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Abstract This paper deals with structural representations of imagesfor machine
learning and image categorization. The representation consists of a graph where
vertices represent image regions and edges spatial relations between them. Both
vertices and edges are attributed. The method is based on graph kernels, in order
to derive a metrics for comparing images. We show in particular the importance
of edge information (i.e. spatial relations) in the specificcontext of the influence
of the satisfaction or non-satisfaction of a relation between two regions. The main
contribution of the paper is situated in highlighting the challenges that follow in
terms of image representation, if fuzzy models are considered for estimating relation
satisfiability.

1 Introduction

Generic machine learning algorithms do not cope with complex data such as images
directly, a preprocessing step being usually required in order for them to perform
various tasks. Among the solutions used to adapt image data to algorithm inputs, we
discuss in this article a representation method as a structure which encodes explicitly
image parts and spatial interactions in a graphical model.

Discriminative learning algorithms that are well suited for this kind of graphical
models have been created [1] and optimized [2] in view of specific applications
in computational chemistry and biology. An adaptation for coping with graphical
models extracted from images is required nevertheless, since the properties of the
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information encoded in the graphical structure is fundamentally different than in the
context of biological or chemical structured data analysis.

In a larger context, image interpretation methods use primarily the visual features
of low-level or high-level interest elements. However, spatial information concern-
ing the relative positioning of these elements is equally beneficial, as it has been
shown previously in segmentation and structure recognition. Therefore, an interest
for the integration of spatial information in the learning framework has emerged re-
cently. The fact that spatial information is often perceived and expressed in a manner
which is close to natural language, along with the fact that the absence of a spatial
interaction is also relevant, hint at the usefulness of fuzzy spatial information for
image representation. Fuzzy representations actually permit to assess at the same
time the imprecision degree of a relation (e.g., “close to” or “to the left of” ) and the
gradual transition between the satisfiability and the non-satisfiability of a relation.

The objective of this article is to explore the limits of spatial information rep-
resentation and its integration in the learning process within the context of image
classifiers that make use of graph kernels. In the first part ofour work, we present
the advantages that labeled graphs provide for representing images, along with the
general learning strategy employed by the corresponding SVM classifier. We con-
tinue with a short reminder on the use of spatial informationin some related graph
representations, and on the particularities of spatial information for image represen-
tation. The results show that spatial information complements the visual features of
distinctive elements in images and that adjusting the kernel functions for the fuzzy
spatial representations is beneficial in terms of performance.

2 Knowledge representation by labeled graphs

In the domain of machine learning, generic supervised statistical algorithms accept
input data in the form of numerical arrays or sequences and return a numerical value
or indicate a specific category. Nowadays, input data are increasingly provided in
complex configurations: as trees, graphs or other relational structures. These data
arise very often from health and life sciences, but also fromimage processing, rea-
soning models for forecasting and decision making, etc. We witness accordingly the
apparition of complex tasks that require the extraction of relations and structural
dependencies out of input data. This situation suggests theemergence of learning
methods adapted for these tasks and coping with large quantities of data.

In a structured data representation by graphical models, vertices may represent
for instance atoms [1], simple chemical structures with specific properties [3], pro-
teins [4], segmentation regions in images [5, 6], while edges encode specific in-
teractions such as interdependence and scheduling, or spatial relations (adjacency,
distance, relative localization, topology). In the context and particularly for image
processing tasks, key sources of imprecision must be taken into account, concerning
the objects and their imprecise delimitation and the relative essence of the interac-
tion information, often depicted using natural language. The graph structure and
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labeling integrate therefore the information that we possess concerning the basic el-
ements that form the input objects, their features, the interactions among them but
equally our confidence level for these types of information.

In the case of an image, one possible approach for the extraction of a graphical
model is by building an adjacency graph upon the output of image segmentation.
Graph vertices are associated to image regions and are labeled according to specific
region features, related to size, color, texture. Usually,these numerical values are
continuous, as opposed to discrete values that we may encounter in other applica-
tions (a chemical symbol, a protein identification reference or a nucleotide). The
only structural information being used is the region adjacency, implicitly encoded
by the graph edges. Extensions of this basic graphical modeltake into account more
complex spatial and topological information using a richerlabeling of the edges.

The next step consists in using a Support Vector Machine (SVM) [7] to classify
the structures that were extracted. Given a positive definite functionK, denoted as
thekernel functionof the classifier, a set of training objectsX and a set of labels
Y associated to the elements ofX , such thatyi ∈ {−1,+1} for anyxi ∈ X , the
output of the classifier for a new objectx is:

y(x) = sgn

(

|X |

∑
i=1

αiyiK(xi ,x)

)

(1)

whereαi is the Lagrange multiplier in the optimization solution associated to the
training objectxi .

An important observation is that the classifier only needs the value of the kernel
function between pairs of examples, as a similarity estimation. An additional advan-
tage of this approch is that it allows classifying elements issued from spaces which
are not naturally endowed with inner products (such as graph, tree or string spaces),
as long as we use a valid kernel function.

Furthermore, we describe the specific marginalized kernelsthat are being used
in labeled graph analysis.

2.1 Marginalized Kernels

Given a generic class of objectsX , we assume that the constituentsx ∈ X are
generated according to a latent variable model which consists of the visible variable
x and of a hidden variableθ , being considered jointly in a pairz= [θ ,x]. As we need
a kernelK(x,x′) for the visible variables, we define first ajoint kernel Kz(z,z′) for
the mixed pair, which is used in amarginalized kernel[8] defined as the expectation
of the joint kernel over all the values of the hidden variable:

K(x,x′) =

∫

θ ,θ ′∈Θ
p(θ |x)p(θ ′|x′)Kz(z,z

′)dθdθ ′ (2)
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whereΘ refers to the domain of the hidden variable. In a discrete setting, the value
of the marginalized kernel is estimated with:

K(x,x′) = ∑
θ ,θ ′∈Θ

p(θ |x)p(θ ′|x′)Kz(z,z
′) (3)

The difficulties to be considered when estimating marginalized kernels are the
computational burden which is related to the dimension ofΘ , and the estima-
tion from the data of the probabilistic modelp(θ |x). Therefore, the choice of the
model p(θ |x) should maximize the relevance for the specific datax ∈ X under
the tractability constraint ofK(x,x′). With respect to the properties of the func-
tion K(x,x′), as long as the joint kernelKz(z,z′) is positive semidefinite, the kernel
K(x,x′) is also positive semidefinite, since the class of positive semidefinite kernels
is closed under addition and multiplication [9]; the kernelmay also be interpreted
as the inner product of the two vectorsp(θ |x) andp(θ ′|x′).

2.2 Building SVM classifiers for graphs

The graph similarity is assessed using a marginalized kernel function and is em-
ployed in a SVM classifier. This similarity, related to a specific featurea, between
two graphsG andG′ extracted from images is evaluated with a kernel that sums
the similarities between all possible pairs of random walksin the two graphs [1],
weighted by their probability of apparition.

In reference to other applications that used this type of marginalized graph ker-
nel [2], the labeling space for vertex features is continuous and multidimensional.
The similarity function for feature values has to be less discriminative than the Dirac
delta function usually employed in the discrete case. Therefore, we use Gaussian
kernels with varianceσ2 in order to evaluate the similaritykrb f

a (a1,a2) between two
valuesa1 anda2 of the numerical featurea :

krb f
a (a1,a2) = exp

(

−
‖a1−a2‖

2

2σ2

)

(4)

Specific kernels have been shown to be adapted for other typesof features. These
kernels usually employ a well known distance between features that they kernelize;
examples include aχ2-kernel between histograms :

kχ2(h1,h2) = e−αχ2(h1,h2) (5)

or a L1/L2 distance based kernel between multichannel mean color levels. In case of
texture features, we use a distance metric defined in [10] on the means and standard
deviations of Gabor filter energy responses [11].

Given the two graphsG and G′ to compare, Equation (4) is used to evaluate
the similaritykv,e(h,h′) between two random walksh = {x1, . . . ,xn} in G andh′ =
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{x′1, . . . ,x
′
n} in G′, by combining the similarity functionskv for a vertex featurev and

ke for an edge featuree alongh andh′:

kv,e(h,h′) = kv(vx1,vx′1
)

n

∏
i=2

ke(exi−1xi ,ex′i−1x′i
)kv(vxi ,vx′i

) (6)

This general equation may be simplified if we take into account only a region
feature (as it happens with adjacency graphs) or if we take into account only an
edge feature. In order to simplify the computation, we fix thevalue of the missing
function to 1 (however, the element that is not considered for similarity computation
must exist, otherwise a random walk containing the element could not exist).

At this point, we can underline the link between our specific kernel and the formal
marginalized model depicted in Section 2.1. The input graphG represents the visible
variable, and the random walkh represents the hidden variable. Therefore, the graph
kernel betweenG andG′ is computed by adding the similarities between all possible
random walk kernelsh andh′, weighted by their probability of apparition:

Kv,e(G,G′) = ∑
h

∑
h′

kv,e(h,h′)p(h|G)p(h′|G′) (7)

This function is subsequently used with a support vector machine (SVM) in order to
build an image classifier. The matrixKv,e defines the similarity between the graphs
to compare.

3 Spatial relations in the context of graph learning

The spatial context has been taken into account in computational biology and chem-
istry when representing structured data. With few exceptions [3], spatial relations
being used are binary and model rigorously the presence of aninteraction between
two elements of the structure. Even under this binary relation model, it has been
shown that information brought by the absence of interactions may increase predic-
tion performance, in relevant applications. For example, in protein-protein interac-
tion (PPI) networks the absence of protein interactions is relevant for disease pre-
diction. Therefore, a complement graphG̃ of the initial interaction graphG, which
encodes the absence of interactions, has been proposed [4].The resulting composite
kernel:

K∗(G,G′) = K(G,G′)+K(G̃,G̃′) (8)

leads to noteworthy improvements in classification accuracies on disease outcome
prediction for cancer patients.

As to the extraction of spatial information for image representations, the situa-
tion is more complex. First of all, spatial interactions present an inherent semantic
variability which goes well beyond the binary case mentioned above. Secondly, the
integration of fuzzy spatial information and region feature information turns out to



6 Emanuel Aldea and Isabelle Bloch

be more complicated than the direct method depicted in Equation 8. However, this
type of spatial information has been shown to enrich the description of images and to
be useful for segmentation and structure recognition purposes. Below, we examine
how we can use spatial information in learning and, more specifically, categoriza-
tion.

We could just add fuzzy information on the existing edges of the image repre-
sentation graph, but using strict adjacency for the underlying structure may pose
robustness issues. Indeed, in cases when adjacency relies on a small number of pix-
els, the resulting graph may differ according to the segmentation method. Adding
edges that represent more than the implicit strict adjacency relation does not only
help with encoding structural information, but at the same time improves the robust-
ness of the representation.

For our application, we use a topological spatial relation represented by an ex-
tended degree of adjacency, described below. Note that other relations could be
added as well, using the same framework.

3.1 Distance between regions.

The distance between two regionsR1 andR2 is computed as the minimal Euclidean
distance between two pointspi ∈ R1 andq j ∈ R2:

d(R1,R2) = min
pi∈R1,q j∈R2

(dEuclidean(pi ,q j)) (9)

Distance, as well as orientation, may not always be relevant, for instance the
distance between two regions is the same if those two regionsare adjacent by only
one pixel, or if a region is surrounded by another region. Therefore we propose
to consider a topological feature that measures the adjacency length between two
regions.

3.2 Adjacency measure based on fuzzy satisfiability.

One way to estimate this measure is to compute the matching between the area
“near” a reference region and another region. This measure is maximal in the case
where the reference region is embedded into the second, and is minimal if the two
regions are far away from each other.

Fuzzy representations are appropriate to model the intrinsic imprecision of sev-
eral relations (such as “near”) and the necessary flexibility for spatial reasoning [12].
We define the region of space in which a relation to a given object is satisfied as a
fuzzy set. The membership degree of each point to this fuzzy set corresponds to the
satisfiability degree of the relation at that point [12]. Note that this representation
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is in the image space and thus may be more easily merged with a representation of
another region.

The spatial relation “near” is defined as a distance relation. A distance relation
can be defined as a fuzzy intervalf of trapezoidal shape onR+. A fuzzy subsetµd

of the image spaceS can then be derived by combiningf with a distance mapdR

to the reference objectR: ∀x∈ S , µd(x) = f (dR(x)), wheredR(x) = infy∈Rd(x,y).
In our experiments, the fuzzy intervalf is defined with the following fixed values:
0, 0, 10, 30 (Figure 1a). We exemplify using a butterfly image (Figure 1b) and the
result of a segmentation exhibiting four distinct regions (Figure 1c). We illustrate the
distance map to the region represented by the left wing (Figure 1d) and the fuzzy
subset corresponding to the relation “near the left wing” (Figure 1e) which uses the
distance map and the fuzzy interval defined above. Similarly, we compute fuzzy
subsets for the right wing (Figure 1f) as well as for any otherregions designated by
the segmentation.

So far we have defined the area of the image in which the relation “near to” a ref-
erence object is defined. The next step consists in estimating the matching between
this fuzzy representation and the other region. Among all possible fuzzy measures,
we choose as a criterion aM-measure of satisfiability[13] defined as:

Sat(near(R1),R2) =
∑x∈S min(µnear(R1)(x),µR2(x))

∑x∈S µnear(R1)(x)
(10)

whereS denotes the spatial domain. It measures the precision of theposition of the
object in the region where the relation is satisfied. It is maximal if the whole object is
included in the kernel ofµnear(R1). Note that the size of the region where the relation
is satisfied is not restricted and could be the whole image space. If the objectR2

is crisp, this measure reduces to
∑x∈R2

µnear(R1)(x)

∑x∈S µnear(R1)(x)
, i.e. the portion ofµnear(R1) that is

covered by the objectR2.

3.3 Adjacency measure based on fuzzy resemblance.

Beside satisfiability, we also choose a symmetric measure, theM-measure of resem-
blance[13] defined as :

Res(near(R1),R2) =
∑x∈S min(µnear(R1)(x),µR2(x))

∑x∈S max(µnear(R1)(x),µR2(x))

This measure is maximal if the object and the relation are identical: this resemblance
measure accounts for the positioning of the object and for the precision of the fuzzy
set as well.

In Figure 1(e) and Figure 1(f) we have illustrated the fuzzy subsets corresponding
to the two wings. With the fuzzy satisfiability measure defined above, we get a
response of 0.100 for “right wing near the left wing” and 0.109 for “left wing near
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Fig. 1 (a) Fuzzy interval for the distance relation. (b) Input image. (c) Segmentation result, four
distinct regions. (d) Distance map to the region represented by the left butterfly wing. (e) Fuzzy
subset corresponding to the relation “near the left wing” (red corresponds to highest values). (f)
Fuzzy subset corresponding to the relation “near the right wing”.

the right wing”. It is equally worth noting that the two regions are disconnected with
respect to the strict pixel adjacency.

In the remaining sections, we will denote by a spatial relationRone of these mea-
sures of fuzzy adjacency, but we underline the fact thatR could be substituted for
other functions that estimate the interaction between elements of the image struc-
ture. The choice of the spatial relation of adjacency for ourillustration is immediate
because fuzzy adjacency information extends naturally oneof the most simple and
pertinent relations between image regions, the strict adjacency. However, taking into
account more complex spatial relations such as “parallel to” or “along”, along with
their fuzzy measures of satisfiability [14, 15], is possibleas long as these spatial
relations are appropriate for the content of the input images.
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4 Fuzzy spatial information and discriminative models

We can see that fuzzy spatial relations for images extend very conveniently the bi-
nary relations that are being used in other domains and achieve to merge at the
same time information concerning the presence and the absence of an interaction.
However, there are difficulties that arise when using this type of relations for dis-
criminative learning.

In the context of image representation using space relations, related work has
been done using binary relations supported by a specific ontology [16], using a
count vector which estimates simple relative positioning [17], or using fuzzy spatial
relations [18]. Each independent spatial relation builds in itself a novel data rep-
resentation, therefore additional work may be necessary inorder to make use of
different spatial features simultaneously and efficiently. In this part of the article,
we focus on the fact that a single fuzzy spatial relation createsby itself an infi-
nite set of different representations. Rather than using multiple spatial relations for
learning, we try to underline the specific challenges that a discriminative learning
algorithm has when using a family of representations generated by the same fuzzy
spatial relation.

Very often, there is a correlation between the value of a fuzzy spatial relation and
the information gain: if the response is high, it means that the relation that the func-
tion has been designed for is much present. Consequently, low responses may be
frequent (e.g. in the case of the “near” spatial relation) and may not bring the same
amount of information. Discriminative learning, and discriminative learning for la-
beled graphs in particular, makes intensive use of similarity assessments between
input objects. The similarity score between two graphs increases if these graphs ex-
hibit many similar substructures. Complete graphs must be used if we compute a
spatial relation value between all possible regions; therefore, if very low relation
values are frequent (close to, or equal to 0), the graph kernel function will over-
increase the graph similarity measure.

A straightforward solution to this situation is to threshold the spatial relation
values, so that edges will exist only when the fuzzy adjacency estimation between
two vertices is beyond a minimum valueθ . However, the strict adjacency graph
does not necessarily belong to this setG of threshold graphs. In terms ofgraph edit
distance[19], let us consider for an image the adjacency graphG and an element
Gθ ∈ G :

Gθ = {V (G);(v1;v2) ∈ V
2(G)|R(v1,v2) ≥ θ} (11)

whereR(v1,v2) is the generic spatial relation function between regions (vertices)v1

andv2.
Obviously, the vertex sets ofG andGθ are identical, as representations of the

same image segmentation. We denote byV (G) the vertex set of graphG, and by
E (G) its edge set. Under these circumstances, the graph edit distancedg.e.(G,Gθ )
betweenG andGθ is generated by strictly adjacent regions that are not closeenough
in terms ofθ -fuzzy adjacency and non strictly adjacent regions that areclose in
terms ofθ -fuzzy adjacency:
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dg.e.(G,Gθ ) = card{(v1;v2) ∈ V
2(G)|(v1,v2) ∈ E (G)∧R(v1,v2) < θ}

+ card{(v1;v2) ∈ V
2(G)|(v1,v2) 6∈ E (G)∧R(v1,v2) ≥ θ} (12)

In practice this means that if we extend the spatial information beyond the intu-
itive strict adjacency between regions, we get for each spatial relationRa graph set
G instead of a single graph representation of the image, and learning using spatial
relations should be adapted to this situation. More precisely, we should know which
of these graphs is more appropriate for learning.

The graph or graphsG∗ ∈G that minimizedg.e. are the closest (structurally) to the
adjacency graph G. These are the projections ofG in the setG , and are ideally robust
generalizations ofG with respect to the spatial relationR. However,G∗ andG might
still exhibit various differences (the edge setsE (G) andE (G∗) are not identical),
therefore the structural information within might still bepartially disjunct.

The element that bridges the informational gap betweenG andG is the complete
graphGf , which includes (structurally) any elementGθ ∈ G , as well as the strict
adjacency graphG. Ideally, the learning algorithm should exhibit the best perfor-
mance withGf , but then it should be able to cope well with the noise generated by
a lot of similar low-information edge labels.

5 Experiments and results

5.1 Data set

The Internet Brain Segmentation Repository(IBSR) data set1 contains real clini-
cal data and is a widely used 3D healthy brain magnetic resonance image (MRI)
database. It provides eighteen manually-guided expert brain segmentations, each of
them being available for three different views, along reference planes: axial, sagittal
and coronal. Each element of IBSR is a set of slices that coverthe whole brain.

The main purpose of the data set is to provide a tool for evaluating the perfor-
mance of segmentation algorithms. However, the fact that itis freely available and
that it offers high quality segmentations as input data makes it also useful for our
experiments.

5.2 Experimental setup

Image categorization between images belonging to different views in the data set
(sagittal, coronal, axial) is performed with a 100% successrate for many of the

1 The MR brain data sets and their manual segmentations were provided by the Cen-
ter for Morphometric Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.
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(g) (h) (i) (j) (k) (l)

Fig. 2 Samples from IBSR data set. 2(a), 2(b) Two slices of the sagittal view of the same 3D MRI
volume representing the two categories. 2(c), 2(d) Coronalview. 2(e), 2(f) Axial view. The original
images are presented below their corresponding manual segmentations.

Table 1 Identification of the slices composing the database in each view of the 3D volume, for the
three possible views: sagittal (S), coronal (C) and axial (A)

View Slices Slices cat. 1 Slices cat. 2

S 256 121, 122, 123 126, 127, 128
C 128 58, 59, 60 64, 65, 66
A 256 121, 122, 123 126, 127, 128

features that we take into account; as a result, we build a more challenging catego-
rization problem between images belonging to the same view;a secondary benefit
of this approach is that by choosing certain slices we can control the difficulty of the
task. Since the brain is made up of consecutive slices in any of the three views and
the brain structure varies progressively, we want to createone category using three
consecutive slices which are at the same level over all the eighteen 3D brain seg-
mentations. A second category is being built using three consecutive slices which
are positioned at a certain distance from the first block; as the distance between the
two blocks of slices decreases, the difficulty of the categorization task increases. We
found out that choosing a distance of only two or three slicesbetween the training
blocks, along with category intra-variability, would account for a difficult catego-
rization task. Table 1 references the total number of slicesin each 3D brain view
and the indices of slices being used for defining each category; Figure 2 presents
typical category elements for all views. Each brain view will provide three images
for each category, thus creating a category definition of 54 images.

Concerning the graph construction and labeling, nodes are represented by man-
ually segmented regions while edges account for spatial relations between regions.
For vertex labeling, we use normalized region visual features: the mean gray level
(which is normalized according to the lightest and darkest regions in the image), the
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relative region area (normalized according to the total image area) and the normal-
ized region compacity, defined as the normalized ratio between its surface and its
squared perimeter. For this work specifically, we will experiment with the coronal
view and with the mean gray level as region feature. Spatial relations based on adja-
cency measures being considered between image regions build up the edge labeling,
respectively.

We perform n-fold cross validation on the training set (n = 10), and we repeat
the classification taskm times (m= 10); the performance given below is the mean
value of thesem executions.

5.3 Categorization with strict adjacency structures

Given a region feature and a spatial relation within the strict adjacency graph,
we use RBF kernels (Equation 4) with thresholds that are adapted to the range
[0,1] of these normalized features (see Figure 3), and we set up a grid search in
the σ parameter space for each of the two kernel functions. For each element of
the grid, we try multiple values for the regularization parameterC of the SVM,
C∈ {10−2,10−1, . . . ,106}. Figure 3 presents the best classification performance for
each pair(σvertex,σedge), for the values and features specified on the axis.

Categorization with fuzzy adjacency structures

Next, we analyze the impact of adding structural information which is not necessar-
ily tied to the strict adjacency between image regions. For agiven segmentation and
for a certain spatial relationR, the complete graph encodes all the possible relations
between vertices, as edge labels.

The histograms in Figure 4 present the satisfiability and ressemblance values en-
coded within all the complete graphs in the dataset. From these figures, we notice
that the first type of measure takes the maximum value more often, while the fre-
quency of low values is very significant. For the second measure, maximum values
are quite low even for adjacent regions (the maximum value inall the dataset being
0.39), and low values are very frequent, too.

In order to estimate the impact of different spatial relation thresholdsθ on the
structure of elements in the threshold graph setG , we compute the number of dif-
ferences between the set of strict adjacency edges andθ -thresholded edges with
respect to the relationR, using Equation 12. The difference profiles for the satisfia-
bility and ressemblence relations are presented in Figure 5(a) and Figure 5(b). Given
any of the adjacency graphsG in the dataset, the thresholdθ that would minimize
the structural difference betweenG andGθ ∈ G is given by the value corresponding
to the minimum in the difference profile,θ∗.

For our dataset, the optimal threshold for the satisfiability measure isθ sat
∗ =

0.911. This high value proves the fact that most of the times, strictly adjacent re-
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(a) Using the gray level region attribute and the ressemblance measure, the
best performance, 97.72%, is attained forσvertex= 0.1 andσedge= 0.005.
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(b) Using the gray level region attribute and the satisfiability measure, the
best performance, 96.51%, is attained forσvertex= 0.1 andσedge= 0.002.

Fig. 3 Categorization performance for the gray level region attribute and two different measures
of fuzzy adjacency, using grid search in the space of kernel parameters. At this point, we model
input data using strict adjacency graphs.
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(a) Histogram of the satisfiability measure. Null values arethe most fre-
quent ones, but maximal values are frequent too.
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(b) Histogram of the ressemblance measure. Null values are equally the
most frequent ones, but this measure penalizes very fast theabsence of a
strong adjacency and the maximum value in all the dataset is 0.39.

Fig. 4 Distribution of the two measures of fuzzy adjacency for all the edges in the set of complete
graphs representing the dataset.
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(a) Satisfiability edge dissimilarity count
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(b) Ressemblance edge dissimilarity count

Fig. 5 For a given measure (satisfiability or ressemblance) threshold θ , we show the number of
different edges between the set of strict adjacency graphs of the dataset and the set ofθ -threshold
graphs associated to the strict adjacency graphs. The minimal value accounts for the highest struc-
tural similarity between the strict adjacency graphs and the θ -threshold graphs.
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Table 2 Categorization performance for (gray level - spatial relation) image information. The
parameters for the kernel functions are the optimal values found using the grid search. In the third
column, the strict adjacency graph is used, but no spatial relation labels are added to the graph. In
the fourth column, we use fuzzy adjacency labeling on the strict adjacency graph. Afterwards, we
use differentθ -threshold fuzzy adjacency graphs.

Region feature Spatial relation Strict adj. Strict adj. Fuzzy graphs
No relation Fuzzy labeling

Gray level Ressemblance 58.18% 97.72% θ=0.00 (82.90%)
θ=0.01 (82.92%)
θ=0.02 (86.43%)
θ=0.05 (84.38%)
θ∗=0.075 (74.43%)
θ=0.10 (76.23%)
θ=0.20 (69.90%)
θ=1.00 (61.73%)

Gray level Satisfiability 57.04% 96.51% θ=0.00 (79.07%)
θ=0.1 (70.83%)
θ=0.25 (68.18%)
θ=0.5 (76.75%)
θ=0.75 (77.51%)
θ∗=0.911 (77.29%)
θ=1.00 (62.85%)

gions account for satisfiability values that go beyond the threshold, as it is per-
ceivable from the high proportion of maximum values. The second measure has a
different behavior; it penalizes very fast the absence of a strong adjacency. In this
case, theRvalues associated to the strict adjacency relation are scattered on a larger
interval, thus the optimal threshold is situated further from the maximum value:
θ ress
∗ = 0.075.

In Table 2 we compare the categorization performances for different settings
involving spatial relations. As a reference, we use the bestclassifier detected for a
certain region feature-spatial relation pair, using grid search. This classifier relies
on the strict adjacency graph extracted from the image, but the edges are labeled
using the spatial relation value between the correspondingvertices. The interest
of incorporating spatial relation information to the labeling is proven by the weak
performance of the classifier on the adjacency graph which uses only the region
feature information (the edge kernelke being fixed set aske = 1, cf. Section 2.2).

Next, we pass to the threshold graphsGθ in the setG . In our setting, the spatial
relationsR are represented using values in[0,1], therefore the thresholdθ is also
a number in[0,1]. We estimate the categorization performance along the setG ;
reference elements are the complete graphGf = G0, Gθ∗ the projection ofG in G ,
andG1.

Results in Table 2 show that once we pass to a structure which is based entirely
on thresholded fuzzy spatial relations, we do not improve the best performance wit-
nessed on the strict adjacency graph structure. Within the set G , the projectionGθ∗
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of G performs well and the classifier performance may be improvedby lowering
slightly the threshold below the value ofθ∗, which accounts for adding edges with
spatial information. However,θ values that are far fromθ∗, including the value
θ = 0 that corresponds to the complete graph, account for a poorer performance.
This shows that in the presence of a richer information, the performance does not
necessarily improve. The explanation is that the high frequency of low values for
the edge labels leads to artificially high similarity estimations between graphs and
masks the similarity of meaningful high label values. Whilethe spatial information
is definitely helpful in image interpretation, its generic integration into graphical
models remains a difficult task and kernel functions for SVMsthat cope with spatial
information should be adapted specifically to different types of spatial relations.

6 Conclusion

In this article, we studied the benefits offered by image representations using labeled
graphical models, as well as by employing fuzzy descriptorsfor spatial information.
Graphical models allow for a flexible integration between intrinsic visual features
of image parts and the spatial interactions taking place. Weshowed that fuzzy in-
formation is highly beneficial for the learning process whenwe use it to enrich the
labeling of strict adjacency graphical structures, but that loose spatial interactions
may screen more relevant spatial information and that generic kernel functions are
not well adapted to take into account the entirety of spatialrelations within images.
Future work will try to adapt the graph similarity estimation to the specificity of
spatial relations in order to benefit from information concerning the presence and
the absence of interactions.
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