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Abstract

This work deals with the clustering of information sources for epipole estima-

tion in a multi-camera system. For this problem, each pair of matched visual

features in the images can be considered as an elementary information source.

The epipole is then estimated by combining these elementary sources taking

into account their inadequacy, in particular large imprecision and presence of

outliers, as well as the very large number of sources. We address the challenges

introduced by a large number of sources with a strategy based on clustering and

intra-cluster fusion using the Belief Functions framework. When evaluated on

real data, the proposed algorithm exhibits more robustness in terms of accuracy

and precision than the standard approaches which provide singular solutions.
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1. Introduction

Multi-camera systems are more and more used since they can address com-

plex tasks such as 3D reconstruction [1, 2, 3], localization [4] or navigation [5].

Now, when these cameras (or a subset of the cameras system) are moving (em-

bedded on a pedestrian or vehicle), their localization is a key information of5

interpreting their images and processing them with respect to other data. To

∗Corresponding author
Email address: sylvie.le-hegarat@u-psud.fr (Sylvie Le Hégarat-Mascle)
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localize a given camera in the field of view of another one, one can try to di-

rectly detect its carrier. However, in practice, such a detection is ambiguous

once there are several similar carriers in the scene, such as in the case of wearing

a camera in a crowd, or within a fleet of drones or a vehicle network. Comple-10

mentary localization evidences have thus to be considered in order to raise the

ambiguities. Given a pair of cameras {C1, C2}, the epipole (of C2 in C1) is the

2D projection of the C2 optical center in the image plane of C1. The epipole

location is such an evidence for carrier localization since it indicates the position

of camera C2 in the image provided by camera C1.15

Epipole localization is closely related to the relative pose estimation between

two cameras, defined as the 3D rotation and 3D translation (six degrees of

freedom) to relate the respective positions of the cameras. Despite the fact that

this latter problem has been studied extensively for more than 30 years [6, 7,

8], there is still ongoing work in order to improve the achieved performance20

in adverse conditions introduced by wide baselines, large non-salient areas or

repetitive structures specific to urban settings [9, 10, 11, 12]. The difficulty stems

from the fact that the proposed solutions rely on the detection of keypoints in

each view and their association to form pairs of matched keypoints. However, in

practice, the derived set of matches contains a significant ratio of outlier matches25

which skew the solution. Despite the existence of robust estimation methods,

such as those based on the very popular RANSAC [13] principle, one may still

experience failures in the aforementioned adverse conditions where the outlier

ratio raises generally above 50%. On the other hand, ensemble approaches have

promoted the idea of considering several estimations in order to mitigate the30

impact of a few erroneous ones. In the case of epipole localization, such an idea

has been developed in [14] using a voting strategy. However, in difficult settings,

the correct location may be supported by only few estimations so that a more

sophisticated modeling and combination within the ensemble is required.

In this work, we focus on the Belief Function Theory (BFT) framework.35

This formalism was made popular by various real-world applications [15, 16, 17,

18, 19, 20] for which it provides an efficient modelling of imprecise information,
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allowing for fairer and more consistent decisions. However, for real applica-

tions, BFT scalability raises some challenges, either in terms of the size of the

discernment frame or in terms of the number of sources to be combined.40

Firstly, regarding the size of the Discernment Frame (DF), the issue is that

belief functions (mass, plausibility, etc.) are defined on the DF powerset, so that

for a DF denoted Ω having cardinality |Ω|, there are potentially 2|Ω| hypotheses

to consider. For localization applications, DF corresponds to possible positions

of the carrier, e.g., for epipole, typically |Ω| = 106 pixels in C1 image assuming45

C2 is included in its field of view. First solutions [17] use some tricks (e.g.

conditioning) to consider only a DF subset at once. Then, the authors in [21,

22, 23] propose to avoid the 2Ω element enumeration by only considering the

elements of the focal set (that is usually a small subset of 2Ω) provided that

we are able to handle them through their own description. Specifically, in [21,50

22], the focal elements are described as sets of rectangles (tiles) similarly to

the representation used in Interval Analysis [24], whereas [23] provides a more

general representation of any 2D shapes using polygons. In both cases, belief

function operators based on set relationships (intersection, union etc.) have

been redefined in an efficient way.55

Secondly, considering a large number of sources, their combination may be-

come challenging. Indeed, using the very popular conjunctive rule proposed by

Smets [25], the mass on the empty set (m(∅)), usually called degree of con-

flict, is an increasing function with respect to the number of combined BF.

Considering alternative rules would not solve the issue: Dempster’s rule or the60

orthogonal sum [26] hides potential conflict between sources (e.g. as in the case

of the Zadeh example), some hybrid rules (e.g., those proposed by Yager [27] or

Dubois and Prade [28]) performing a dispatching of the conflict are only quasi-

associative [29], which in turn may raise additional issues about the combination

ordering in presence of very conflictual sources. Thus, instead of searching alter-65

natives to the conjunctive combination rule, some authors proposed to discount

the Basic Belief Assignments (BBAs) so that their degree of conflict remains

under control [30, 31]. However, applying global or semi-global corrections to
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the source BBAs may be irrelevant when source reliability is highly variable. In-

deed, considering a large number of sources also raises the issue of the presence70

of unreliable ones: the higher the number of sources, the more likely it is that

some of them be unreliable. Such sources are outliers for the combination since

they are inconsistent with the remainder of the sources. Proposed algorithms to

handle some sets of sources including outliers either extend the q-relaxation [32]

proposed for the Interval Analysis to BFT [30], or extend RANSAC [13] to75

BF [22, 33]. In the first case, the combination rule is modified to be robust to

the presence of outliers, making it however intractable in the case of a large

number of outliers (the q parameter being usually in the range of a few units).

In the second case, having explicitly estimated the set of inliers, the conjunctive

rule may be used provided that the number of sources ranges in the tens, which80

nevertheless remains much beyond the number of sources we aim at considering

for epipole localization.

As far as we know, the only work actually handling a large number of sources

is [34]. It proposes a two-step combination based on BBAs clustering. Specif-

ically, using the canonical decomposition, the clusters are defined as sets of85

Simple Support Functions (SSF) having the same focal elements so that their

combination is straightforward and also produces a SSF. Then, cluster SSFs

are discounted with respect to the number of initial SSFs in the cluster. How-

ever, such an approach has very restrictive hypotheses, such as the fact that

the canonical decomposition of initial BBAs involves only a small set of SSFs,90

which is clearly not the case when considering a large 2D discernment frame.

In summary, for our topical application, the main issue comes from the fact

that we have both a large solution space (and thus discernment frame) and a

large number of pieces of evidence including a high ratio of outliers. Even if

some previous works have provided partial solutions, none of them handle both95

scalability issues together. In this work, we keep the general idea of BBA clus-

tering that was already proposed by [35], but both the clustering criterion and

the use of clustering results are tailored with respect to our application. BBA

clusters are firstly derived using a hierarchical clustering based on Jousselme’s
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distance that allows for taking into account focal element interactions. From100

clustering construction, these clusters correspond to possible but incompatible

solutions for the epipole localization. Secondly, BBAs are combined in a con-

junctive way only within clusters to provide cluster-BBAs that are ranked so

that the correct solution is expected to appear among the top ranked clusters. In

order to illustrate the general concept introduced by our work, we will consider105

different sources of evidence which may arise in localization applications. The

baseline scenario consists in a pair of images providing exclusively visual cues

via keypoint association. Then, a more complex setting considers additional

evidences provided by a pedestrian (i.e., carrier) detector and an exteroceptive

sensor. Finally, a third scenario involves static cameras within a dynamic scene,110

in which the temporal dimension provides the means for the accumulation of

evidences.

The remainder of this paper is as follows: in Section 2 we recall the basics

(including belief function tools) used for this study, then Section 3 describes the

proposed approach that provides a set of ordered solutions. In the next sections,115

we propose algorithms for the exploitation of the set of ordered solutions, in a

multi-source fusion task (Section 4), and in a multi-temporal fusion task (Sec-

tion 5) respectively. Section 6 analyzes the results obtained on a public dataset

before Section 7 draws the main conclusions and perspectives of our work.

2. Related background120

2.1. Basics on Belief Function Theory (BFT)

Let us denote by Ω the considered discernment frame, i.e. the set of mutually

exclusive solutions of our problem and by 2Ω the Ω power set, i.e. the set of

Ω subsets. BFT allows us to handle imprecision along with uncertainty thanks

to five main functions defined on 2Ω. Since these functions are in one-to-one125

relationships, the knowledge of one is sufficient to derive any other of them:

usually, the mass function m corresponds to the basic belief assignment (BBA)

representing knowledge provided by a given source. It satisfies two constraints:
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(i) ∀A ∈ 2Ω,m (A) ∈ [0, 1] and (ii)
∑
A∈2Ω m (A) = 1. A hypothesis A having

a non null mass value, m (A) > 0, is a Focal Element (FE) and the set of such130

hypotheses is called the focal set and denoted F(m). In this study, we will

also refer to the disjunction of all focal elements, which will be denoted
⋃
m

with
⋃
m =

⋃
A∈F(m)A. Apart from m, the plausibility (Pl) and commonality

(q) functions are widely used, for decision and for computation respectively.

They are related to m as follows: ∀A ∈ 2Ω, Pl (A) =
∑
B∈2Ω,A∩B 6=∅m (B),135

q (A) =
∑
B∈2Ω,A⊆Bm (B).

Different criteria have been proposed to compare two BBAs, m1 and m2.

Firstly, several orderings between BBAs have been established: e.g., pl-ordering

or q-ordering (m1 vf m2 ⇔ ∀A ∈ 2Ω, f1 (A) ≤ f2 (A), f ∈ {pl, q}), s-ordering

and w-ordering [26]. However, whatever the considered ordering, it is only par-

tial. Secondly, various distances or dissimilarity measures between BBAs have

been proposed [36]. In this study, we will consider the Jousselme’s one for its

simplicity, interpretable results and well-established mathematical properties. It

is based on the scalar product definition given by Eq. (1): denoting by |H| the

cardinality of any hypothesis H, m1 and m2 being two BBAs, ∀ (i, j) ∈ {1, 2}2,

〈mi,mj〉J =
∑
A∈2Ω

∑
B∈2Ω

|A ∩B|
|A ∪B|

mi (A)mj (B) , (1)

such that Jousselme’s distance dJ (m1,m2) between m1 and m2 is equal to√
1
2 (〈m1,m1〉J + 〈m2,m2〉J − 2〈m1,m2〉J).

Now, if we have several BBAs defined on the same discernment frame and

assume every source is reliable, we aim at corroborating themselves in order to

decrease the imprecision and the uncertainties, which is achieved by combining

them in a conjunctive way. Among the most popular conjunctive rules, let us

cite the Smets’ conjunctive rule [25] (cf. Eq.(2)), its normalized version [26], and

Denœux’s cautious rule [37]. The first two rules assume cognitive independence

between sources whereas the last one can handle correlated sources.

∀A ∈ 2Ω,m1∩2 (A) =
∑
B∈2Ω

∑
C∈2Ω,
B∩C=A

m1 (B)m2 (C) . (2)
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As conjunctive combinations are performed, the belief becomes more frag-

mented across more FEs. To keep the number of FEs under control, mainly

for numerical reasons, the BBA has to be simplified by approximating it. Now,

in the perspective of further combination and following the Least Commitment

Principle (LCP), the approaches providing a generalization of the initial BBA

are favored, in particular those aggregating some FEs. Then, the iterative aggre-

gation techniques [38] are based on a selection criterion involving a quantitative

measure of the BF approximation: e.g., precision measure [39] in [38] or Jous-

selme’s distance in [17]. This latter case boils down to choosing the two FEs in

F(m) minimizing Eq. (3) (cf. Appendix),

d2
J (A,B | m) =

(
1− |A|
|A ∪B|

)
m2 (A) +

(
1− |B|
|A ∪B|

)
m2 (B) . (3)

Until the desired number of FEs is reached, the BBA approximation iterates:

(i) the choice of the pair of FEs to merge and (ii) their aggregation in a single140

FE gathering their masses. Note that, if the BBA approximation is performed

along with associative BBA combination, such a simplification process breaks

unfortunately the associativity of the combination (in addition to breaking the

strictly conjunctive nature of the whole process, in order to comply with LCP).

Finally, after having combined all sources through their BBAs, a decision

can be taken. It is generally done in Ω, i.e. only considering singleton ele-

ments so that two widely used criteria are (i) the maximization of the contour

function (that is given by the plausibility function restricted to Ω elements and

normalized) and (ii) the maximization of the pignistic probability [40]:

∀H ∈ Ω, BetP (H) =
1

1−m (∅)
∑

A∈2Ω,H∈A

m (A)

|A|
. (4)

2.2. The case of a 2D discernment frame145

The open source1 library 2CoBel [23] has been developed in the applicative

context of pedestrian monitoring in dense crowds, i.e. with a requirement of

1Implementation available at: https://github.com/MOHICANS-project/2CoBel
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precise localization on the ground plane. It is a fully scalable library for 2D

discernment frames, in which FEs are represented by polygons coded as sets

of ordered vertices, allowing for FEs with multiple connected components and150

for FEs with holes. Using a hashing table allows then for fast identification of

FEs already encountered when performing summations in combination rules for

instance (cf. Eq. (2)). Also, distances between BBAs can be very easily derived

thanks to clipping operators that compute areas or intersection or union between

two polygons.155

Along with this geometrical representation of 2D FEs, 2CoBel [23] provides

an useful and compact representation of the interactions between FEs under

the form of a Directed Acyclic Graph (DAG). This allows for the representa-

tion of any intersection between FEs as a path on the DAG. In our case, these

intersections that are required for the computation of the decision criterion. In-160

deed, the FE representation as polygon (or set of polygons) brings scalability

while requiring a new definition of the finest distinguishable hypotheses based

on the concept of Maximal Intersection [23]. Specifically, a Maximal Intersec-

tion is a hypothesis that corresponds to a non-empty intersection between FEs

such that its intersection with any different FE would lead to an empty inter-165

section. Note that there is no pair of elements of type Maximal Intersection

having an inclusion relationship. Then, the decisions are taken within the Max-

imal Intersection set. Using the DAG to represent a Maximal Intersection as

a path connecting the involved FEs, both maximizations of the contour and

BetP functions boil down to comparing mass accumulation on paths of maxi-170

mal length: ∀ (P, P ′) ⊆ 2F(m) × 2F(m) such that P ⊂ P ′ and ∩Ai∈P = ∩Ai∈P ′ ,

we have Pl (P ′) = Pl (P ) +
∑
Ai∈P ′\P m (Ai) > Pl (P ) and BetP (P ′) =

BetP (P ) + 1
1−m(∅)

∑
Ai∈P ′\P

m(Ai)
|Ai| > BetP (P ). Therefore, optimal decisions

correspond to Maximal Length Paths (MLP), i.e. paths representing non empty

intersections and having maximal length on the DAG. Now, since the system-175

atic exploration of the whole graph may be numerically expensive, [23] provides

tools for efficient exploration, e.g. early avoiding of non maximal length paths

(by detection of subpath features).
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Finally, note that the justification for Maximal Intersections being the most

precise hypotheses that we can consider given the BBA m is supported by the180

fact that they define the singleton hypotheses when considering an equivalent

1D discernment frame [23]. Therefore, decisions which do not favor larger com-

pound hypotheses are consistent with the usual definition of decision functions

on Ω instead of 2Ω.

Likewise, decisions which do not refine the localization within MLP hypothe-185

ses are consistent with the BFT least commitment principle. However, if for a

specific application the solution has to be represented as a point (or pixel),

taking the barycenter of the decided MLP hypothesis appears as the least bad

option.

2.3. Basics on epipole estimation190

As explained in Section 1, the epipole localization and its uncertainty derives

from the relative pose estimation. Using keypoint matches, a popular criterion

(to minimize) is the sum of errors between predicted and observed matches.

To this aim, the fundamental matrix F is a valuable tool, as it links any point

x viewed in the first camera with its corresponding match x′ from the second

camera [41]. Denoting the transpose operator by upper-script T , the compact

constraint

x′TFx = 0 (5)

is extremely useful as it bypasses the need for additional 3D scene geometry

information. By construction, F is a rank 2 matrix due to being expressed as a

product of matrices, among which one is also rank 2 (see [41], Sec. 9.2.2).

Firstly, we compute the fundamental matrix F from the 8-point algorithm [42].

Using the formulation [43], we denote X = {xi, yi, x′i, y′i}1≤i≤8 a set of n = 8

point matches and we derive F by reordering the epipolar constraint specified

in Eq.(5) as a linear system with respect to the coefficients of F, which gives
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Af = c with

A =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1

x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2

...
...

...
...

...
...

...
...

x′8x8 x′8y8 x′8 y′8x8 y′8y8 y′8 x8 y8

 , (6)

where f = (F11, F12, F13, F21, F22, F23, F31, F32)T , c = −(1, 1, 1, 1, 1, 1, 1, 1)T ,

and F33 is set to be 1.195

Then, in order to impose the constraint of rank 2 for F, the smallest singular

value derived by SVD of F is forced to be 0: if F = UDVT , then the constrained

fundamental matrix F̃ is

F̃ = UD

I2×2 02

0 0

VT , (7)

where Ik×k and 0k are the identity matrix and the null vector of dimensionality

k, respectively. Finally, as the epipole satisfies Fe = 0, it can simply be derived

as the right singular vector v3 where V =
[
v1 v2 v3

]
.

In this study we also need epipole uncertainty evaluation. Once more, the

standard pipeline relies on the fundamental matrix and on uncertainty prop-

agation by linearization [44]. Denoting the F uncertainty as ΣF , the epipole

uncertainty can be derived with forward propagation based on the linear sys-

tem formulation (Af = c) as Σf = JXΣXJTX , where ΣX is a diagonal matrix

representing the uncertainty on the coordinates for each of the 8 point matches

in X (in our case for sake of simplicity σ× I32×32, with σ = 1px) and JX is the

Jacobian matrix of f with respect to the set of point matches X, which can be

automatically computed with the chain rule. Then, the uncertainty on F̃ can

be derived as

ΣF̃ = JF̃/f

Σf 0

0 0

JT
F̃/f

, (8)

where JF̃/f is the Jacobian matrix of F̃ with respect to f , whose explicit com-

putation can be found in [43]. Finally, the epipole uncertainty Σe is

Σe = JSV DΣF̃JTSV D, (9)
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with JSV D the Jacobian of the SVD [45]. Geometrically, the epipole location

uncertainty has the shape of an ellipse whose axes are defined by the eigenvectors

and eigenvalues of Σe such that the bound of the confidence area is defined by

the points x satisfying

(x− e)TΣ−1e (x− e) = κ2, (10)

with κ defined by the considered confidence level.

In the previous equations, we assume the 8 point matches and their co-200

ordinates are exact. However, due to the presence of a significant amount of

outliers within the set of observed matches, robust estimation techniques such

as RANSAC are required.

The principle of RANSAC is to randomly draw subsets of observations

(matches in our case) in order to find a subset composed only of inliers, that205

is recognized as such. For this, each solution derived from a drawn subset of

observations is scored by its consensus degree corresponding to the number of

inliers, defined as the observations (among the whole set) presenting an error

lower than a given threshold (that is a parameter of the algorithm) with respect

to the prediction of the considered solution. Then, the solution selected by210

RANSAC is the one that is the most consensual, i.e. that generates the highest

number of inliers. Applied to our problem, it means that given the set of pu-

tative matches I, at iteration i, RANSAC will sample a 8-tuple from I, derive

the fundamental matrix F̃i (provided that the 8-tuple does not correspond to a

degenerated system), and evaluate the consensus degree associated to the F̃i so-215

lution, before reiterating independently. The output of RANSAC includes thus

(i) the inlier set having greatest cardinality along with (ii) the corresponding

solution (F̂). Usually, F̂ is re-estimated from the whole inlier set. However,

in some applications, it is preferable to keep the initial estimation (from which

the consensus degree was evaluated), and this will be the case for the proposed220

algorithm.

Note also that, for any solution of the fundamental matrix F (the most con-

sensual but also some others as explained further), we will derive its covariance
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matrix ΣF, the epipole location e as well as its covariance matrix Σe and the

ellipses corresponding to different pre-selected uncertainty levels κ (cf. Eq.(10)).225

3. Proposed belief clustering

3.1. Problem formulation

Common outlier rejection techniques fail in difficult settings where outliers

have a strong majority. The basic idea of our approach is then to introduce

a mutual validation test for any potential solution, based on the consistency230

among several solutions obtained independently. Note that this idea is the very

core of ensemble approaches that aim to increase estimation robustness and

accuracy by combining different algorithm outputs.

We propose to obtain several pieces of evidence as candidate beliefs on the

epipole location by considering various solutions provided by RANSAC. Depend-235

ing on the availability of a video stream or of only one image pair, RANSAC

solutions are generated slightly differently. Whereas for a video stream, pro-

vided that the cameras are static, we can use each temporal step to derive a

new estimation of epipole location, for a single image pair we propose to retain

several solutions among the most consensual ones explored by the RANSAC240

algorithm.

Specifically, let SF =
{

F̃1, . . . , F̃n

}
be the set of the n tested solutions

ranked in decreasing order according to their consensus value (the cardinality of

their inlier set Ii). These solutions have been obtained independently by ran-

dom drawing of 8-tuples in I (the set of keypoint matches, cf. Section 2.3) We245

consider the p first ranked elements in SF with p derived with respect to thresh-

old θ ∈ (0, 1) such that |Ip| ≥ θ × |I1| > |Ip+1|. For instance, setting θ = 0.9

boils down to considering the solutions having a number of inliers greater than

90% of the most consensual inlier set. Then, for each corresponding fundamen-

tal matrix F̃i ∈
{

F̃1, . . . , F̃p

}
, we derive the associated epipole location along250

with its uncertainty ellipse equation (Eq. (10)). Figure 1 illustrates this process

called Multiple Model Sampling. Let us underline that this process does not
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(𝑒1, 𝛴1)

(𝑒2, 𝛴2)

(𝑒𝑚, 𝛴𝑚)

…

Multiple epipole
estimations along with their

uncertainty

Source image 1

Source image 2

Imprecise epipole
estimations

Figure 1: Multiple model sampling: From RANSAC solutions based on the observations, p

models for epipole estimation are selected.

Figure 2: Overview of the proposed method. The p models interpreted as p uncertain and

imprecise sources are formalized BBAs, then clustered by aggregation in l groups. Each group

provides a solution as a combined BBA in a set which is ranked according to the pignistic

probability BetP. In our application, we select the top k solutions.

increase the RANSAC complexity, since in standard RANSAC we also perform

these draws and evaluate them; what differs here is the fact that instead of

discarding them (except the best one) we save them for further processing.255

From the set of the p putative imprecise solutions for the epipole location,

we aim to derive a more accurate localization. However, due to the presence

of erroneous keypoint matches, some of these ellipses do not include the true

epipole location. Filtering them is all the more complicated that they never-

theless correspond to rather consensual solutions (among the p most consensual260

ones). However, we hope (and assume in the following) that there exists a sub-

set of them including the true epipole location, and that this subset may be

detected based on adequate criteria.

Figure 2 illustrates the proposed strategy that consists in clustering all con-
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sidered solutions into different groups based on their consistency in order to265

derive solutions at cluster or group level before analysing them. Note that,

since, by construction, the different groups are inconsistent between them (but

consistent inside each group), they provide incompatible individual solutions.

We focus on the BF framework to model the uncertainty and the imprecision

associated to the different solutions provided by Multiple Model Sampling. The270

considered discernment frame (Ω) is the set of the location solutions for the

epipole, that is to say the plane containing the static camera image plane (which

can be bounded to the image frame or not depending on the camera setting).

Using the 2CoBel scalability, sub-pixel coordinates are handled.

Then, for each solution, a consonant BBA is derived whose nested FEs are275

2D polygons approximating the ellipses corresponding to different values of con-

fidence level κ in Eq. (10). Specifically, denoting by n0
FE the number of FEs,

in our experiments, the default setting is n0
FE = 2, with uncertainty levels

corresponding to 50% and 95% (κ2 = 1.386 and κ2 = 5.991, respectively) by

referring to [46, 47], with equidistributed mass. Other settings will be discussed280

along with the experiments (Section 6). Note that these BBAs are dogmatic

(m(Ω) = 0) which means that we prefer discarding poor solutions (i.e., with the

true epipole outside of the biggest focal element) rather than involving them in

the fusion process. Indeed, these poor solutions will not bring relevant informa-

tion for actual epipole location so that we propose to filter them (as presented285

in next subsection) in order to focus on smaller but relevant sets of sources.

3.2. BBAs clustering

Before explaining the proposed clustering solution, let us recall the specificity

of the elements to cluster. Firstly, these elements are BBAs and not objects

defined by their features (color, shape etc.) like in most clustering applications.290

This implies that usual distances such as Euclidean distances are not relevant

to compare BBAs representing them for instance as a vector of focal elements

(since the relationships between FE will not be taken into account). Secondly,

the considered set of elements contains a large proportion of outliers (BBAs
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corresponding to outlier solutions). Indeed for our localization application, only295

one cluster of BBAs will be relevant, the other ones corresponding either to

individual outliers or to small grouping. Thus, either predicting the number of

clusters or providing some cluster features or training examples is impossible

from a practical standpoint. Then, we dismiss centroid-based algorithms such

as c-means, or example-based ones such as k-nearest neighbors, despite the300

existence of evidential versions of such algorithms [48, 49].

Instead we focus on an approach which does not involve a cluster number

parameter nor training or reference sample set. Then, the hierarchical cluster-

ing [50] appears rather self-evident. Indeed, it only requires the definition of

a distance or similarity function, both of which have been widely explored in305

BFT [36], and of a threshold (maximum distance) parameter. Indeed, it is based

on distances between samples (to cluster) or between samples and clusters, so

that samples/clusters are gathered according to increasing distance order. Note

that, given a sample distance, for the cluster distance, different extensions of

sample distance can be considered: simple [51], average [52], complete [53].310

In [54], a Hierarchical Ascendant Clustering (HAC) was proposed for the clus-

tering of objects having imprecise and uncertain features. Then the authors

define BBAs representing the belief that two objects belong to a same or a dif-

ferent cluster. Such a problem is thus rather different from ours whose objective

is to derive some subsets of compatible sources (non conflictual epipole solutions315

represented in terms of BBAs) for data fusion. We are leveraging the fact that

BBAs are already defined for our location problem and cluster them in the per-

spective of their fusion, e.g., controlling the conflict degree in each cluster of

BBAs. Let us detail how this can be accomplished based on a well-chosen BBA

distance.320

Among the proposed BBA distances, we focus on Jousselme’s one [55] mainly

for its simplicity and interpretable results (cf. Section 2.1). In this study, it also

allows for consistency with the used BBA approximation. Based on it, let us

compute the theoretical threshold guarantying that two BBAs have at least one

pair of focal elements intersecting (avoiding total conflict). For two BBAs m1
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and m2 having two nested focal elements of respective mass values a and (1−a)

and area ratio equal to
k2

50

k2
95

(ellipses at 50% and 90% confidence levels), the

Jouselme’s distance between them in the case of conflict degree equal to 1, is

dth =

√
a2 + (1− a)2 + 2a(1− a)

k2
50

k2
95

. (11)

Proof. If m1 and m2 are totally conflictual,
∑
A∈2Ω

∑
B∈2Ω,
A∩B=∅

m1 (A)m2 (B) = 1.

Under this hypothesis, it follows that

∀(A,B) ∈ 2Ω × 2Ω,m1(A)m2(B) > 0⇒ A ∩B = ∅.

Therefore, 〈m1,m2〉 = 0.

Besides, since m1 has only two nested focal elements,

∀(A,B) ∈ 2Ω × 2Ω,m1(A)m1(B) > 0⇒ |A ∩B|
|A ∪B|

=

 1 if A = B,

k2
50

k2
95

otherwise.

Then, 〈m1,m1〉 = a2 + 2
k2

50

k2
95
a(1− a) + (1− a)2 and it is the same for 〈m2,m2〉.

Therefore,

1

2
(〈m1,m1〉+ 〈m2,m2〉 − 2〈m1,m2〉) = 〈m1,m1〉

= a2 + 2
k2

50

k2
95

a(1− a) + (1− a)2

In our experiments, we set the maximum distance for clustering slightly be-

low the theoretical value (namely, dth−0.05) in order to increase the consistency

between BBAs in the same cluster.

In the perspective of conjunctive combination of all the BBAs belonging325

to the same given cluster, we consider complete linkage which uses the max

operator for computing the distance between two clusters from the distance

values between samples. It allows us to bound the distance between any pair of

BBAs we will combine during the intra-cluster combination step. However, even

a complete linkage cannot guarantee that there is a common intersection for all330

BBAs in the same cluster (since only pairs of BBAs are considered). Hence, we
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set as a supplementary constraint that the intersection between all the largest

focal elements of the BBAs within a given cluster is not empty. Indeed, for any

set of j BBAs {mi}1≤i≤j , ∩mi
(∅) < 0 ⇐⇒ ∃(A1, . . . , Aj) ∈ Fm1

× · · · × Fmj

such that
⋂

1≤i≤j Ai 6= ∅. If the BBAs are consonant, the mi FEs are nested,335

and a non empty intersection with a FE implying a non-empty intersection

with any FE including it, we have only to check the existence of at least one

non-empty intersection between the largest FEs.

In summary, the clustering criterion boils down to the minimisation of both

the cluster number and the intra-cluster distance under two constraints, namely340

the intra-cluster distance being lower than dth− 0.05, and the non empty inter-

section between
⋃
mi

for all mi in the cluster. It allows us to derive consistent

BBA clusters with respect to the conjunctive combination.

In the following, given a set of BBAs M = {m1,m2, ...,mp} to cluster,

let l denote the number of obtained BBA clusters and {M1, ...,Mi, ...,Ml}345

the set of clusters with (i) Mi ∩ Mj = ∅,∀ (i, j) ∈ {1, . . . , l}2 , i 6= j and

(ii) ∪i∈{1,...,l}Mi =M.

3.3. Intra-cluster fusion

From the partition {M1, ...,Mi, ...,Ml} of the set of BBAs M, the BBAs

within each cluster shall be combined using the conjunctive rule [25]. This350

rule assumes cognitive independence between BBAs which here comes from the

independence between RANSAC solutions (corresponding to different 8-tuples,

i.e., different linear systems). Note that cognitive independence does not prevent

BBAs to be similar, which is all the more expected for BBAs representing the

ground truth epipole.355

However, for clusters including more than a few tens of BBAs, a step of BBA

approximation has to be implemented (cf. Section 2.1) to control computational

complexity. Specifically, we perform BBA approximation each time the number

of focal elements is larger than nmaxFE and decrease it to nsumFE , with typically

nmaxFE = 20 and nsumFE = 10. The used BBA approximation process is the same360

as in [17].
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Now, one issue introduced by the BBA approximation is the loss of the

associativity of the combination which induces a dependency of the result with

respect to the combination order. Different strategies have thus been explored.

On the one hand, it may appear as more natural to gather first the closest365

BBAs (still according to Jousselme’s distance) so that the combination ordering

follows the distance one. On the other hand, one may remark that, since BBA

approximation decreases BBA commitment, the BBAs combined in the end may

have a greater impact in the final BBA. One can also wonder whether it is worth

recomputing the distance with updated cluster BBA after each combination or370

if a preordering can be defined from the initial BBA distances.

In this study, we have experimented those different strategies and the two

more efficient are presented in Section 6. They correspond to updated minimal

(respectively maximal) distance ordering. Let us define the intersection between

two BBAs by F(mi) ∩ F(mj) = {A ∩B}(A,B)∈F(mi)×F(mj). Then, fusion is

performed as follows. The two first BBAs to combine are:

(i∗, j∗) = arg min
(i,j)∈F(mi)×F(mj)
F(mi)∩F(mj)6=∅

dJ(mi,mj); (12)

whereas the next BBA to combine to the current BBA combination result m̃ is

j∗ = arg min
j∈F(mj)

F(m̃)∩F(mj)6=∅

dJ(m̃,mj); (13)

Equations (12) and (13) correspond to min ordering. The max ordering is

obtained replacing arg min by arg max in them.

After this intra-cluster fusion step, the l cluster BBAs {m̃i}i∈{1,...,l} are

ranked according to their maximumBetPi value or Pli value: maxA∈MI(m̃i)fi (A)375

with f ∈ {BetP, P l} and MI(m) the set of Maximal Intersections of BBA m,

since 2CoBel [23] handles decisions on it. Recalling that our aim is to provide

a set (as small as possible) of solutions (possibly under the form of BBAs) in-

cluding the ground truth, we consider the k first cluster BBAs as the proposed

solution set. Algorithm 1 describes the steps to derive this proposed solution380

set.
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Algorithm 1 : 2D belief clustering for epipole localization

Input: I1 and I2: A pair of images from two different views; m, θ: Multiple

Model sampling parameters; n0
FE : initial FE number; nmaxFE , nsumFE : summa-

rization parameters; k: proposed solution set cardinality

Output: The proposed solution set M̃ = {m̃1, . . . , m̃k} of BBAs representing

imprecise solutions for epipole location

1: Extract putative correspondence set P = {p1, . . . , pn} between I1 and I2

2: Run RANSAC algorithm and, during it, select the m models with the largest

inlier support, and rank them in S0
F =

{
F̃1, . . . , F̃m

}
3: p = arg maxl∈{1,...,m} l×1|Il|≥θ×|I1| (1Z is the indicator function of set Z)

4: SF ← the p first elements of S0
F

5: Initialize M = ∅;

6: for F̃i in SF do

7: Estimate epipole ei (using SVD) and covariance matrix Σei

8: Build the 2D BBA mi with n0
FE nested FEs corresponding to preset

confidence levels κ in Eq. (10)

9: M←M∪ {mi}

10: end for

11: Compute dth from Eq. (11)

12: Set of clusters {M1, . . . ,Ml} ← output of HAC (complete linkage, Jous-

selme’s distance, dth − 0.05 threshold, input M)

13: Initialize M̃ = ∅

14: for i = 1 to l do

15: m̃i = ∩mj∈Mi
mj

16: M̃ ← M̃ ∪ {m̃i}

17: end for

18: Rank BBas in M̃ according to max value of chosen decision criterion (BetP

or Pl) and only keep in M̃ the k first top-ranked BBAs
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Finally, note that for our application, we avoid any assumption about a

possible relationship between cluster reliability and cardinality (as in [34]) so

that we will evaluate each cluster independently of its cardinality.

In the two next sections, we present two application-dependent strategies385

for raising the ambiguity between the elements of proposed solution set. In the

first strategy, we benefit from additional sources of localization whereas in

the second one, we benefit from multi-temporal information.

4. Multi-source camera localization

The output of the belief clustering is the proposed solution set containing at390

most k BBAs representing the k most likely imprecise locations for the second

camera. To raise the ambiguities among these different locations, additional

sources shall be considered. Now, we investigate two different examples of such

sources whose availability depends on the considered system. In both cases, we

will define BBAs modeling the new evidence brought by each of these additional395

sources. These BBAs are defined on the same discernment frame as previously,

namely Ω, the image plane of the static camera.

4.1. Belief from a pedestrian detector

When considering a wearable camera, the device is necessarily co-localized

with the person carrying it. Thus, a computer vision pedestrian detector appears400

as a relevant source for localization in the view of the static camera. Among

the many algorithms proposed to detect and localize pedestrians, Convolutional

Neural Networks (CNN) have proven to be highly effective, e.g. [56, 57, 58]

so that we naturally turn toward such approaches. Their output is a set of

Bounding Boxes (BB) around each detected pedestrian. Now, in the perspective405

of BBA definition, we underline three main BB features: (i) as the camera

is often held near the head or the shoulder, it is more likely located in the

BB upper part than in the lower part; (ii) as a BB can imperfectly enclose

the pedestrian (in particular in case of occlusion), the mobile camera may be
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Figure 3: Focal elements of the BBA associated to the bounding boxes provided by the

pedestrian detector.

outside BB although very close; (iii) in case of multiple pedestrians detected it410

is impossible to assume which one is more likely to wear the camera.

Based on the these BB features, we consider a set of BBs denoted by

B = {B1, . . . , Bi, . . . , Bm}, followed with the dilation operation the dilation

operation with disk structuring element of radius ρ denoted by δρ, and the up-

per half of any box Bi denoted by Bupi . We define a BBA associated to B with415

four focal elements: B =
⋃
Bi∈B Bi, B

δ =
⋃
Bi∈B δρ (Bi), B

up =
⋃
Bi∈B B

up
i

and Bδ,up =
⋃
Bi∈B δρ (Bi)

up
, illustrated in Figure 3. Among these four focal

elements, the mass is about equally distributed even if we may refine the precise

value during experiments. Note that as previously the BBA is dogmatic, but

for a different reason. Here, we assume the pedestrian detector reliable enough420

to not miss the camera carrier. More specifically, we assume its ambiguities

(between the different pedestrians present in the scene) are complementary to

the ambiguities among BBA clusters. Then, we choose the BBA to be dogmatic

in order to have a chance to detect, based on the degree of conflict, when it

provides a completely erroneous solution.425

4.2. BBA from GNSS data

In this setting, we assume that GNSS data are provided by a low-cost and

light sensor embedded by the camera carrier. Thus the measured localization
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is rather imprecise and has to be combined with our other localization pieces of

evidence in order to increase spatial precision. The conversion of the rough 3D430

GNSS location into one or several focal elements in the image space requires the

knowledge of the static camera pose parameters along with the theoretical 3D

precision of GNSS. Besides, since the altitude (z coordinate) provided by the

GNSS is far more imprecise than the horizontal plane location [22], we rather

consider a prior (even if approximate) on the height h of the mobile camera (due435

to the fact it is held by a pedestrian).

Let Pm denote the plane parallel to plane z = 0 and having elevation equal

to h and let (x, y) be the 2D GNSS coordinates representing its location on

the Earth surface. Considering the GNSS intrinsic imprecision, we represent

imprecise location areas as 2D nested disks in Pm centered on (x, y). Now,440

when the static camera elevation is large with respect to the interval (length) of

the possible heights for mobile camera, the imprecision assuming a given height

h is small with respect to GNSS intrinsic imprecision. Thus, in the following,

we neglect the vertical uncertainty (along h) with respect to the horizontal one.

In order to derive the focal elements of the BBA associated to the GNSS

data, we simply project the 2D nested disks in the ground plane Pm to the

image plane of the static camera, which can be performed via a homography

transformation for circle. Under the pinhole camera model, the homography

between the plane Pm of equation z = h and the image plane is represented by

the matrix

H = KR


1 0 −cx
0 1 −cy
0 0 h− cz

 ,
where K is the intrinsic matrix of camera, (cx, cy, cz) is the 3D coordinates of

camera center, and R the rotation matrix for camera’s orientation. As a disk

having center coordinates (x, y) with the radius r on Pm can be represented
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Figure 4: Illustration of the focal elements derived from GNSS localization. The three conics

represent the uncertainty areas associated with GNSS noise level equal to σ, 2σ and 3σ,

respectively.

with the general conic formulation as follows

Cr =


1 0 −x

0 1 −y

−x −y x2 + y2 − r2

 ,
the projection on the image plane for the disk Cr on Pm is then represented by

the conic matrix

Ce = H−TCrH
−1. (14)

Note that, if in most cases, Ce is an ellipse, under rares circumstances, the445

projective projection can result in a hyperbole. In the application, the BBA

representing the GNSS localisation information has three nested focal elements

that are the inside areas of conics obtained by perspective projection of three

Pm circles centered on (x, y), having radius equal to σ, 2σ and 3σ, respectively,

with σ the theoretical uncertainty or error bar on (x, y). Using 2CoBel, these450

focal elements are approximated by 2D polygons, denoted by Aσ, A2σ and A3σ.

Figure 4 illustrates the conics (ellipses in this example) provided by the GNSS
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data. As previously, the mass is about equally distributed between these three

focal elements even if we may fine tune the precise values during experiment

and the BBA is dogmatic, which means we assume it reliable enough to not455

miss e, and otherwise the fusion process will be invalidated thanks to conflict

detection.

4.3. Global fusion algorithm

From Section 3, we derive a set of l cluster BBAs M̃ = {m̃i}i∈{1,...,l} and

from Section 4 another set of BBAs brought by additional sources Ma =460

{ma
j}j∈{1,...,q}. Now, if all Ma BBAs can be assumed reliable (i.e., there is

at least one FE containing e), we know that some BBAs of M̃ correspond

to outliers. Furthermore, by construction of the clusters, two different cluster

BBAs are highly incompatible so that, for conjunctive fusion process, we can

only retain one among the l cluster BBAs. Our fusion strategy is then to use465

the Ma BBAs to adjudicate.

Note that, to save some computational resources we use two tricks in Al-

gorithm 2. Firstly, benefiting from the associativity property of conjunctive

rule (Eq. (2)), Ma BBAs are combined only once before M̃ BBAs inspection:

ma
∩ = ∩ma

i ∈Mama
i , along with the disjunction of ma

∩ focal elements,
⋃
ma

∩
.470

Secondly, M̃ BBAs are filtered by testing the intersection between
⋃
ma

∩
and

the focal elements of m̃i ∈ M̃: if the intersection is empty, m̃i is withdrawn.

Then, having evaluated to consistency of each cluster-BBA with the addi-

tional source BBA through their conjunctive combination, the output BBA is

the one that will maximize the decision (epipole location) criterion (even if the475

algorithm itself does not provide such a crisp decision).

5. Multi-temporal epipole localization

In this application, we consider no longer a mobile camera within the field

of view of a static camera, but a pair of static cameras. Assuming that these

cameras capture synchronized video streams of a dynamic scene, we aim to480

24



Algorithm 2 : BBA selection based on additional sources

Input: The set of cluster BBAs M̃ = {m̃i}i∈{1,...,l}; The set of additional BBAs

Ma =
{
madd
j

}
j∈{1,...,q};

Output: BBA mout

1: ma
∩ = ∩ma

i ∈Mama
i ;

2:
⋃
ma

∩
=
⋃
B⊆Ω,ma

∩ (B)>0B;

3:

4: Mc = ∅;

5: for i = 1 to l do

6: if
⋃
ma

∩
∩
⋃
m̃i
6= ∅ then

7: mi,a = m̃i ∩ ma
∩

8: Append mi,a to Mc;

9: end if

10: end for

11: mout = arg max
mi,a∈Mc

{
maxA∈MI(mi,a)Pl

i,a (A)
}

exploit the temporal sequence for epipole localization. As the cameras are fixed

and the scene is dynamic, each pair of frames can provide a new estimation

for the fixed epipole location using a standard RANSAC process applied to

image pairs. Note that, depending on the speed of the moving objects with

respect to the frame acquisition frequency, we may have to sub-sample the485

sequence in order to ensure sufficient changes in the video content and cognitive

independence of epipole estimations. In our case, the sequence frequency is 2

frames per second and we observe that, due to the fact that most matches occur

on moving objects, the ratio of consecutive point matches (between each image

pair) is about 12%, so that further sequence sub-sampling is not necessary.490

Then, considering the reference camera image plane as discernment frame

Ω, each instantaneous epipole solution is associated to a consonant BBA having

n0
FE = 2 nested focal elements corresponding to ellipses at 50% and 90% con-

fidence levels using uncertainty propagation. This BBA construction is similar
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to the one used in Section 3.2, except the derivation of the epipole solution495

performed here using standard RANSAC. Then, if the whole sequence contains

N frames, we derive a set of N BBAs. Among them, many may be irrelevant

(outlier BBAs) due to erroneous matches between keypoints.

Now, the basic idea of fusion is still to remove outliers based on cross-

validation performed between multiple sources. Having a single temporal se-500

quence, we create multiple sources by splitting it into T non-overlapping sub-

parts with identical number of frames. To each subpart t ∈ {1, . . . , T} we asso-

ciate a set Mt of bNT c BBAs. Mt is then processed according to the proposed

belief clustering to derive proposed solution sets containing the k top-ranked

cluster BBAs: M̃t = {m̃t,1, . . . , m̃t,k}. Theoretically, we have to evaluate every505

T-tuples of BBAs formed by selecting one BBA in each set M̃t. However, as

described in Algorithm 3, to save computational resources, we perform process-

ing sequentially by detecting the BBAs with conflict degree equal to 1 as early

as possible to avoid their combination. Then, like in Algorithm 2, we also base

ranking of the combined BBAs on decision criterion. Now, the main difference510

is that we do not select the top BBA but the v first-ranked ones, in an ad-hoc

and conservative spirit. These v first-ranked BBAs are then gathered in a single

BBA using disjunctive combination since they are incompatible by construction

(selection of incompatible clusters in at least one subpart of the sequence).

6. Experiments and results515

6.1. Datasets, parameters and evaluation criterion

In order to evaluate the benefit of the proposed evidential epipole localiza-

tion, we consider three datasets. Two of them are public datasets and one has

been specifically acquired for this research. Since they have complementary fea-

tures, they allow us to check the robustness of the belief clustering, and at the520

same time to evaluate epipole localization in different contexts:

• Firstly, to check the effectiveness of BBA clustering and k first-rank clus-

ters selection on a public dataset, we selected 128 pairs of images in the
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Algorithm 3 : Epipole estimation from video sequence

Input: The T sets of cluster BBAs M̃t, t ∈ {1, . . . , T};

Output: BBA mout;

1: Mcur = M̃1;

2: Mnew = ∅;

3: for i = 2 to T do

4: for all m ∈Mcur do

5: for all m̃i,j ∈ M̃i such that
⋃
m ∩

⋃
m̃i,j
6= ∅ do

6: Add m ∩ m̃i,j to Mnew;

7: end for

8: end for

9: Mcur =Mnew;

10: end for

11: Rank (according to chosen criterion, BetP or Pl) BBAs inMnew and store

the first-ranked v BBAs in Mout

mout = ∪ms∈Mout
ms;

public dataset used in [59]; these images are chosen to present various

poses with the large view image containing the epipole of the mobile cam-525

era (even if acquisitions having been performed at different instants); the

ground truth epipole location (estimated using Structure from Motion) is

provided with the dataset.

• Secondly, to evaluate the benefit of the pedestrian detector for mobile

camera localization, we use a dataset with simultaneous acquisition of530

static and mobile cameras; this latter has been specifically acquired with

a camera wearer moving on the ground level in urban environment; it

contains 196 synchronized image pairs, and the ground truth has been

manually defined by a human annotator.

• Thirdly, to evaluate the benefit of multi-temporal acquisitions for epipole535

localization, we use two synchronized video streams; we consider the public
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WildTrack dataset2 [60] consisting of GoPro cameras mounted on tripods

and recording the busy entrance of an university campus building. For

this dataset the two cameras are static with large field of view so that

the epipole no longer coincide with the position of one camera (that is no540

longer visible on the other camera images). The ground truth is provided

by the dataset creators via an extrinsic calibration.

Let us recall the used parameters for BBA clustering. In the case of datasets

1 and 2, image pairs are processed independently. Then, for each pair of images,

we derive multiple pieces of evidence (regarding the epipole location along with545

its uncertainty ellipses) by considering various solutions provided by RANSAC

instead of retaining only the most consensual hypothesis (cf. Section 3.1). The

number of iterations for sampling matches during RANSAC is set to n = 105.

The number of retained solutions p is set to be at most 100 (as long as their

inlier support satisfies the condition depending on θ). Under this bound, p550

exact value is determined by θ (p = f(θ)). In our experiments, we study the

result sensitivity to θ and k and infer some guidelines on setting them. For

hierarchical clustering, we use the AgglomerativeClustering function of the

module scikit-learn [61] with the complete linkage. Now, since this function

does not allow for applying an additional binary constraint, we introduce the555

“non-empty intersection” constraint (between disjunctions of respective focal

element sets, cf. Section 3) a posteriori, namely during the fusion step based on

min distance ordering.

As quantitative evaluation criterion, we consider the modified metric [17]

ε(λ) =
∑
A∈2Ω

d(egd, A)m(A) + λ
∑
A∈2Ω

|A|m(A), (15)

where λ ∈ R≥0 is a weighting parameter between terms, egd is the ground truth

2https://www.epfl.ch/labs/cvlab/data/data-wildtrack/
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epipole location and d(egd, A) is defined as

d(egd, A) =


0 if egd is included in A,

min
p∈A
‖ egd − p ‖2 otherwise,

(16)

where ‖ . ‖2 is the Euclidean distance. This measure allows one to control the

compromise between the guarantee for the ground truth epipole belonging to560

the set of focal elements in the considered solution, and the imprecision related

to the area of focal elements. BBAs with large focal elements (thus spatially

imprecise) including egd exhibit low error values for λ close to 0, but higher

error values when λ increases. Conversely, committed BBAs with small focal

elements close to egd but not necessary including it are all the more badly scored565

that λ is low and better evaluated for λ having large positive values.

6.2. Evaluation for belief clustering

To evaluate the proposed belief clustering only, we consider the first dataset

used in [59]. Let us recall that we propose evidential modeling and the cus-

tomization of a well-known clustering algorithm for difficult settings where out-570

liers exhibit a kind of consistency, so that there is no clear consensus. To show

the benefit of such an approach with respect to approaches less conservative

but deemed to be robust, we compare it with the standard RANSAC method

based on traditional features (SIFT-RANSAC) and with the NN based outlier

rejection (NN-RANSAC [59]). From their results, the epipole uncertainty is575

derived as in [14] (“Least squares SIFT” and “Least squares NN”).

Figures 5 and 6 illustrate some localization results, provided by existing

methods, by top-ranked clusters and by low-ranked clusters respectively. It il-

lustrates that in difficult settings, the existing methods tend to be overconfident.

Top ranked clusters exhibit a higher consistency among the BBAs which results580

in a strong ellipse alignment, and even for challenging poses the true solution

is present at the top. However, we notice that the first-ranked BBA may fail

in providing the right epipole location conversely to the second-ranked one that

includes (or almost does) the ground truth while exhibiting a moderate level
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(a) Source image (b) All solutions (c) SIFT-RANSAC (d) NN-RANSAC

(e) BetP = 0.630

(rank 1)

(f) BetP = 0.626

(rank 2)

(g) BetP = 0.503

(low rank)

(h) BetP = 0.299

(low rank)

Figure 5: Qualitative illustration of our method. Upper row: the source image (a), set of

epipole uncertainty ellipses (b) and the result of existing methods (c)-(d) (the ground truth

is highlighted in red); Next three rows: for a given cluster, the corresponding original ellipses

(first row), the final BBA (second row) and the maximum BetP Maximal Intersection (third

row, green area); cases of (e): the top ranked cluster, (f): the second ranked cluster, (g)-(h):

two clusters with a low rank/BetP due to the sources being less consistent.
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(a) Source image (b) All solutions (c) SIFT-RANSAC (d) NN-RANSAC

(e) BetP = 0.791

(rank 1)

(f) BetP = 0.724

(rank 2)

(g) BetP = 0.567

(low rank)

(h) BetP = 0.432

(low rank)

Figure 6: Qualitative illustration of our method. Upper row: the source image (a), set

of epipole uncertainty ellipses (b) and the result of existing methods (c)-(d) (the ground

truth is highlighted in red); Next three rows: for a given cluster, the corresponding original

ellipses (first row), the final BBA (second row, random colors distinguishing the different

focal elements) and the maximum BetP Maximal Intersection (third row, green area); cases

of (e): the top ranked cluster, (f): the second ranked cluster, (g)-(h): two clusters with a low

rank/BetP due to the sources being less consistent.
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of imprecision. Thus, these examples illustrate the benefit of keeping several585

cluster BBAs for fusion with addition sources. We also see that the low rank

clusters consist in uncertainty areas exhibiting less consistency that can thus

be harmlessly discarded. Finally, these examples also show the importance, for

further fusion, to keep the whole BBA and not only the BetP solution since

a too early decision may miss the actual epipole location (not included in the590

BetP selection in Fig. 5).

Then, to evaluate ε(λ) also in the case of uncertainty ellipses (as in the case

of standard algorithms), for a fairer comparison, we convert these latter in a

BBA. Specifically, we derive consonant BBAs having five equi-weighted focal

elements, represented by the polygons approximation of the ellipses associated595

with respectively 95%, 75%, 50%, 25%, 10% confidence levels.
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(a) Consensus threshold θ = 0.9
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(b) Consensus threshold θ = 0.5

Figure 7: Curve of AUC for cumulative curve, ε(λ), versus λ.

Then, for each considered algorithm, we compute the error ε(λ) for each pair

of images and then derive the empirical cdf (cumulative density function) of ε(λ).

Since, as previously stated, the λ value strongly impacts the performance and

then the ordering of the evaluated algorithms, we plot performance versus λ.600

For this, the whole cdf is summarized through its Area Under the Curve (AUC)

value. The higher this value, the more efficient an approach is. Figure 7 shows,

for the different algorithms we consider, the AUC versus λ. Specifically for

the proposed method, we consider the solution with the smallest value of ε(λ)

among the proposed k solutions. It corresponds to an optimistic assumption that605

an additional source (as explored in next experiments) will allow for “good”
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cluster selection. Nevertheless, we found interesting to evaluate, albeit in a

preliminary way, the proposed approach on this public dataset that offers very

various poses and scenes. The results underline that, as the value of k increases,

the performance of the proposed BBA clustering improves as expected, and it610

outperforms other methods. In most cases, the desired estimation is within the

4 or 5 first-ranked clusters. The sub-figures (a) and (b) in Figure 7 allow for

comparison between results achieved with θ = 0.9 and θ = 0.5. We notice that

results are slightly better with θ = 0.5 which means the consensus measure

used by RANSAC is not optimal. We also note that results appear robust with615

respect to the fusion order introduced by different fusion strategies (min and

max ordering discussed in Section 3.3).

Finally, let us evaluate the robustness of the approach with respect to the

FE number parameters, either n0
FE during the allocation, or nmaxFE and nsumFE

during BBA approximation. Figure 8 evaluates the impact of the approximation620

parameters in two cases of initial BBA allocations: two nested FEs (n0
FE = 2)

corresponding to uncertainty levels 95% and 50% and five nested FEs (n0
FE = 5)

corresponding to uncertainty levels 95%, 75%, 50%, 25% and 10%. The curves

corresponding to different approximation parametrizations are represented with

different line styles, so that we can check the very low impact of these parameters625

on AUC. Comparing the two subfigures, we also note the low impact of the

number of initial FEs, even if more pronounced for k = 1. Figure 9 shows,

versus the number of sources per cluster (i.e., the number of BBAs to combine),

the average number of approximation and the average computation time in

seconds, still distinguishing the two BBA allocation cases n0
FE ∈ {2, 5}. We630

notice that the approximation number curve mainly depends on n0
FE and, as

expected, on the ratio
nmax
FE

nsum
FE

rather than on the absolute values of approximation

parameters. Meanwhile, the average running time for cluster-BBA computation

depends mainly on approximation parameters, in particular nsumFE which controls

the complexity of the combination rule. Finally, noticing that the gain in AUC635

is either negligible when increasing (nmaxFE , nsumFE ) or very low when increasing

the initial number of FEs per BBAs, while the running time increases in a
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(a) BBA allocation with n0
FE = 2
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FE = 5

Figure 8: Impact of the approximation parameters on the AUC curves: different colors corre-

spond to different numbers of kept clusters (from k = 1 in black to k = 6 in magenta), plain

and dashed lines correspond to (nmax
FE , nsum

FE ) equal to (20, 10) and (40, 20), respectively.

significant way, leads us to set default parameters to n0
FE = 2, nmaxFE = 20, and

nsumFE = 10.

6.3. Results for multi-source localization640

In this experiments, we consider the second data set. For BBA clustering,

accordingly to previous section, we set θ = 0.5 and use min ordering for intra-

cluster BBA combination. For the pedestrian detector, we focus on the widely

used object detector YOLO [62]. As the GNSS source is not available in this

dataset, we generate the simulation of GNSS position by adding a random nor-645

mally distributed noise to the ground truth of epipole location. For each pair of

images, we randomly sample a realization from the distribution N (egd,Σegd
)

with Σegd
= σ2 × I2×2, where σ is the defined noise level.

Since we investigate the benefit of multi-source fusion for our application

of localization, the presented results contain a gradually increasing number of650

sources, from only considering SIFT-RANSAC or NN-RANSAC results or

BBA clustering results with k = 1, to also considering either one additional

source (the pedestrian detector or the GNSS simulation) or the two additional

sources. As in the previous subsection, the evaluation is based on the AUC

curve for localization error ε(λ) defined in Eq. (15).655
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(a) Average number of BBA approximations (b) Running time (in second) of cluster-BBA

computation

Figure 9: Impact of BBA parameters n0
FE , nmax

FE , and nsum
FE (n0

FE ∈ {2, 5} is called ‘95-50’

or ‘95-75-50-25-10’, respectively; (nmax
FE , nsum

FE ) ∈ {(20, 10), (40, 20)} is called ‘FE-20-10’ or

‘FE-40-20’, respectively); subplots inside each subfigure are a zoom on [0, 40] x-values.

Figure 10a shows the AUC curves versus the λ parameter whereas Figure 10b

shows the cdf for λ = 0.01 (knowing that the first term of ε(λ) ranges in
[
0, 5.103

]
and the second term in

[
0, 105

]
). We notice the very high performance achieved

considering the three sources (BBA clustering on RANSAC solutions, pedestrian

detector and GNSS data). Specifically, we note that the single use of BBA660

clustering method with k = 1 is less competitive than the standard RANSAC

approaches. This is mainly due to the fact that the standard approaches provide

a larger ellipse than the BBA clustering, that nevertheless was defined to provide

several rather committed solutions for further fusion purposes. Note also that,

if on the previous dataset NN-RANSAC provided better results than SIFT-665

RANSAC, its results on this dataset are rather disappointing. This is due to

the fact that, on the first dataset, NN-RANSAC results were good as this latter

has been trained on the same dataset. Now, combining the output of BBA

clustering with one additional source (either pedestrian detector or GNSS data)

allows us to overcome the limitations of these traditional approaches, and using670

all sources results in a rather significant leap in performance. Such results both

highlight the effectiveness of the filtering of the set of initial solutions based on

BBA clustering and the ability of an additional source to select the correct BBA
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(b) Cumulative density function for λ = 0.01

Figure 10: Results in terms of AUC and CDF of the error ε(λ) achieved by the multi-source

localization of mobile camera.

cluster.

In order to provide an alternative evaluation of our results, we look at the675

evolution of the number of positive image pairs with respect to the distance

threshold to the ground truth epipole. Now, the distance will be computed as

in Eq. (16) with A =
⋃
m (which boils down to simplifying or summarizing our

resulting BBA in a categorical BBA). Figure 11a provides the number of such

positive pairs versus the used distance threshold. Note that, in our applica-680

tion, we consider it is still meaningful to localize the target camera wearer even

when the distance threshold to the ground truth epipole is increased to 100

pixels compared to the large resolution of the reference image (4K). Figure 11a

confirms the conclusions previously drawn from Fig. 10a.

Finally, for the distance threshold equal to 50 pixels, we look at the number685

of positive pairs versus GNSS noise. We note that, as expected, as the GNSS

noise increases, the number of positive pairs obtained by fusion involving GNSS

data decreases. Nevertheless, when used in addition to the BBA clustering

output and pedestrian detector, the GNSS data appear useful even with rather

high noise levels (up to 10 m) since performance overcomes the results obtained690

without it.
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(a) Number of positive pairs versus distance

threshold; GNSS noise σ = 3m.
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(b) Number of positive pairs versus GNSS

noise level; distance threshold = 50px.

Figure 11: Number of positive pairs for different sources used for mobile camera localization.

(a) Accumulated Vote (b) BBA clustering

Figure 12: Qualitative comparison between accumulated voting and the proposed multi-

temporal BBA fusion.
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6.4. Results for video localization

In this section, we aim at evaluating the epipole localization using a pair of

static cameras. The localization algorithm is the one described in Section 5, Al-

gorithm 3 with T = 4 and v = 10. Since the whole sequence contains 400 frames,695

each of the 4 image subsets contains 100 consecutive frames, from which BBA

clustering allows us to retain the 5 first-ranked cluster BBAs (∀t ∈ {1, . . . , 4},

each M̃t contains 5 BBAs). For comparison, we also consider the accumulated

voting proposed in [14] which has proved to be more conservative/cautious than

RANSAC in case of difficult settings.700

Figure 12 illustrates qualitatively the results of the accumulated voting and

of the proposed Algorithm 3. It clearly appears that our result is much more

precise than the voting strategy proposed earlier [14]. Now, SIFT-RANSAC

considering the whole sequence of 400 images provides a very confident result

(ellipse with axes of a few pixels; not shown). Even if RANSAC result may705

appear rather good since it is actually close to the actual epipole location (58

pixels), it completely fails in estimating the actual uncertainty of its solution.

Indeed, with so many data (keypoint matches accumulated through the tem-

poral sequence), RANSAC algorithm (whatever the considered variant) will be

overconfident in the obtained result missing its actual reliability. The proposed710

method appears then as a good compromise between perhaps too cautious re-

sults obtained using accumulated voting and too committed ones obtained using

RANSAC sampling.

Quantitative evaluation is presented on Figure 13 which shows Eq. (15) with

respect to λ values. In contrast to the previous experiments, in this setting we715

have only one result sample (obtained considering the whole sequence) so that

we cannot plot error statistics (pdf, AUC). In order to check the sensitivity of

our approach to the considered subsets in the sequence, we introduce different

offsets (called as ‘-0’, ‘-25’, ‘-50’ and ‘-75’) in the sequence split. From Figure 13

left, we see that, due to the very large size of the obtained uncertainties, the720

accumulated voting completely fails in providing an interesting result. Then,

zooming on low error values (Figure 13 right), we notice that, for low λ values,
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(a) Whole error dynamic range (b) Zoom with bounded error dynamic range

[0, 500]

Figure 13: ε(λ) (Eq. (15)) versus λ; the four curves ‘BBA-clustering-XX’ refer to different

offset values in the proposed approach, ‘accumulated voting’ refers to the method proposed

in [14], and ‘Accumulated matching’ to SIFT-RANSAC considering the keypoint matches

accumulated during the entire sequence.

our approach slightly outperforms RANSAC result. Indeed the distance term in

Eq. (15) is about 10px against about 60px. However, since uncertainty is much

higher, once λ > 10−2 the RANSAC solution error becomes lower. Nevertheless,725

as stated previously, the evidential approach result seems a good compromise

between result precision and actual uncertainty. Finally, let us underline that

the subset offset does not seems to impact results. More specifically, the epipole

location is influenced very marginally but the focal element size does vary a little

bit more (which explains the fact that error curves separate when λ increases).730

7. Conclusion

In this work, our objective is to propose a fusion strategy suited for contexts

in which a large number of sources, including a significant ratio of outliers, need

to be combined. The adopted approach for mitigating the impact of the pres-

ence of outliers is to perform a preliminary clustering process, which organizes735

the sources in coherent groups. This step allows for intra-cluster fusion to be

performed without increasing the mass on the empty set or requiring the user

to dispatch it. The resulting BBA across the source clusters may be used af-
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terwards for fusion with additional sources of information. In our application,

namely the epipole localization which is closely related to the relative pose es-740

timation problem in computer vision, we show that the pignistic probability

related to each source cluster is a good indicator of the estimation quality, and

that the evidence we obtain is competitive with respect to the state of the art.

For an algorithm performing multi-modal fusion, our approach is intended to

rank favourably the BBAs in the perspective of further fusion with additional745

sources, and indeed the experiments highlight that in this setting the promoted

evidences improve the global result.

Our strategy exploits the fact that our algorithm is less committed than the

standard vision-based solutions and thus more favorable to the use of additional

sources. The closest applications to our work are related to pedestrian or ve-750

hicular transportation, but the underlying strategy of intra-cluster fusion may

be helpful in a wider range of problems which benefit from large amounts of

conflicting data sources.
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[56] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, S. Tubaro, Deep

convolutional neural networks for pedestrian detection, Signal processing:

image communication 47 (2016) 482–489.

[57] C. Li, X. Wang, W. Liu, Neural features for pedestrian detection, Neuro-905

computing 238 (2017) 420–432.

[58] T. Zou, S. Yang, Y. Zhang, M. Ye, Attention guided neural network models

for occluded pedestrian detection, Pattern Recognition Letters 131 (2020)

91–97.

[59] K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua, Learning to910

find good correspondences, CVPR (2018) 2666–2674.
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Appendix

Proof. Jousselme’s distance dJ (m, m̃) between BBAs m and m̃ is equal to√
1
2 (〈m,m〉J + 〈m̃, m̃〉J − 2〈m, m̃〉J), with

〈mi,mj〉J =
∑

Hi∈F(mi)

∑
Hj∈F(mj)

|Hi ∩Hj |
|Hi ∪Hj |

mi (Hi)mj (Hj) ,

where F(mi) and F(mj) are the sets of focal elements ofmi andmj , respectively.

If m and m̃ are such that m̃ corresponds to an aggregation of two focal elements

of m, i.e. ∃(A,B) ∈ F(m)×F(m), A 6= B s.t.
m̃(A) = m̃(B) = 0,

m̃(A ∪B) = m(A ∪B) +m(A) +m(B),

∀H ∈ Ω \ {A,B,A ∪B}, m̃(H) = m(H).

Using the linearity of the scalar product, we have

〈m,m〉J + 〈m̃, m̃〉J − 2〈m, m̃〉J = 〈m,m− m̃〉J + 〈m̃, m̃−m〉J ,

= 〈m, δm〉J − 〈m̃, δm〉J ,

with δm = m − m̃, non null only for H ∈ {A,B,A ∪ B} with δm(A) = m(A),

δm(B) = m(B) and δm(A ∪B) = −m(A)−m(B).

Introducing the notation k(H1, H2) = |H1∩H2|
|H1∪H2| ,

〈m, δm〉J =
∑

(H)∈F(m) k(A,H)m(H)m(A) + k(B,H)m(H)m(B)+

k(A ∪B,H)m(H)(−m(A)−m(B)),

〈m̃, δm〉J =
∑

(H)∈F(m̃) k(A,H)m̃(H)m(A) + k(B,H)m(H)m̃(B)+

k(A ∪B,H)m̃(H)(−m(A)−m(B))

Thus, with F?(m) = F(m) \ {A,B,A ∪ B} and F?(m̃) = F(m̃) \ {A ∪ B} (A
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and B /∈ F(m̃)),

〈m, δm〉J − 〈m̃, δm〉J =
∑
H∈F?(m)[ k(A,H)m(A)(m(H)− m̃(H))+

k(B,H)m(B)(m(H)− m̃(H))+

k(A ∪B,H)(m(A)m(B))(m̃(H)−m(H))]

+
∑
H∈{A,B,A∪B}[ k(A,H)m(A)(m(H)− m̃(H))+

k(B,H)m(B)(m(H)− m̃(H))+

k(A ∪B,H)(m(A)m(B))(m̃(H)−m(H))]

Since F?(m) = F?(m̃) and ∀H ∈ F?(m),m(H) = m̃(H), then the first sum in

previous equation is equal to 0, so that, remarking that k(X,X) = 1,∀X ∈ 2Ω,

developing and gathering terms, we obtain

〈m, δm〉J − 〈m̃, δm〉J = m2(A) + 2k(A,B)m(A)m(B)− 2k(A,A ∪B)m(A)(m(A) +m(B))

+m2(B)− 2k(B,A ∪B)m(B)(m(A) +m(B)) + (m(A) +m(B))2,

= 2m2(A)
[
1− |A|

|A∪B|

]
+ 2m2(B)

[
1− |B|

|A∪B|

]
+

2m(A)m(B)
[
1 + |A∩B|

|A∪B| −
|A|
|A∪B| −

|B|
|A∪B|

]
.

Finally, since |A ∪B| = |A|+ |B| − |A ∩B|, we find

1
2 (dJ (m, m̃))

2
= m2(A)

[
1− |A|

|A∪B|

]
+m2(B)

[
1− |B|

|A∪B|

]
.
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