Toward a Better Integration of Spatial Relations
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Emanuel Aldea and Isabelle Bloch

Abstract This paper deals with structural representations of imdgesnachine

learning and image categorization. The representatiosistsnof a graph where
vertices represent image regions and edges spatial redaietween them. Both
vertices and edges are attributed. The method is based ph Beanels, in order
to derive a metrics for comparing images. We show in pawictlie importance
of edge information (i.e. spatial relations) in the speaifimitext of the influence
of the satisfaction or non-satisfaction of a relation betwéwvo regions. The main
contribution of the paper is situated in highlighting thealddnges that follow in

terms of image representation, if fuzzy models are consitfiar estimating relation
satisfiability.

1 Introduction

Generic machine learning algorithms do not cope with corgiéga such as images
directly, a preprocessing step being usually required deofor them to perform
various tasks. Among the solutions used to adapt imagedatgarithm inputs, we
discuss in this article a representation method as a stensfuich encodes explicitly
image parts and spatial interactions in a graphical model.

Discriminative learning algorithms that are well suited tiois kind of graphical
models have been created [1] and optimized [2] in view of digeapplications
in computational chemistry and biology. An adaptation fopiog with graphical
models extracted from images is required neverthelesse shre properties of the
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information encoded in the graphical structure is fundamagrdifferent than in the
context of biological or chemical structured data analysis

In a larger context, image interpretation methods use piiyrtae visual features
of low-level or high-level interest elements. However,tsdanformation concern-
ing the relative positioning of these elements is equallydfieial, as it has been
shown previously in segmentation and structure recognifibierefore, an interest
for the integration of spatial information in the learnimgrhework has emerged re-
cently. The fact that spatial information is often percdiaad expressed in a manner
which is close to natural language, along with the fact thatadbsence of a spatial
interaction is also relevant, hint at the usefulness of fusggzatial information for
image representation. Fuzzy representations actuallyip&r assess at the same
time the imprecision degree of a relation (e.g., “close td'to the left of”) and the
gradual transition between the satisfiability and the ratisBability of a relation.

The objective of this article is to explore the limits of sphinformation rep-
resentation and its integration in the learning proceskiwithe context of image
classifiers that make use of graph kernels. In the first pasuofvork, we present
the advantages that labeled graphs provide for repreggintimges, along with the
general learning strategy employed by the correspondind SMssifier. We con-
tinue with a short reminder on the use of spatial informatiosome related graph
representations, and on the particularities of spatiarmftion for image represen-
tation. The results show that spatial information completaéhe visual features of
distinctive elements in images and that adjusting the kdumetions for the fuzzy
spatial representations is beneficial in terms of perfocaan

2 Knowledge representation by labeled graphs

In the domain of machine learning, generic supervisedssiedi algorithms accept
input data in the form of numerical arrays or sequences andra numerical value
or indicate a specific category. Nowadays, input data aneasingly provided in
complex configurations: as trees, graphs or other reldtstnactures. These data
arise very often from health and life sciences, but also fimage processing, rea-
soning models for forecasting and decision making, etc. \feass accordingly the
apparition of complex tasks that require the extractionetdéittons and structural
dependencies out of input data. This situation suggestsrifergence of learning
methods adapted for these tasks and coping with large gieardf data.

In a structured data representation by graphical modeficgs may represent
for instance atoms [1], simple chemical structures withc#meproperties [3], pro-
teins [4], segmentation regions in images [5, 6], while edgecode specific in-
teractions such as interdependence and scheduling, aalsddtions (adjacency,
distance, relative localization, topology). In the contexd particularly for image
processing tasks, key sources of imprecision must be takeaccount, concerning
the objects and their imprecise delimitation and the nedagissence of the interac-
tion information, often depicted using natural languaglee Graph structure and
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labeling integrate therefore the information that we psss®ncerning the basic el-
ements that form the input objects, their features, theacteons among them but
equally our confidence level for these types of information.

In the case of an image, one possible approach for the exinaufta graphical
model is by building an adjacency graph upon the output ofjensegmentation.
Graph vertices are associated to image regions and aretbdetording to specific
region features, related to size, color, texture. Usudilyse numerical values are
continuous, as opposed to discrete values that we may etezdnrother applica-
tions (a chemical symbol, a protein identification refeenc a nucleotide). The
only structural information being used is the region adj@yeimplicitly encoded
by the graph edges. Extensions of this basic graphical miakleinto account more
complex spatial and topological information using a ricladeling of the edges.

The next step consists in using a Support Vector Machine (VMo classify
the structures that were extracted. Given a positive deffoitctionK, denoted as
thekernel functiornof the classifier, a set of training objec® and a set of labels
% associated to the elements @f, such that; € {—1,+1} for anyx; € 27, the
output of the classifier for a new objecis:

|2
y(x) = 59”(_; aiYiK(XiaX)> 1)

wherea; is the Lagrange multiplier in the optimization solution @sgted to the
training objectx;.

An important observation is that the classifier only needs/élue of the kernel
function between pairs of examples, as a similarity esionafAn additional advan-
tage of this approch is that it allows classifying elemesssied from spaces which
are not naturally endowed with inner products (such as gitag or string spaces),
as long as we use a valid kernel function.

Furthermore, we describe the specific marginalized ketthelsare being used
in labeled graph analysis.

2.1 Marginalized Kernels

Given a generic class of object®’, we assume that the constituents 2" are
generated according to a latent variable model which cteighe visible variable
x and of a hidden variabl@, being considered jointly in a pair= [6,X]. As we need
a kernelK(x,x') for the visible variables, we define firsfaint kernel K(z Z) for
the mixed pair, which is used inmarginalized kern€ef8] defined as the expectation
of the joint kernel over all the values of the hidden variable

K(x,X) :/ p(681X)p(6'|X)Ko(2,7)dOdE’ 2)

0,6/'co
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whereO© refers to the domain of the hidden variable. In a discreténggthe value
of the marginalized kernel is estimated with:

K(x,X) = Z p(81x)p(68'[X)Kz(z,Z) 3)
6,6'co

The difficulties to be considered when estimating margkealikernels are the
computational burden which is related to the dimensior®gfand the estima-
tion from the data of the probabilistic modp(0|x). Therefore, the choice of the
model p(8|x) should maximize the relevance for the specific data 2" under
the tractability constraint oK(x,x’). With respect to the properties of the func-
tion K(x,X'), as long as the joint kern&l,(z,Z) is positive semidefinite, the kernel
K(x,X') is also positive semidefinite, since the class of positiveidefinite kernels
is closed under addition and multiplication [9]; the kern®ly also be interpreted
as the inner product of the two vectqe&d|x) andp(6’|x).

2.2 Building SVM classifiers for graphs

The graph similarity is assessed using a marginalized kéunetion and is em-
ployed in a SVM classifier. This similarity, related to a sifiedeaturea, between
two graphsG and G’ extracted from images is evaluated with a kernel that sums
the similarities between all possible pairs of random watk&he two graphs [1],
weighted by their probability of apparition.

In reference to other applications that used this type ofginatized graph ker-
nel [2], the labeling space for vertex features is contirsuand multidimensional.
The similarity function for feature values has to be lessiisinative than the Dirac
delta function usually employed in the discrete case. TThezewe use Gaussian
kernels with variance? in order to evaluate the similaritg&IDf (a1,a2) between two
valuesa; anday of the numerical feature::

b _ a1 — ap||®
ky' (ag, @) = eXp<—T (4)

Specific kernels have been shown to be adapted for other¢ffeatures. These
kernels usually employ a well known distance between feattirat they kernelize;
examples include g-kernel between histograms :

k2 (hy, hp) = e @x*(hufe) (5)

or a L1/L2 distance based kernel between multichannel melanlevels. In case of
texture features, we use a distance metric defined in [Ldj@mieans and standard
deviations of Gabor filter energy responses [11].

Given the two graph§& and G’ to compare, Equation (4) is used to evaluate
the similaritykye(h,h') between two random walks= {xi,...,X,} in G andh’ =
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{X3,..., %} in G', by combining the similarity functionis, for a vertex featurg and
ke for an edge featurealongh andh':

kye(h,h) = kV(VXny/l) |1 Ke(€x_1x 7eXi/71Xi')kV(VXi ani') (6)

This general equation may be simplified if we take into actaunly a region
feature (as it happens with adjacency graphs) or if we tat@ancount only an
edge feature. In order to simplify the computation, we fix thkie of the missing
function to 1 (however, the element that is not consideredifoilarity computation
must exist, otherwise a random walk containing the elemeultcnot exist).

At this point, we can underline the link between our speciimlel and the formal
marginalized model depicted in Section 2.1. The input gapépresents the visible
variable, and the random wallicepresents the hidden variable. Therefore, the graph
kernel betwees andG' is computed by adding the similarities between all possible
random walk kernele andh’, weighted by their probability of apparition:

Kye(G,G') = ; ;kv,e(hv ) p(h|G)p(W|G') (7)

This function is subsequently used with a support vectormimaeqSVM) in order to
build an image classifier. The matti,e defines the similarity between the graphs
to compare.

3 Spatial relationsin the context of graph learning

The spatial context has been taken into account in computdtbiology and chem-
istry when representing structured data. With few excesti@], spatial relations
being used are binary and model rigorously the presence ioft@raction between
two elements of the structure. Even under this binary mamodel, it has been
shown that information brought by the absence of interastimay increase predic-
tion performance, in relevant applications. For exampigrotein-protein interac-
tion (PPI) networks the absence of protein interactionglisvant for disease pre-
diction. Therefore, a complement gra@iof the initial interaction grapks, which
encodes the absence of interactions, has been proposgéti§iesulting composite
kernel:

K*(G,G') =K(G,G) +K(G,E) (8)

leads to noteworthy improvements in classification acdasagn disease outcome
prediction for cancer patients.

As to the extraction of spatial information for image remmstions, the situa-
tion is more complex. First of all, spatial interactionsg@et an inherent semantic
variability which goes well beyond the binary case menttbabove. Secondly, the
integration of fuzzy spatial information and region featinformation turns out to
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be more complicated than the direct method depicted in Emu8t However, this

type of spatial information has been shown to enrich thergggm of images and to
be useful for segmentation and structure recognition mepoBelow, we examine
how we can use spatial information in learning and, moreifipelty, categoriza-

tion.

We could just add fuzzy information on the existing edgeshefitnage repre-
sentation graph, but using strict adjacency for the undeglgtructure may pose
robustness issues. Indeed, in cases when adjacency melesnall number of pix-
els, the resulting graph may differ according to the segat@nt method. Adding
edges that represent more than the implicit strict adjaceslation does not only
help with encoding structural information, but at the saimetimproves the robust-
ness of the representation.

For our application, we use a topological spatial relatigpresented by an ex-
tended degree of adjacency, described below. Note that ottetions could be
added as well, using the same framework.

3.1 Distance between regions.

The distance between two regioRsandR; is computed as the minimal Euclidean
distance between two poinps € Ry andq; € Ry:

d(R1,Rp) = piEQLTeRZ(dEuclidear{piaQJ)) 9)

Distance, as well as orientation, may not always be relevantinstance the
distance between two regions is the same if those two regienadjacent by only
one pixel, or if a region is surrounded by another region.ré&foze we propose

to consider a topological feature that measures the adjgdength between two
regions.

3.2 Adjacency measure based on fuzzy satisfiability.

One way to estimate this measure is to compute the matchitwgebe the area
“near” a reference region and another region. This measurekimal in the case
where the reference region is embedded into the secondsanihimal if the two
regions are far away from each other.

Fuzzy representations are appropriate to model the intrimgrecision of sev-
eral relations (such as “near”) and the necessary flexiliditspatial reasoning [12].
We define the region of space in which a relation to a givenatlijesatisfied as a
fuzzy set. The membership degree of each point to this fugzgmresponds to the
satisfiability degree of the relation at that point [12]. Bldhat this representation
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is in the image space and thus may be more easily merged watbrasentation of
another region.

The spatial relation “near” is defined as a distance relattodistance relation
can be defined as a fuzzy interviabf trapezoidal shape dR". A fuzzy subselyy
of the image space” can then be derived by combinirfgwith a distance magg
to the reference obje® Vx € .7, Lq(x) = f(dr(X)), wheredr(x) = infycrd(X,y).
In our experiments, the fuzzy intervélis defined with the following fixed values:
0, 0, 10, 30 (Figure 1a). We exemplify using a butterfly imdgigre 1b) and the
result of a segmentation exhibiting four distinct regiofigi(ire 1c). We illustrate the
distance map to the region represented by the left wing (Eigd) and the fuzzy
subset corresponding to the relation “near the left wingg (e 1e) which uses the
distance map and the fuzzy interval defined above. Simjlaréy compute fuzzy
subsets for the right wing (Figure 1f) as well as for any otlegions designated by
the segmentation.

So far we have defined the area of the image in which the relatiear to” a ref-
erence object is defined. The next step consists in estighdtenmatching between
this fuzzy representation and the other region. Among akjide fuzzy measures,
we choose as a criterionN-measure of satisfiabilitjd 3] defined as:

Satinear(Ry),Ry) — 2= MN(Hnearry (%), Hg;(¥)) 10)

¥ xe.# Hnear(Ry) (X)

where.# denotes the spatial domain. It measures the precision giasigon of the
objectin the region where the relation is satisfied. It is imet if the whole object is
included in the kernel ofye4(r,)- Note that the size of the region where the relation

is satisfied is not restricted and could be the whole imageesgéthe objeciR,

is crisp, this measure reduces5-2 u”ea'(Rl)((;(;, i.e. the portion Ofinearr,) that is
X

€. MnearRy)
covered by the objed®,.

3.3 Adjacency measure based on fuzzy resemblance.

Beside satisfiability, we also choose a symmetric meadued)tmeasure of resem-
blance[13] defined as :

N Yxes min(lJneaI(Rl) (X), HR, (X))
R6$near(R1)7 RZ) B Ixes max(”near(Rl) (X)v HR, (X))

This measure is maximal if the object and the relation anatidal: this resemblance
measure accounts for the positioning of the object and foptkcision of the fuzzy
set as well.

In Figure 1(e) and Figure 1(f) we have illustrated the fuazysets corresponding
to the two wings. With the fuzzy satisfiability measure ddirmbove, we get a
response of 0.100 for “right wing near the left wing” and @X6r “left wing near



8 Emanuel Aldea and Isabelle Bloch

e) f)

Fig. 1 (a) Fuzzy interval for the distance relation. (b) Input ireac) Segmentation result, four
distinct regions. (d) Distance map to the region represkhtethe left butterfly wing. (e) Fuzzy
subset corresponding to the relation “near the left wingt(corresponds to highest values). (f)
Fuzzy subset corresponding to the relation “near the righgw

the right wing”. It is equally worth noting that the two regi®are disconnected with
respect to the strict pixel adjacency.

In the remaining sections, we will denote by a spatial reféfl one of these mea-
sures of fuzzy adjacency, but we underline the fact Bhabuld be substituted for
other functions that estimate the interaction between ehsnof the image struc-
ture. The choice of the spatial relation of adjacency forilbustration is immediate
because fuzzy adjacency information extends naturallyodiiee most simple and
pertinent relations between image regions, the strictadjey. However, taking into
account more complex spatial relations such as “parall@talong”, along with
their fuzzy measures of satisfiability [14, 15], is possiatelong as these spatial
relations are appropriate for the content of the input insage
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4 Fuzzy spatial information and discriminative models

We can see that fuzzy spatial relations for images extengdaaveniently the bi-
nary relations that are being used in other domains and\ahéemerge at the
same time information concerning the presence and the ebsd#ran interaction.
However, there are difficulties that arise when using thigetgf relations for dis-
criminative learning.

In the context of image representation using space reitimtated work has
been done using binary relations supported by a specifidagid16], using a
count vector which estimates simple relative positionihg | or using fuzzy spatial
relations [18]. Each independent spatial relation build#self a novel data rep-
resentation, therefore additional work may be necessaorder to make use of
different spatial features simultaneously and efficieritlythis part of the article,
we focus on the fact that a single fuzzy spatial relation tely itself an infi-
nite set of different representations. Rather than usinigipteispatial relations for
learning, we try to underline the specific challenges thaisariininative learning
algorithm has when using a family of representations geeétay the same fuzzy
spatial relation.

Very often, there is a correlation between the value of ayfspatial relation and
the information gain: if the response is high, it means thatrelation that the func-
tion has been designed for is much present. Consequenlyelsponses may be
frequent (e.g. in the case of the “near” spatial relatiorg) aray not bring the same
amount of information. Discriminative learning, and distnative learning for la-
beled graphs in particular, makes intensive use of simjl@ssessments between
input objects. The similarity score between two graphsaases if these graphs ex-
hibit many similar substructures. Complete graphs mustdeel if we compute a
spatial relation value between all possible regions; floeee if very low relation
values are frequent (close to, or equal to 0), the graph kéunetion will over-
increase the graph similarity measure.

A straightforward solution to this situation is to thresthahe spatial relation
values, so that edges will exist only when the fuzzy adjagestimation between
two vertices is beyond a minimum val However, the strict adjacency graph
does not necessarily belong to this ¥eof threshold graphs. In terms gfaph edit
distance[19], let us consider for an image the adjacency gr&péind an element
Gpe¥:

Go = {7 (G); (v1;V2) € ¥?(G)|R(v1,V2) > 0} (11)

whereR(v1,v7) is the generic spatial relation function between regioestizes)vy
andvs.

Obviously, the vertex sets @ and Gy are identical, as representations of the
same image segmentation. We denote/by5) the vertex set of grap®, and by
&(G) its edge set. Under these circumstances, the graph edindely e (G, Gg)
betweerG andGy is generated by strictly adjacent regions that are not @aseigh
in terms ofB-fuzzy adjacency and non strictly adjacent regions thatcérse in
terms of6-fuzzy adjacency:
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dge (G,Gg) = card{(vi;v2) € 7?(G)|(v1,v2) € &(G) AR(v1,V2) < 8}
+ card{(vi; Vo) € ¥?(G)|(v1,V2) € &(G) AR(VL,V2) > 0} (12)

In practice this means that if we extend the spatial inforomatbeyond the intu-
itive strict adjacency between regions, we get for eachiapalationR a graph set
¢ instead of a single graph representation of the image, arditey using spatial
relations should be adapted to this situation. More prégciae should know which
of these graphs is more appropriate for learning.

The graph or graphs, € ¢ that minimizedy e are the closest (structurally) to the
adjacency graph G. These are the projectiorGiofthe set/, and are ideally robust
generalizations o& with respect to the spatial relatiéh However G, andG might
still exhibit various differences (the edge sét6G) and&'(G.) are not identical),
therefore the structural information within might still partially disjunct.

The element that bridges the informational gap betw@and¥ is the complete
graphGs, which includes (structurally) any eleme@p € ¢, as well as the strict
adjacency grapls. Ideally, the learning algorithm should exhibit the bestfpe
mance withGg¢, but then it should be able to cope well with the noise geerdrhy
a lot of similar low-information edge labels.

5 Experiments and results

5.1 Data set

The Internet Brain Segmentation Repository(IBSR) data" smtntains real clini-
cal data and is a widely used 3D healthy brain magnetic resmnanage (MRI)
database. It provides eighteen manually-guided expeirt begmentations, each of
them being available for three different views, along refee planes: axial, sagittal
and coronal. Each element of IBSR is a set of slices that dbeawhole brain.

The main purpose of the data set is to provide a tool for etialgdhe perfor-
mance of segmentation algorithms. However, the fact thatfreely available and
that it offers high quality segmentations as input data reakelso useful for our
experiments.

5.2 Experimental setup

Image categorization between images belonging to differenws in the data set
(sagittal, coronal, axial) is performed with a 100% sucaedgs for many of the

1 The MR brain data sets and their manual segmentations wereidpd by the Cen-
ter for Morphometric Analysis at Massachusetts General piials and are available at
http://www.cma.mgh.harvard.edu/ibstr/.
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(b)

Fig. 2 Samples from IBSR data set. 2(a), 2(b) Two slices of the tsdgiew of the same 3D MRI
volume representing the two categories. 2(c), 2(d) Coraiesl. 2(e), 2(f) Axial view. The original
images are presented below their corresponding manualesggtions.

@

Table1 Identification of the slices composing the database in et of the 3D volume, for the
three possible views: sagittal (S), coronal (C) and axial (A

View Slices Slices cat. 1 Slices cat. 2

S 256 121, 122,123 126, 127, 128
C 128 58,5960 64, 65, 66
A 256 121,122,123 126, 127, 128

features that we take into account; as a result, we build & rioalllenging catego-
rization problem between images belonging to the same \daesecondary benefit
of this approach is that by choosing certain slices we catratthe difficulty of the
task. Since the brain is made up of consecutive slices in &thedhree views and
the brain structure varies progressively, we want to createcategory using three
consecutive slices which are at the same level over all thietegn 3D brain seg-
mentations. A second category is being built using threesecutive slices which
are positioned at a certain distance from the first blockhagltstance between the
two blocks of slices decreases, the difficulty of the categdion task increases. We
found out that choosing a distance of only two or three slmssveen the training
blocks, along with category intra-variability, would acet for a difficult catego-
rization task. Table 1 references the total number of slicesach 3D brain view
and the indices of slices being used for defining each cagefégure 2 presents
typical category elements for all views. Each brain viewl wibvide three images
for each category, thus creating a category definition oh&ges.

Concerning the graph construction and labeling, nodessgmesented by man-
ually segmented regions while edges account for spatiafioels between regions.
For vertex labeling, we use normalized region visual fezguthe mean gray level
(which is normalized according to the lightest and darkegions in the image), the
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relative region area (normalized according to the totalgenarea) and the normal-
ized region compacity, defined as the normalized ratio betwis surface and its
squared perimeter. For this work specifically, we will expemt with the coronal
view and with the mean gray level as region feature. Spatiations based on adja-
cency measures being considered between image regiodsiputie edge labeling,
respectively.

We perform n-fold cross validation on the training set{ 10), and we repeat
the classification task times (n = 10); the performance given below is the mean
value of thesen executions.

5.3 Categorization with strict adjacency structures

Given a region feature and a spatial relation within thecstaidjacency graph,
we use RBF kernels (Equation 4) with thresholds that are tedajp the range
[0,1] of these normalized features (see Figure 3), and we set uf aegrch in

the o parameter space for each of the two kernel functions. Fdn ebment of

the grid, we try multiple values for the regularization paederC of the SVM,
Cc{102,10%,...,10°}. Figure 3 presents the best classification performance for
each pail( Gvertex, Oedge), fOr the values and features specified on the axis.

Categorization with fuzzy adjacency structures

Next, we analyze the impact of adding structural infornmatidnich is not necessar-
ily tied to the strict adjacency between image regions. Fgiven segmentation and
for a certain spatial relatioR, the complete graph encodes all the possible relations
between vertices, as edge labels.

The histograms in Figure 4 present the satisfiability anse@blance values en-
coded within all the complete graphs in the dataset. Frorsetlfigures, we notice
that the first type of measure takes the maximum value moem oithile the fre-
quency of low values is very significant. For the second measoaximum values
are quite low even for adjacent regions (the maximum valwalithe dataset being
0.39), and low values are very frequent, too.

In order to estimate the impact of different spatial relatibresholds9 on the
structure of elements in the threshold graph@etwe compute the number of dif-
ferences between the set of strict adjacency edge®ahdesholded edges with
respect to the relatioR, using Equation 12. The difference profiles for the satisfia-
bility and ressemblence relations are presented in Figaeahd Figure 5(b). Given
any of the adjacency graplisin the dataset, the threshofdthat would minimize
the structural difference betwe&@andGy € ¥ is given by the value corresponding
to the minimum in the difference profilé.

For our dataset, the optimal threshold for the satisfigbitieasure 953 =
0.911. This high value proves the fact that most of the timegtist adjacent re-
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)

0.001 0.002 0.005 0.01 0.02 0.05 0.1
o (gray level)

o (ressemblance)

(a) Using the gray level region attribute and the ressencelameasure, the
best performance, 972%, is attained fooyertex= 0.1 anddegge= 0.005.

5

o (satisfiability)

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.25 0.5
o (gray level)

(b) Using the gray level region attribute and the satisfigbiheasure, the
best performance, 961%, is attained fooyertex= 0.1 anddegge= 0.002.

Fig. 3 Categorization performance for the gray level region latte and two different measures
of fuzzy adjacency, using grid search in the space of keragdrpeters. At this point, we model
input data using strict adjacency graphs.
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Fig. 4 Distribution of the two measures of fuzzy adjacency forladl €dges in the set of complete
graphs representing the dataset.
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Fig. 5 For a given measure (satisfiability or ressemblance) tbtdsh, we show the number of
different edges between the set of strict adjacency graptiee aataset and the set &fthreshold
graphs associated to the strict adjacency graphs. The mlinatue accounts for the highest struc-
tural similarity between the strict adjacency graphs amdtihreshold graphs.
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Table 2 Categorization performance for (gray level - spatial ietgtimage information. The
parameters for the kernel functions are the optimal valaeed using the grid search. In the third
column, the strict adjacency graph is used, but no spat&tioa labels are added to the graph. In
the fourth column, we use fuzzy adjacency labeling on thetstdjacency graph. Afterwards, we
use different9-threshold fuzzy adjacency graphs.

Region feature Spatial relation Strict adj. Strict ad;. Bugraphs
No relation Fuzzy labeling

Gray level Ressemblance 58.18% 97.72%  6=0.00 (82.90%)
6=0.01 (82.92%)
6=0.02 (86.43%)
6=0.05 (84.38%)
6,=0.075 (74.43%)
6=0.10 (76.23%)
6=0.20 (69.90%)
6=1.00 (61.73%)

Gray level Satisfiability 57.04% 96.51% 6=0.00 (79.07%)
6=0.1 (70.83%)
6=0.25 (68.18%)
6=0.5 (76.75%)
6=0.75 (77.51%)
6,=0.911 (77.29%)
6=1.00 (62.85%)

gions account for satisfiability values that go beyond threshold, as it is per-
ceivable from the high proportion of maximum values. Theosgcmeasure has a
different behavior; it penalizes very fast the absence dfang adjacency. In this
case, th&k values associated to the strict adjacency relation aréesedton a larger
interval, thus the optimal threshold is situated furth@nirthe maximum value:
6/¢ss=0.075.

In Table 2 we compare the categorization performances fterdnt settings
involving spatial relations. As a reference, we use the blessifier detected for a
certain region feature-spatial relation pair, using gedrsh. This classifier relies
on the strict adjacency graph extracted from the image,Hmietiges are labeled
using the spatial relation value between the correspondntices. The interest
of incorporating spatial relation information to the labglis proven by the weak
performance of the classifier on the adjacency graph whiels osly the region
feature information (the edge kerrielbeing fixed set ake = 1, cf. Section 2.2).

Next, we pass to the threshold gragbgin the set?. In our setting, the spatial
relationsR are represented using values|®1], therefore the thresholl is also
a number in[0,1]. We estimate the categorization performance along th&/set
reference elements are the complete gr@ph= Go, Gy, the projection ofG in ¢,
andG;.

Results in Table 2 show that once we pass to a structure whicased entirely
on thresholded fuzzy spatial relations, we do not improedibst performance wit-
nessed on the strict adjacency graph structure. Withingt sthe projectiorGg,
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of G performs well and the classifier performance may be imprdaxetbwering
slightly the threshold below the value 8f, which accounts for adding edges with
spatial information. Howevel values that are far fronf,, including the value
6 = 0 that corresponds to the complete graph, account for a pperéormance.
This shows that in the presence of a richer information, #régomance does not
necessarily improve. The explanation is that the high feagy of low values for
the edge labels leads to artificially high similarity estiiroas between graphs and
masks the similarity of meaningful high label values. Wihiile spatial information
is definitely helpful in image interpretation, its genenitagration into graphical
models remains a difficult task and kernel functions for S\Miv& cope with spatial
information should be adapted specifically to differenetypf spatial relations.

6 Conclusion

In this article, we studied the benefits offered by imageesgentations using labeled
graphical models, as well as by employing fuzzy descrigtmrspatial information.
Graphical models allow for a flexible integration betweetminsic visual features
of image parts and the spatial interactions taking placeskigeved that fuzzy in-
formation is highly beneficial for the learning process whenuse it to enrich the
labeling of strict adjacency graphical structures, but thase spatial interactions
may screen more relevant spatial information and that gekernel functions are
not well adapted to take into account the entirety of spagiaitions within images.
Future work will try to adapt the graph similarity estimatito the specificity of
spatial relations in order to benefit from information caméeg the presence and
the absence of interactions.
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