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Abstract. We propose in this article an image classification technigased
on kernel methods and graphs. Our work explores the pasgibil applying
marginalized kernels to image processing. In machine iegrperformant algo-
rithms have been developed for data organized as real valuags; these algo-
rithms are used for various purposes like classificatioregrassion. However,
they are inappropriate for direct use on complex data setswork consists of
two distinct parts. In the first one we model the images by lysap be able to
represent their structural properties and inherent ateth In the second one, we
use kernel functions to project the graphs in a mathematjmde that allows the
use of performant classification algorithms. Experimenegp@rformed on medi-
cal images acquired with various modalities and concerdiffgrent parts of the
body.

1 Introduction

Most of the traditional machine learning techniques ultehacope with basic numeric
features given in the form of arrays [1]. Such input inforibais processed for various
purposes, like classification or regression.

Nevertheless, it has become clear recently that machimeitgpshould be able to
cope equally with more complex input data, such as imagekaules, graphs or hy-
pergraphs. The attributes that one can use to describegheiiiormation are complex
and very often inaccurate. In this context, classical lie@ymethods do not provide a
generic solution to the problem of processing complex imjada.

Instead of changing the classical machine learning algmist our choice isto goin
the opposite direction and to adapt the input for classificgiurposes so as to decrease
structural complexity and at the same time preserve thibatitys that allow assigning
data to distinct classes.

As these complex structures started to emerge from varimastsfic areas (com-
puter science, chemistry, biology, geography), one péssibproach that we also em-
ploy in the current work has been to add a supplementary pcepsing step involving
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structure and attribute extraction. In this way, we canrreto the vectorial case by
projecting a complex structune belonging to a certain general spax¥danto the n-
dimensional real vector spa®& or in an infinite-dimensional Hilbert space.®@rent
approaches have been used to project images in classifigdtes In one of them,
images are treated as indivisible objects [2] and only dlalteibutes are extracted.
Another strategy has been to treat images as “bags” th&tioandivisible objects [3],
and interpret them by indexing these objects and theirbatis, but ignoring what-
soever the relationships among them. However, the noaksly that best defines our
approachis to interpretimages as organized sets of oljfeditand extract at the same
time object attributes and structural information.

(b) MRI

Fig. 1. Examples of medical images

We intend to use our work for the classification of 2D gray lewedical images
acquired using dierent techniques and concerningfelient parts of the human body.
More precisely, the test base includes angiograms (Fig), s@nograms, MRIs - mag-
netic resonance images (Fig. 1(b)), X-rays, CTs - computetbyrams (Fig. 1(c)),
acquired with diferentimaging systems and followindldirent protocols (even in each
class). Most images also present small annotations, iatefat the human reviewers.
A good classification technique for this family of images lddbe able to cope with
the generality factor due to the variety of classes and ofiia@tepn techniques and
equally with that due to noise (annotions, arrows) whichmaeed by instruments or
by technicians and which are supposed to facilitate the wbrkedical teams.

This article starts with a brief presentation of supportteemachines in Section 2
and of kernel methods for graphs in Section 3, emphasizie@tie that represents the
starting point for our work. Afterwards we describe in Sect?# our graph model for
images, based on a generic, non-supervised segmentatmmdd by attribute extrac-
tion on the resulting structure. In Section 5, we explain rgtthe dificulty of working
with these attributes resides, and we propose a classificatethod adapted for image-
issued graphs. This constitutes indeed the main contoibwtf the paper. Preliminary
results on medical images are discussed in Section 6.



2 SVM Classifiers and Kernel Machines

In its basic form, a Support Vector Machine (SVM) classifisesitwo sets of discrim-
inative examples for training; these examples belong toctovespace endowed with
a dot product. The main advantage of this classifier is thetfat it minimizes the
classification error while maximizing the distance from th&ining examples to the
separating hyperplane. It also allows the definition of & s@frgin to prevent the mis-
labeled examples from perturbing too much the classifinattdthough SVMs have
been originally designed as linear classifiers, they haea lextended to perform non-
linear discrimination [7] by using a “kernel trick”, thafplaces the dot product needed
in computation by a non-linear positive definite kernel fiime. As a consequence,
the examples are projected into a Hilbert space of higheedsion, called the feature
space, which allows the construction of a linear classifiat ts not necessarily linear
in the initial space.

An important observation is that the classifier only needswiilue of the kernel
function between the examples. An additional advantagei®tipproch is that it allows
classifying elements issued from spaces which are not altiendowed with inner
products (such as graph, tree or string spaces), as long asengevalid kernel function.

3 Marginalized Graph Kernels

In this section, we briefly describe the marginalized kefoelabeled graphs.

We perform feature extraction on an undirected gi@ptvhose set of vertices is.
The graph is labeled using the functionsX — S, for its vertices an@ : X x X — Sg
for its edgessS, andSe being two label sets. For the sake of clarity, we ndgtg by vy
ande(Xy, X2) by ey, x,.

Feature extraction is carried out by first creating a set ofloan walks [8, 9]. The
first element of the walk is a vertex given by a certain probability distribution ovEr
At a subsequent moment during the generation, the walk willa the current vertex
X with a fixed (small) probability or it will continue by visitg a neighboring vertex
Xiti

For each walkh = (X1, X2, . .., Xn), labeled a$y = (Vx,, €¢x,5 Vx,s - - - » Vx,), the prob-
ability to obtain it may be expressed as:

p(NG) = ps0a) | | pe(xil-1) (1)
i=2

in which ps andp; have to be chosen in order to buj¢h|G) as a probability distribution
in the random walk spac&” = U, X', the union of all random walk spaces of a certain
finite lengthi . One proposal fops and p;, that we have also adopted for our model, is
given for example in [9].

The kernel between two grap@sandG’ measures the similarity of all the possible
random walk labels, weighted by their probabilities of ajitjn:

K(G,G) =) > kihh)p(hiG)p(hIG") )
h



As for the kernel between two random walk labels, a naturtbogs to define it as O if
the walks have dierent lengths, and the product of all the kernels for theiregpond-
ing constituent parts otherwise:

n
k(h, h') = K“(vy, Vi) 1_[ K%(ex_1x» €x_x K (Vi Vi) 3)
i=2

wherek andk® denote the kernel functions used for computing vertex age stni-
larity, respectively. In computational chemistry, whdristkernel has been extensively
and successfully used, label functions have a limited ramngetherefore an appropriate
kernel for assessing vertex or edge label similarity is the®kernel:

1.,ifz=t
0 , otherwise

o0 = { @
Even so, computing the marginalized kernel for two graphdifiscult in the ab-
sence of two supplementary variables [10]. The first fige= ((ms(X, X)) (x x)ex2 iS @
[X||X’| vector containing the joint start probabilities of two vegsx € X andx’ € X’
if they have the same label, and 0 otherwise. The secondolarn@eded for the kernel
computation ig7; = ((m((X1, X}) (X2, X'z))))(xl,xg),(xz,x’z)exz is a|X||IX’'| x |X||X’| square ma-
trix whose elements assess the joint transition probglbiétween two pairs of vertices
belonging to the first and to the second graph, if and onlyas#wvertex pairs and the
corresponding edge pair are identically labeled (othexwis probability is null):

{ns(x, X) = pS(9PE () /
m((, )10, %)) = PExalx2) P (%41%))

(5)

Using these new variables aid the vector with all its values equal to 1, the kernel
can be evaluated as:

K(G.G) = I(1 - 1) ™1 6)

Due to the inversion off; which dominates the computation cost, the problem has
an order of complexity a®((|X||X’|)%). However, one may take advantage of the sparsity
of I;, as well as of other methods [10, 11], in order to boost théop@ance of the
algorithm. Many of these improvements are conditioned byallsrange of labels and
a low degree of vertex connectivity.

4 Graph Models of Images

The first step of our method consists in extracting and mogdetage information. In

order to achieve this, we use a labeled graph support (esrtice labeled as well as
edges). The graph is obtained by first segmenting the imitiage into regions, which

allow us to describe its structure and to facilitate the iinfation extraction step. Dis-
tinct regions correspond to vertices, while edges moddplagial relationships between
regions. Beside this information brought by the structergiressivity of the graph, we
integrate in the labeling relevant intrinsic informatidrat we describe in detail later.



Therefore, the interest of using a graph structure goesrukEy® structural expressivity
and is due to the possibility that iffers to save various data and link them to particular
components.

Unsupervised segmentation, as the low-level processaygsif our classification
system, is an important and at the same tintBatilt task. Good results of a classifier
with no prior information on the elements to be classifiedlintpe use of a segmenta-
tion method that works reasonably well for any input imageety

For our processing stage we adopt a generic hierarchicgdraagmentation par-
adigm [12-14]. We suppose that the image is divided into aomepts that may be
further divided into subcomponents. This decompositioly imarepresented by a tree
whose root node is the whole image and whose leaf nodes egpir@partition of tiny
regions built at the beginning of the processing step. Taittion may be for example
the set of pixels of the image. The advantage of employingehthical segmentation
method is that changes are gradual, unlike for other metivbdse the variation of one
parameter may induce a completelyfdient segmentation map. This aspect is relevant
because medical images which have been acquired udiiegetit protocols but show
the same body parts are sensitive to segmentation methatdssi absolute thresholds.
As opposed to that, hierarchical segmentation gives engplmselative relationships
between image subconstituents.

To generate the leaf node patrtition of the tree, instead @i@ymg each pixel as a
terminal node in a tree, we use a watershed over-segmenthtibleaves us however
with a very large number of small regions. At this point wertstdimbing in the tree
structure by merging neighboring regions that have theeskoaverage gray levels:

dify(r1.r2) = favg(ra) — ave(r2)| (7)

whereavy(r) denotes the average gray level in the region

Concerning the stopping condition for the fusion processhave chosen to set a
dynamic thresholdk . If the smallest gray level fierence between two neighboring re-
gions is higher than the threshold, we decide that the regagomnot similar enough for
the fusion to be performed and we stop. The threshold is dimlaetause we compute
it at each step as a (fixed) fractidrof the diference between the highest and the lowest
region gray levels that exist in the image:

tg=f- (m%xavg(r) - [girg avy(r)) (8)

As an example, we present a typical mammography in Fig. 2{ajg with one
of the best possible human-assisted watershed based gegjoren(Fig. 2(b)) and the
result of the unsupervised method presented above (Fip. 2(c

Once the fusion has ended, we compute the following ateiér the resulting
regions, encoded as vertices:

— region surface in pixels,

— relative surface, a real value that represents the peréémt anage covered by the
concerned region,

— average gray value of the region,



(a) Initial image

(b) Direct segmentation

Fig. 2. Mammography segmentation

(c) Region fusion

— relative average gray value, corresponding tofinatransform with respect to the
highest and lowest average gray values in the imggg et Omax:

grayra(r) =

— region perimeter,

g — Omin

Omax — Gmin ’

(9)

— region compacity, in [01/(4n)] and defined as the ratio between its surface and its

squared perimeter,
— number of neighboring regions

For the time being, the only relationship encoded by the e(g®licitely) is the neigh-

borhood.

In Fig. 3, we present how the region number evolves when weifintite fusion
threshold. Regions in images with a stronger initial ovegraentation tend to merge
faster, so that for a fractioh > 0.1, results will start to be similar enough to those of
images that presented a medium and low over-segmentat®todusmaller size or to
a lower contrast, for example. This is an interesting resfubur approach.
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5 A Kernel for Image-Based Graphs

For image-based graphs, we propose a marginalized kerfiietatit of that used in
computational chemistry, which is able to better cope withcific image attributes.

A major structural dference in image-based graphs concerns the connectivitie Wh
it is uncommon that atoms present more than four links tosvérd rest of the structure
they belong to, this changes dramatically in the case of @magions, where there is no
limit for the number of neighbors a region might possesse®@il optimizations based
on graph sparsity become useless and, at the same timegtbe neighborhood rela-
tionship has a lower importance than it has in a chemical @amg, where the number
of vertex neighborg(x) could be a used by a Dirac type kernel, as in Eq. (4). In o cas
however, the function(x) is unreliable as it is heavily influenced by the segmentatio
step, and cannot be helpful in building a vertex kernel ogaificant part of it.

Another major diference in image-based graphs concerns the labeling. Imithe i
tial approach, vertices and edges are labeled using a sehalf shemical symbols and
possible bindings, and much information is given by thetexise of the edge. The fun-
damental modification in the case of image-based graphsighk labeling variable
space becomes continuous and multi-dimensional, and #isagr part of the infor-
mation migrates from the graph structure to the labelingsoédnstituent parts.

The marginalized kernel presented in Section 3 employsaclkernel for vertices
and edges, which is useful for assessing structural sitnlaibut is not adapted for a
graph whose labeling is a major source of information. Uridese circumstances, we
have tried to adapt the vertex and edge kernels in order toalafiproper similarity
estimate for them.

The original graph kernél (G, G’) defined in Eqg. (2) is estimated by summing the
similarities of all pairs of random walks of equal lengthrBocertain pair of such ran-
dom walks [, h"), let us suppose that we get simultaneously to a pair of sparding
vertices &, x). At this point we analyze the next transition in each walkhe labels
of the next two edges(y,, exx ) and the labels of the next two vertices(, vy )
are not identical, the similarity brought by these walkd W null and we start analyz-
ing another pair of walks. Otherwise we multiply the currentilarity of the walks by
the probabilities for the two transitions occurring in eaedlk. This leaves us with a
probability of getting these random walks from start to efid o

p(h, ) = [p‘;’(v) []rPev |vi1)] : (p‘é’ AN ) (10)
i=2 i=2

in which we suppose implicitely that for the walks (), the labels of all the constituent
parts are identical. Using a Dirac similarity function fartices and edges, it is obvious
that random walk kernels in Eq. (3) will be also Dirac funasgso the graph kernel
in Eq. (2) is reduced to the direct sum of all the probabdifix¢h, h") as in Eq. (10)
computed for identically labeled random walks.

This strategy works for discrete ranged kernel functions,ito the case of region
attributes like gray level or surface, we need a less disndtive kernel. Possible so-
lutions to this problem are the Gaussian radial basis fanofRBF) kernel and the



triangular kernel [15]:

2
KREF (xy) = _Ix=vl
(x3) = exp (-2
CIA i Ix—vi[ < C
K"(x,y)={0 Cothér\:visléx M<C (11)

The advantage of the first kernel over the second is thdfat®a smoother, Gaus-
sian discrimination compared to the uniform discriminataf the triangular kernel.
However, beside an increase in computation time, the disadge ofKRBF is that it
does not vanish at finite bounds, while the triangular kenasla compact support.

We are entitled to use any of these kernels in the place of ttax Rernel because
they are also known to be positive definite and their use @id graph kernel respects
the closure properties of the family of kernel functions.

The next step is to integrate these values in the graph keomeputation. If we
employ in Eq. (2) the joint probability from Eq. (10) and welace the generic value
k(h, h") with that of Eq. (3), we get:

n
K(G,G) = Z Z K (V. Vi) ]_[ (K- €_x) - K (V- Vi)
h h i=2

xp2xa) - oS () - [ [ (PPix-)pE (KX )| (12)
i=2

By comparing the kernel equation Eq. (2) with its revisedrfdEq. (12), we can
notice the adaptation of the variables from Eq. (5) that wetrpearform in order to use
the same method for the computation of the new kernel functio

{ns(x, X) = PE(PE (X) - K, Vi)
(%0 X102, %)) = PECxale) PE (X41%0) - KB+ € IK“(Ux Vi)

The vertex and edge kernel functions appear in this modeicdmapility multipliers
along transitions, which penalize paths with respect tor tenstituent dissimilarities.
Using the revised variables; andz; from Eq. (13), we can now employ Eq. (6) to
compute the revised graph kernel from Eq. (12).

In the general case of an attribute get {ay, ..., a,} associated to a graph compo-
nent, the kernel function will be extended in order to take mccount all the elements
of A. Kernel functions related to these various attributesnalls to treat them in a uni-
fied way, merging them in a unified similarity estimate [165 #ach kernel provides
us with a partial description of data properties, we arerg@gied in building a parame-
terized combination that employs each attribute accortirits relevance. In our work,
we have employed a linear combination of base kernels:

(13)

|A
Ka= > aiKq (14)
i=1

where the multiplierst; > 0 satisfy Y’ ; i = 1. This time too, the weighted sum
of definite positive functions preserves the key propertgefinite positiviness of the
result.



6 Experimental Results

Based on this adapted marginalized kernel, we have condigot@e preliminary ex-
periments, whose purpose is to assess its viability andnipadt of diferent graph
attributes on its performance. As training examples, weehased ten head X-rays
(coronal view) for the first class and ten mammographiesttshgiew) for the second
one. For the moment, edges are not, beside their implicicgtral importance, taken
into account; therefore, we consider them as having the $alpeéand we concentrate
on the richer vertex attributes. We have particularly arediytwo of them which are
adjusting to global image content: the relative surfggewith respect to the image sur-
face and the relative average gray vafmayq defined in Eq. (9). They are less prone
to perturbations, rescaling, contrast or brightness tiarig, etc.

In a first phase of our experiment, we have compared the pesioces ofk REF
andK“ in Eq. (11) for thes¢ attribute and for dferent parameterizations &f and
respectivelyr, on a testing sample of 42 images. For obvious statisticsores results
for the two kernels are directly comparable in the situatiamere the value o is at
the 3-sigma levelC = 3o

Recognitionf C=005| C=015| C=02 | C=05 | C=06 c=1
rate o =0.01670 = 0.05000 = 0.0667¢c = 0.1667 0 = 0.2000¢0 = 0.333
K4 0.81 0.74 0.83 0.83 0.83 0.86
KRBF 0.93 0.95 0.93 0.86 0.86 0.86
Table 1. Recognition rates based on the relative surface attrifyte

Results in Table 1 show that the RBF kernel performs well endhase of a strong
discrimination (i.e. if region areasftiér by more than one tenth of the image surface,
the kernel returns a very small similarity value). While plifying the discrimination
function, the triangular kernel does not manage to discrata as fficiently as the RBF
kernel in the initial range of the surface attribute.

In a second step, we have built a linear kernel as in Eq. (1ggdan botls.g and
grayd, in order to analyze the classification performance as aitumof the individual
kernel multipliers. The tests are performed, as beforehersample of 42 images. The
discrimination thresholds are fixed at 0.2 and 0.5 for thé&aserand gray level attributes
respectively. Gray level weight is gradually increasedrfi@to 1 in the unified kernel
equation.

The graph shown in Fig. 4 proves that performance may be ineprdrastically
by combining multiple attributes in the global kernel fupat Even for the limited
use of two vertex attributes in the absence of edge labefirgiminary results are
encouraging. The weighted combination of kernels shouldtle to use information
from multiple data sources by assessing the relative irapo#g of each of them.

Triangular kernels prove to be noticeably faster than Ganssnes and we hope
that further weight optimization [16, 17] will help us ina®e the performance of a
linear kernel based on triangular subcomponents.
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7 Conclusions

We have presented a new version of marginalized graph ketmieh extends the one
being used in computational chemistry and which allows tleegssing of image-based
graphs. This new approach incorporates in the similaritpatation specific proper-
ties of image-based graphs, such as image attributesviarete of the numbers of
neighbors of a segmented region, etc. We have applied thi®aph to medical image
classification, based on a generic segmentation methddnirary results validate this
model and further work will be needed in investigating whigtthe possible attributes
are relevant for graph-based image representation ansifetaton. We are also in-
terested in labeling edges with relationship attributegctvigo beyond planar neigh-
borhood and which are essential for expressing globallygeneontent. In the same
direction, we could try to use some results concerning tleetentegration theory in
order to find the most suitable multipliers for a certainihttte set that we consider
relevant.
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