the lattice distance, p is the co-
herence length. Note that, actually, p is about 10* lattice distances.

We now show that this attraction indeed gives rise to bound pairs. The
motion of a bound pair in an S-state can be visualized as a head-on back and
forth movement; the direction of this movement is distributed uniformly with
equal probability over all possible directions. Positronium in its ground-
state and the deuteron are examples (see Fig. 3). The hydrogen atom in S-
states is also an example; in that case it is the electron that does most of
the back and forth moving, whereas the proton only recoils slightly. In
order to determine the bound state of the Cooper pair, we must solve the
Schrédinger equation for the potential (8). We know that the solu-
tion Y(r) must be an S-state (r is the relative distance of the two electrons);
therefore we expand ¢ in terms of S-states Y(p) of a pair of free electrons
with a relative momentum p and a total momentum P=0, since they move against
each other. (Our wave functions are r times the three-dimensional ones.
This reduces the solution to a one-dimensional problem with the boundary
condition Y (0) = 0):

¥p) = /% sin PE . (9
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These functions are normalized and orthogonal in a large sphere of radius R.
We then write for the wave function ¥(r) of the Cooper pair:

¥(r) = [ a(p") /[ sin Eﬁl , (10)
pl
where the sum extends over all possible values p' of p in the sphere R.
The Schrdodinger equation for V¥ is

1
[Eﬁpz + V)w = EY, (1

where p=m/2 is the reduced mass.

We are interested in the binding effect of the potential (8) upon a pair
on or very near to the Fermi surface. The binding will reduce their energy
ZeF to E = ZeF - A, where €g is the Fermi energy. Thus, A is the binding

energy of the Cooper pair. It turns out, as it will be shown below, that A
is given by

€
A ~ hwy exp [-g2m F . 10-0 €p >
, e%/d

where £ is a numerical constant. This, indeed, is the expression which is
usually obtained by a more complicated calculation of emissions and absorp-
tions of sound waves. In solving the Schrédinger equation, care must be
taken that the sum in Eq. (10) does not contain any momenta P<Pg> since they

are occupied by other electrons. The calculation will show that the interval
Ap over which the coefficients o(p) are decisively different from zero, is
rather small:

Ap ~ 2 p.
P o

We now proceed to the actual derivation of the expression for the
binding energy from the Schrédinger equation (11). Those who are not inter-
ested in this calculation can skip it until after Eq. (23). We insert Eq.
(10) into Eq. (11), multiply with y(p), and integrate; the result is

2
«e) (B - B) = - T e wlvien, (12)
p'
where (p|V]|p') is the matrix element of the potential V:
R
@Ivip) = [ arvevEue, (13)
0

with V(r) given by Eq. (8), and E is the eigenvalue of the energy in the b
bound state V.
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Let us now introduce an energy variable e instead of p:
e = 4o - 03 - (14)
The zero-point of this energy scale is the Fermi energy ZeF of the pair
(eF = p%/Zm); that is the energy the pair would have without the interaction
V(r). In this energy scale the eigenvalue E will be the negative of the
binding energy A of the pair,
E= -A. (15)
Then we get from Eq. (12) and Eq. (15)
a(e)(e+r) = § a(e")(e|V]e") . (16)
et

Let us now calculate the matrix element Eq. (13). Since V(r) = 0 for
r>%, and a constant for r<%, the integral reduces to an integration from 0
to & of the product

¥(p)¥(p') = %|cos(p+p')r/h - cos(p-p')r/h| .
The values of p are always close to P’ hence the integration of the periodic
functions over a length 25>%— will vanish except when p-p' is of the order
F

(h/%) or smaller. We then simplify the result to

% = - % for p—p'<%
[ v@rvemnar : (17
0 = 0 for p—p'>%

What interval Ae of ¢ corresponds to p-p' = h/% near p = p%? We see from

2pp(p-p") o
Eq. (14) that e-e' = ———— » SO we get for the critical energy difference
Ae,
- h 1 h 1 2h
Ae -—-In—- T~ -B- i a ~ —B— ~ hl.l)D (18)

Since n seems to be very close to unity, we will omit it in what follows.

We determine the matrix element from Eqs. (6), (8), (17) and (18):

2 2

1 e & ‘e
= = ~ for e-e'<Ae ~ w
elvien. | P& KRR D (19)
0 for e-s'>mD
2
(e|v]e") =x %3 %— for e-e'<wD].

It is interesting that the factor B disappears from the matrix element.
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Now we come to an important point. The Schrddinger equation (16) would
be correct if the two electrons were isolated. But they sit on the top of a
Fermi sea. Therefore no states with an energy below the Fermi surface are

available for the formation of the Cooper pair. Hence the sum over e' is

restricted to values £'>0! Let us transform the sum Ze, into an integral.
. . . mR

The number of S-states in an energy interval de near eg is 7?5;5 de and

*
therefore the restricted Schrddinger equation (16) becomes ) (we have put

n =1 in Eq. (16))

th
a(e)(e+A) = - B I a(e')de! (20)
0
2 4\
. e?m_ _ e’mpg ) l—.ez/e
ZﬂpFH Zﬂpéh Zr d '°F

[ - (21)

2ﬂpFH T T2b Zm deg

[B -k e’m _ ska®1l e? ]
),
In the determination of B the relations €g = p%/(Zm) and Pp = a(h/d) were

used. We have retained the numerical factor 27 in the approximative expression
of B, since it will appear in an exponent at the end. The right-hand side of
Eq. (20) is independent of €; therefore we set

a(e) = (e+p)”? (22)
and get
hw
D de? .nth+A
1='BIE1-:K=‘B10g———T—.

It will turn out that A<<hmD so that we get

. ZweF
A = huj exp|- & (23)
e?/d
g o 2 _ 2
ska? safcg °

*) The upper limit of the integral should have been ~(th+€) since the
matrix elements are different from zero for s-e'~th. It will turn out,

however, that a(e') 1is significantly different from zero only for
e<<th, so that we may forget the dependence on € of the upper limit.
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The factor £ is of the order unity; b? cancels the effects of f and g.

A is the binding energy of the Cooper‘pair. Let us call

v €
Y = exp | -&2w E .
e?/d (24)

It is of the order of 10-% to 103 since eF/(ezld) ~ 1. We then can express

the ratio of A to atomic energies as follows (see Eq. (3)):

A= BYSA . (25)

This is about 10™* to 10-° smaller than atomic energies. Thus we arrive at
roughly a few 10~* eV, which corresponds to kT of a few degrees.

It is interesting to observe that two isolated electrons with energies
corresponding to the top of the Fermi distribution would never be bound by
the potential well Eq. (8). It is easily seen that for a pair of isolated
electrons, this potential gives rise to a lowest bound state with a binding
energy A~|V(0)|. The kinetic energy in this state would be small (factor
B~1! compared to the potential energy V(0)), because of the fact that £ is so

large. However V(0) ~ % €g» SO that, at Fermi energies there would be no

bound states; it would be high in the continuum, It is the restriction to
states with an energy E larger than the Fermi energy that leads to binding.

There is another interesting fact that helps to understand the parti-
cular form Eq. (23) of the binding energy. It is well known that a potential
well in three dimensions (depth U, radius %) does not give rise to binding
until U is larger than

Hh2
U>t-h—— ’
mg2
where t is some numerical constant. A one-dimensional well, however, binds
for any value of U. The binding energy of the lowest state is

- 2-

A=t —

h?/(m2?)

with t' another numerical constant, A well in two dimensions also gives rise
to a bound state at any value of U:

‘2 2 -2
A=t" h® exp [-E E-Z%FQLJJ s
2
mL
where t'' and £ are numerical constants. Here the binding goes to zero expo-
nentially with U+0. This form of A reminds us of the expression Eq. (23) for
the Cooper pair. Indeed, the two cases are not dissimilar since the case of
the Cooper pair is a problem restricted to two dimensions (the Fermi surface)
in the momentum space.
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V. THE WAVE FUNCTION OF A COOPER PAIR

Since the wave function of a Cooper pair represents a bound S-state, the
motion it describes is a periodic back and forth movement of the two electrons
in directions which are uniformly distributed, covering a relative distance
p between them as sketched in Fig. 3. It is analogous to the motion of the
two nucleons in a deuteron or of the two electrons in the ground state of
positronium. The wave function is finite; it goes to zero much faster than

-1

T at distances r>p.

Let us now determine p from the momentum spread in the wave function.
According to Eq. (9a) and Eq. (22) the wave function of the Cooper pair con-
sists of waves of the type (9) (see Fig. 4) within a very narrow interval of
p close to Pg- Quite generally, the average spread of momentum Ap of a
bound state is connected with its binding energy A by the relation

P
A=-—FAp. (26)

Since €p = p;/Zm, we get Ap/pF ~ A/sF, an extremely small quantity, Thus V¥
consists mainly of waves of wave number pF/h. It will look 1like sin(pFr/h)

for r<<p, where p is the distance at which the different p's begin to
interfere., For r>p the waves (9) will destroy themselves by interference.

14

N

[}
Fig. 4 A picture of the dynamics in the quantum
state of the Cooper pair. It is a linear combi-

nation of motions away and towards one another.

— ID —_— The electrons stay within a distance of order p.
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Thus ¥ will have a finite extension (see Fig. 4). The distance p is the
"size" of the wave function ¥. Clearly, p=h/Ap, and we get

hp, . p2 €
F F F

p~vp ~=rd o d, (27)
where the second "~" sign comes from pp ~ h/d, and the third from (p%/m) ~ Eg-

Here we see that p is very large compared to the lattice distance. According
to Eq. (25), it is even larger by a factor y~! (see Eq. (2°)) than the length
2~8d of the potential tube. A wave function that spreads over distances much
larger than the binding potential is a well-known phenomenon when the binding
energy is small; remember the deuteron.

The large extension of the wave function also explains why the electro-
static repulsion between the electron pair does not appreciably influence the
binding. That repulsion acts only over distances of the order d since the
electric field at larger distances (outside the '"Debye length") is strongly
reduced by the rearrangement of the electron gas. The remaining repulsion
will decrease the wave function within a distance of a few d from the center.
Since p>>d, that effect changes the wave function only very near the center
and does not influence the binding energy to any appreciable extent since
the potential V(r) reaches to much larger distances, %>>d. The length p is
called the '"coherence length" in the theory of superconductivity. It is of
the order of 10~* cm.
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VI. THE ENSEMBLE OF COOPER PAIRS

Cooper pairs are formed only among those electrons that lie in the
uppermost part of the Fermi distribution, not lower than A below the surface
€p in energy, or Ap as defined by Eq. (26) below the surface Pp in momentum,

(see Fig. 5). Electrons that lie lower than that cannot make use of
empty states in order to form the Cooper-pair wave function ¥. All Cooper
pairs possess the total momentum P=0. They are, therefore, in the same
quantum state. This does not violate any statistics since, as two-electron
systems, they obey Bose statistics; they form a degenerate Bose gas.

€ App
éEF 4 ‘ F)F

>

/

Fig. 5 The electron distribution in a metal. All states below e
(energy scale) or pp (momentum scale) are occupied. The electrons
in the interval A (energy) or Ap (momentum) from the upper limit
are forming Cooper pairs.

What is the number n' of Cooper pairs per cm?®? Call n = 1? the number
d
of electrons per cm®; then we get

n' ~ ¥ n —

since our relations are only semiquantitative, and we can omit the factor %.
We then may write

and get for the distance D between Cooper pairs:

D - ,[%,-]l/a d{§]1/3~ (30-40)d . (28)
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Since the size p of a pair is much bigger than that, they overlap appreciably.
It is important to observe, however, that they still remain orthogonal, in
spite of their overlap:

j\viw x dt = 851, (29)

where dt is the coordinate space of the electrons included in the pairs.

This is not so surprising since the wave functions oscillate around the zero
value as indicated in Fig. 3. We can see it by the following semiquantitative
consideration. When the interaction between the electrons is '"switched off"
the electrons involved in the Cooper pairs are in orthogonal states and fill
the phase space in the upper part of the Fermi distribution to about A below
the Fermi surface. The "switching on'" of the interaction does not change
their energy or momentum appreciably; indeed only by amounts of the order A
in energy or Ap in momentum. Thus the phase space of those electrons is not
changed very much; since they have been in orthogonal states and have filled
the phase space fully and completely before switching on the interaction,
they will do so afterwards too to a good approximation, That means they will
remain orthogonal (Eq. (29)) and, moreover, there will be almost no place in
the phase space for additional Cooper pairs without violating condition (29).
The Cooper-pair wave functions are another set of orthogonal states for those
n' electrons in the energy interval Ae below the Fermi surface.

In order to understand the nature of this ensemble of Cooper pairs, let
us consider for a moment a dilute and a "compact" degenerate Bose gas of
He atoms. We understand by dilute, a gas with a density (number of atoms

per cm?®) n<< l;; where r0 is the radius of the He atom. At zero temperature

T
0

all atoms will be in lowest state of motion in a container Q. Fig. 6 shows
the states of translatory motion of an atom in Q; they are infinitesimally
near to each other. The lowest state is occupied by all He atoms. But one

-o—e—o—o
a) b)

Fig. 6 Dilute Bose gas. (a) The single-particle states. At zero
temperature all particles are in the ground state (no motion).

(b) The states of the ensemble. At zero temperature the gas is in
the lowest state, but there are states available in the immediate
vicinity above the lowest state, corresponding to one or a few
particles being in those states of (a) that correspond to a slow
motion.



- 16 -

atom could easily go to the next higher state. Although it then would move
relative to the others, it would have very little chance to collide with the
other atoms. Its state would essentially be a state of free motion. It
would need an infinitesimal energy for one atom to break loose and go into a
state of different speed. We call that a situation with no gap.

We now consider a '"compact'" gas which we understand to be a gas in which
the atoms touch one another (see Fig. 7). They still do not overlap, the
condition (29) is valid for them. But the addition of a few more would lead
to a violation of Eq. (29). The degenerate state of this Bose gas is a state
in which all atoms have the same momentum P, for example P=0. 1In this situa-
tion it costs energy to 'break loose" for one atom and acquire a different

sessssocscsscssscesed ._J._}A
a) b)

Fig. 7 Compact Bose gas. (a) The single-particle states. At zero
temperature all particles are in the ground state; they touch each
other. (b) The states of the ensemble. At zero temperature the
gas is in the lowest state. The next higher state is at a finite
distance A above the lowest state, because it is not possible to
excite one or a few particles to a motion different from the others.
The only way to excite the ensemble is to produce rotons, or to put
a particle into an excited state.

velocity from the rest. We can understand the situation by comparing it with
a completely filled subway car. There are two ways for a person in the
middle of the crowd to move relative to the others in order to get to the
exit: the first way is to penetrate through your neighbors. Of course, this
is impossible for a passenger, but a He atom can do it by going over to an
excited state of the atom; then the Pauli principle no longer forbids such an
atom to occupy the same space with one in the ground state. It is an expen-
sive proposition, since it would cost an atomic energy eA~h2/(mr§) to do so.

The other much cheaper (and also more realistic) way is to change places with
a neighbor by executing a common rotation by 180° with him or with a small
group of neighbors (Fig. 8). This type of motion symbdlizes the formation of
a roton. According to quantum mechanics the minimum energy of a rotational
motion of two bodies with a mass M and a distance T, is of the order of

hz/(Mrz) which, for helium atoms, is (m/M) times smaller than atomic energies;

it is of the order of a few 10™* eV, which corresponds to a temperature of a
few degrees. Thus, the breaking loose of an atom from the compact Bose gas
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Fig. 8 A view of a compact Bose gas. A particle can be displaced
only by a rotation of a group or by excitation.

(all particles in the same state) costs a finite amount of energy. We have

a finite energy gap between the degenerate Bose-gas state where all atoms
have the same momentum, and a state where one atom is broken loose. The
energy gap for the formation of rotons is the transition temperature of a
superfluid. If kT is less than this gap, the fluid can move only as a whole.

Let uys return to the gas of Cooper pairs. It also is a compact gas,
since further additions of pairs would violate Eq. (29). When all pairs are
in the same quantum state P=0, it would need a finite energy to break loose
a pair and to give it a different momentum. In the case of the Cooper pairs,
however, the excitation energy A (the energy to dissociate a pair) is much
smaller than a roton energy, since the total mass of the pair is only 2m.
(Indeed, the roton energy would be ~eA.) Thus, here it is A that determines

the gap. Indeed A corresponds to kT, with T being of the order of the transi-
tion temperatures of superconductors. As long as kT<<A, the Cooper pairs
form a degenerate Bose gas.

The formation of this compact degenerate Bose gas acts like a '"crust"
on top of the Fermi distribution, in the sense that it takes an energy A to
liberate an electron from the Cooper-pair gas, and even more energy to libe-
rate it from the electron distribution below the strip in Fig. 5, because you
would have to 1ift it to empty states above the strip. This strip contains
the "frozen" ensemble of Cooper pairs. Thus all electrons, including those
that do not make up the Cooper pairs, form a collective state with total
momentum*) P=0, a state that does not break up as long as kT<A.

*#) The free electrons below the strip are distributed in such a way that
for any electron with a momentum P, there is one with the opposite
momentum -P. Thus, their total momentum is zero.
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VII. THE SUPERCURRENT

How does it happen that such an ensemble of electrons with total momentum
P=0 ever produces a current and a supercurrent without any resistance at all?
The reason is that, in the presence of a magnetic field, the veldcity is no
longer proportional to the momentum. The general definition of velocity is
{;:‘B—E’
3p
where k is the kinetic energy which, for free electrons, in the presence
of a vector potential A, is given by

_1 [+ ez)?
k=1 [p-_xc] . (30)
Hence we get
>_1 (> _ e
v-10F- % (31)

for the velocity. The current density j produced by our ensemble of
electrons is then
1+ e v > _ e o> e?n
ra ) Vi ® me Zpi - ;;; ’ (32)
i i
where n is the number of electrons per unit volume. Here the slight changes
of momentum caused by the bindings of the Cooper pairs have been neglected;
anyway, most of the current comes from the electrons below the Cooper-pair
crust. The sum over the momenta in Eq. (32) vanishes since P=0, and we get
1+ 1 mc?|% _ . fd )% e?
- N L= T T A (33)
A2 e?n T, °  mc
*
Here we see direct proportionality ) between current and A; the constant is

the reciprocal square of a length X\ which contains d from n=d~?® and the so-
called classical electron radius L It is easily seen that

*) One may wonder how it is possible that a physical magnitude such as the
current density is proportional to a non-gauge-invariang magnigude A.
The answer is this. A change in gauge would transform A into A' = A + n,
where n is a function of space. This changes the wave function of the
electrons from Y into Y' = Y exp [(e/c)n]; therefore it also changes the
momenta p of all electrons to 3'= 3 + (e/c)n, thus cancelling the change
of A in Eq. (30). We choose that natural gauge in which the sum of all

momenta of the electrons remains zero.
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A = £2.0C g
e2
where f is as defined in (la). It is a little more than 137 times the lattice

distance*) .

It seems paradoxical that an electric current appears in a system in
which the total momentum remains zero. The following example may illustrate
the situation. Let us look at the electron shell of a neon atom. It has a
filled shell; therefore the total angular momentum is zero, although some
electrons circulate one way and an equal number the other way, with one unit
h of angular momentum . When a magnetic field B is switched on (R#0),
the electrons whose angular momentum T is parallel to 8 circulate faster,
and those with opposite T circulate slower (Zeeman effect), but the values
of their angular momentum remain the same (after all, it can only be an
integer multiple of h). Thus, we get a circular current without a change of
the angular momentum whose total value remains zero. The circular current
produces an additional magnetic field and this phenomenon is called diamag-
netism,

It must be realized how important is the existence of the energy gap A
for the understanding of the supercurrent. The current (33) is nothing else
than the induction current which appears when a magnetic field is switched
on. The process of switching on accelerates the electrons in such a way that
a current (33) is produced. The kinetic energy increases when the field is
switched on. The total kinetic energy K per unit volume according to Eq. (30)

is
1 2 , €2n 42
K = k. = 5= Ip: + A (34)
i 2m i 2mc 2
(the Ei-K term vanishes because P=0). In a non-superconducting metal this

increase is compensated within a short relaxation time by changing the

momentum Ei of each electron by %K, so that the kinetic energy K reverts to

xkk)

its original value Then the total current would become zero again. This

*) Every physicist should know that the lengths r,, A.,, ay, Agy are all in
the ratio 137, where A, is the Compton wavelength and ARy is the wave
length corresponding to the Rydberg.

‘*%) The neon shell does not contain electrons with higher angular momentum
than one unit of h.

*%%) Actually not every electron needs to change its momentum in order to
obtain that new momentum distribution, but only a few near the top of
the Fermi distribution. The ones for which Py is parallel or nearly

parallel to X have increased their energy, and the ones for which ;i is

in the opposite direction have decreased it., The new momentum distribu-
tion is obtained by reverting the direction of Py of the former ones.
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rearrangement is prevented, however, by the Cooper-pair crust on top of the
Fermi distribution. The momentum distribution of the electrons cannot
change; it costs a definite finite energy to change it, even by very small
amounts*.

We now sketch the famous conclusion by Fritz London according to which
it follows from Eq. (33) that a magnetic field cannot penetrate into a super-
conductor deeper than the distance A. This is why X is called '"penetration
length". Let us use one of the Maxwell equations, namely curl B=j/c, and
write Eq. (33) in the following form:

curl B ='iL~A .

AZ
Of course, this equation applies only within a superconductor. We now apply
another curl to it (curl curl = - V2):
v2p = 1B, (35)

)\2
This relation shows that, within a superconductor, B must behave like an

+ . .
'X/A, where x, for example, may be directed into the con-

exponential B ~ e
ductor. Clearly only the minus sign is possible if the thickness of the
conductor is much larger than A (see Fig. 9).

—_—

Bo

Tll\'l‘/tw X

Fig. 9 The penetration of a magnetic field By into a superconduc-—
tor. The material fills the space x > O.

Our final aim is the description of a supercurrent in a straight cylin-
drical wire of reading R and practically infinite length. Before doing this,
let us consider an infinite superconductor with a plane surface. Imagine
that in a rectangular coordinate system the space x>0 is filled with a super-
conducting metal; the plane defined by x=0 is its surface. Imagine further

*) One may conclude that an insulator should also carry a supercurrent
since there is also a gap (even a much larger one) between the filled
band of electron states and the next unfilled band. Appendix II tells
why an insulator is not a superconductor.
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Bo
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Fig. 10 The surface of a superconductor. A field B, in the indi-

, cated direction produces a current J upwards at the surface in a
layer of depth A. The current in a strip of width s is proportion-
al to Bg: (1/c)J = sBy. The corresponding vector potential A
points downwards. '

that outside, in the region x<0, there is a magnetic field B0 in the y direc-
tion (see Fig. 10). We then conclude from Eq. (35) that inside the metal
(x>0) the magnetic field must be

B, = Boe-x/A, x>0, (36)

and all other components (BZ,BX) vanish., The corresponding vector potential

is (curl X = §)

A, = - B e X/2

>0
Z 0 ’ X

’ '(37)

with Ax = Ay = 0. It points downwards in the z-direction. According to
Eq. (33), there must be a current density T:

S O | - 1, -x/X
Eﬂz - ;;AZ XBoe ’

with jX = jy = 0. The current density flows upwards in the metal, but only

within a depth of X from the surface. Let us replace the exponential by a
step function:

_ 1 for x<A
e X/ o ) (38)

0 for x>\
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It is useful to determine the total current JS flowing through a

rectangle in the (x-y)-plane of length s in the y-direction and a width A
in the x-direction, lying inside the metal, but adjacent to the surface.

Because of our assumption (38), the current density across the rectangle

is equal to BO/A. Then, the current Jg is

b

1 . = —l. L] = .
EJ s X Aes s Bo. (39)

This must be interpreted as follows: as long as there is a magnetic
field Bo in the y-direction, outside the surface of a superconductor, there

is a current running in the z-direction on the surface of the metal within
a depth A, and this current is cBo per cm, measured perpendicular to the

current in the y-direction.

Now let us consider the superconducting wire of radius R with its axis
in the z-direction, with a circular magnetic field B, around the wire,
parallel to its surface and perpendicular to the z-axis. We then conclude
that there will be a current J in the wire flowing in the z-direction of
strength

J = ZwRCBo. (40)
The current is restricted to the surface of the wire within a depth XA (see

Fig. 11). We know from the Maxwell equations that the current (40) produces
at the radius R a circular magnetic field identical with Bo. Thus the

situation is self-consistent and stable. The current produces the field B ,
. 0

JBO

90

{

Fig. 11 A cross—section through a supercon-
ducting wire of radius R. The current flows
within a thin surface layer A into which the

< 2R > magnetic field penetrates.
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which in turn causes the same current to appear in the '"frozen'" electron
gas, kept in its ground state P=0 by the Cooper-pair crust on the top of
Fermi distribution, as long as kT<A. The electrons that are inside the wire
by more than A do not produce a current; there is no magnetic field there.
But at the surface within X, the electrons move (those in Cooper pairs and
those not in pairs) although their total momentum remains zero. This is so
because the magnetic field penetrates into the metal to a depth A. This
current is permanent, since no energy is available to break the frozen
electron distribution. Dissipation of the kinetic energy of the electrons
is excluded.

There is a 1imit to this situation, As indicated at an earlier stage,
the supercurrent Eq. (33) breaks down when the additional kinetic energy
which the electrons acquire becomes larger than the energy necessary to
break the Cooper pairs. Then it would pay to break the frozen distribution
and to produce a new one in which there is no current and consequently no
surplus kinetic energy. Let us look at a square centimeter of the surface
of a superconductor. The current, and therefore the surplus kinetic
energy, is contained within a depth A, that is in a volume V = A cm®. The
additional kinetic energy AK in that volume can be determined from the
second term in Eq. (34). This term is the energy surplus per unit volume,
so that we getb

2 ’ .
AK = VRE_ A2 =y 1 az | (41)
2mc? 212

The current will be stable if AK is less than the total energy G of the
binding of Cooper pairs:

G = Ven'A, (42)

where n' = é—n, the number of Cooper pairs in a cm®, If AK is larger than
F

G, it would pay to destroy the Cooper pairs and thus the supercurrent. We
get the limiting field BCr and a limiting current according to Eq. (33) by

equating Eq. (42) with Eq. (41). We will be semiquantitative now, and get

n%—A ~ l—Aér .
F A2

From Eq. (36) and Eq. (37) we learn that A2/A%2 = B? and we obtain

2 1 d 2 e 2
BCT ~ d—s[-‘;] EF ~ a—p— . (43)
Here we used n = d~%, p/d ~ A/eF, ep ~ e2/d. Thus the critical field at

which superconductivity breaks down is e/(dp). It is of the order of 300 G,
if A~10‘“eF, and e;~5 eV.
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APPENDIX I

It would seem at first sight that two electrons on the top of the
Fermi distribution that are running almost in the same direction, one behind
the other, would also be subject to the full amount of the attractive poten-
tial. This is not so. The reasons are as follows. In considering a two-
particle problem one first must separate the movement of the center of mass
from the relative motion. In this case the momentum P of the center of mass
motion is P . ZpF. Of course, this motion is not subject to the mutual

attraction. The relative motion of the two electrons is subject to the

full attraction only if it is parallel to P. If it deviates appreciably
from this direction, it will not stay within the potential tube. Hence,

the potential of the relative motion is highly asymmetric in the directions;
it is a long tube of length & and width d in the P direction and reaches
only to a distance d in the directions orthogonal to P. Such a potential
would lead to a very much smaller binding. A rough estimate, taking the
angular average of this potential, would lead to the same formula (23) with

- 2
factor &; = B2 in the negative exponent.
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APPENDIX II

We may ask the following question: In an insulator the electron dis-
tribution fills up a band of electron states from bottom to the top. Thus
there is an energy gap between the occupied band and the next unoccupied
one. One would expect that this gap has an effect similar to that of the
gap above the frozen electron distribution of a superconductor. It also
prevents an electron from breaking away from a distribution whose total
momentum is zero. Why is not an insulator a perfect superconductor and
with a much higher transition temperature since the gap in an insulator
is of the order of 1 V?

The answer lies in the fact that the expression (30) for the kinetic
energy of an electron is not even approximately correct near the upper end
of the band. Let us call k(p) the kinetic energy of the electron states as
function of the momentum in the absence of any fields. Let us for simplici-
ty's sake assume that p has only one dimension; k(p) is a quadratic function

p?/2m only for the lower part of the band. When p gets near to the upper
end, Bhax of the band, the function k(p) has a point of inflection and has

a horizontal tangent at the upper end (see Fig. 12). The velocity is the
derivative of k in respect to p. Hence the current can be expressed by

jeel g gkl (A1)

where, in the second equal sign, the sum over all electrons is replaced by
an integral in which L%B is the number of states in the interval dp. (L is

the one-dimensional size of the metal.) Clearly (Al) must give zero since
(dk/dp) is opposite and equal for p and -p. It shows that the total current
is zero when no field is present. If there is a field, the function k(p) must
be replaced by k(p - %A). In generai §A<<p, so that we may express this

replacement by a differentiation:

k(p - SA) = - %A-%% . (A2)
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Fig. 12 The kinetic energy k(p) as function of p in a conduction
band. The derivative is zero at ipp,x. In an insulator the band
is filled and the top electrons have zero velocity. In a metal it
is partially filled, and the top electrons have a velocity v *p/m.

Thus we get for the change of current of A # 0:

2 +pmax 2 2 +pmax
i = - E_ .d__.]s L = 9_ L \ ils =
J A I dp? g 9P c R A ap 0
“Phpax “Phax

since the derivative of k vanishes at #p No current is induced by a

max*®
magnetic field in a completely filled conduction band!

The reason for this remarkable result is this. The presence of a
field adds an amount -%A to all momenta p. Thus the electron distribution

is no longer symmetric around p=0. It amounts to a displacement of all
momenta by -%A. Since the distribution was compact (all levels with

Ipl<|p | occupied), such a displacement is equivalent to transferring a

max

few electrons from the extreme positions at one end (say near “Pmax if gA is
negative) to the other end (near +pmax)' If the band is not filled to the

top, such a shift produces a current, since the electrons on one side of p=0
move in opposite directions to those on the other side. If the band is

full, however, the velocity of the electrons near p is zero, since

max
v = dk/dp = 0 at the edge of the band. Thus the transfer of electrons from

one side to the other does not change the current, which was zero to begin
with,



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

