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CONTEXT AND OBJECTIVES

Deep neural networks (DNNs) are powerful learning models yet their results are not always
reliable.

• In this work we aim for efficient deep DNNs able to quantify the epistemic uncertainty
of data easily.

• We achieve this task by training multiple One vs All DNNS and one All vs All DNN.
• Our approach achieves state of the art performance in quantifying OOD data across

multiple datasets and architectures while requiring little hyper-parameter tuning.
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Fig. 1: Distribution of classifications scores. we have respresented the histograms of confidence scores of Resnet50 [He+16]
trained on the CIFAR10 [KH+09] training set and tested on SVHN [Net+11] and CIFAR10 testing set, using Maximum Class

Probability (MCP) [HG16], Deep Ensembles [LPB17], and OVNNI,

DEEP NEURAL NETWORK (DNN) AND EPISTEMIC UNCERTAINTY
• BNNs [Blu+15]: aim to find the posterior distribution of the parameters given the

training dataset P (Θ | D), not only the values corresponding to the MAP. To make a
prediction y on a new sample x the BNN compute : P (y | x,D) =

∫
P (y | x,Θ)P (Θ |

D)dΘ.

• Deep Ensembles[LPB17]: train multiple DNNs to have access to their uncertainty.

• One vs All (OVA)/ One vs One (OVO) ensembles: popular techniques for perform-
ing multi-label classification based on an ensemble of binary base classifiers. For OVO,
instead of the baseline max-voting aggregation strategy, pairwise coupling [WLW04]
or ECOC [DB94] have been widely used. Recently a new approach [Pad+20] mixing
OVA and deep learning had interesting results.

FROM AVA TO OVA
Classically we use Cross entropy defined on a batch B of size N ∈ N by:

L(ω(t), B) = − 1

N

N∑
i=1

log(P (Y = yi | X = xi,ω)) (1)

We train one OVA DNN of each class j that provides P (Yj = 1 | X = xi,ω
j), and one AVA DNN

that provides P (Y = j | X = xi,ω) for all j in [1, nlabel]. We consider that the final confidence score
for a data xi to belong to class j is:

pj(xi) = P (Yj = 1 | X = xi,ω
j)× P (Y = j | X = xi,ω) (2)

OVNNI

Fig. 2: From AVA and OVA to OVNNI process in the case we deal with a database
composed of just three classes.
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Fig. 3: Results on MNIST - 3 classes experiments. We represent in these figures the
softmax prediction outputs obtained by the baselines (a) MCP, (b) Deep Ensemble,

and (c) by OVNNI, respectively.

EXPERIMENTAL RESULTS
We evaluate the performance of LP-BNN in assessing the uncertainty of its predictions on MNIST[LeC+98], CIFAR-10 [KH+09] StreetHazards [Hen+19], and BDD-Anomaly[Hen+19].

Dataset OOD technique Accuracy/mIoU AUC AUPR AUPR ECE Real ECE
Error Success

MNIST/Not MNIST
3 hidden layers

Baseline (MCP) 98.8 92.7 96.1 81.4 0.305
MCP + One class SVM 98.8 97.4 98.4 95.9 0.072
MC Dropout 98.2 88.1 89.8 81.7 0.494
Deep Ensemble 98.9 97.7 98.4 95.8 0.462
TRADI 98.6 97.1 98.4 94.6 0.407
ODIN 98.8 94.2 96.8 85.6 0.500
ConfidNET 98.2 97.4 98.8 94.1 0.461
Ensemble OVA (ours) 97.2 99.0 99.5 97.3 0.179
OVNNI (ours) 98.8 99.1 99.6 97.9 0.066

CIFAR10
ResNet50

Baseline (MCP) 93.1 83.9 92.9 67.5 0.606 0.0278
MCP +One class SVM 93.1 79.7 90.9 63.5 0.203 0.5881
MC Dropout 93.1 83.9 92.9 67.5 0.606 0.0278
Deep Ensemble 95.0 95.8 97.7 92.1 0.422 0.0124
ODIN 93.1 83.9 93.3 67.2 0.606 0.0483
ConfidNET 93.1 85.1 94.6 61.2 0.706 0.0529
Ensemble OVA (ours) 89.3 91.8 95.8 87.1 0.468 0.0803
OVNNI (ours) 93.3 94.3 97.3 91.1 0.187 0.0185

Camvid
ENET

Baseline (MCP) 85.8/52.9 79.7 52.1 92.6 0.146
MC Dropout 80.3/48.6 80.2 56.1 89.3 0.168
Deep Ensemble 88.0/58.2 83.2 54.3 94.0 0.112
TRADI 83.4/51.4 83.2 55.9 93.8 0.110
ConfidNET 83.4/52.8 81.3 58.3 92.6 0.121
Ensemble OVA (ours) 87.9/52.8 91.7 69.6 98.4 0.060
OVNNI (ours) 93.1/66.1 94.0 75.7 99.0 0.025

StreetHazards
PSPNet (ResNet50)

Baseline (MCP) 90.0/54.6 91.6 50.8 98.9 0.055
MC Dropout 88.0/47.9 88.8 51.8 97.8 0.092
Deep Ensemble 90.2/55.0 92.2 52.0 99.0 0.051
TRADI 90.2 /54.6 92.1 51.4 99.1 0.049
ConfidNET 90.0/54.6 88.9 37.0 97.9 0.10
Ensemble OVA (ours) 89.7/54.0 92.4 52.3 99.1 0.048
OVNNI (ours) 90.0/54.6 93.0 53.4 99.2 0.048

BDD Anomaly
PSPNet (ResNet50)

Baseline (MCP) 89.9/52.8 81.4 62.5 91.5 0.159
MC Dropout 88.7/49.5 76.0 55.7 88.2 0.181
Deep Ensemble 91.0/57.6 85.5 67.3 93.9 0.170
TRADI 89.9/52.1 81.9 63.2 91.8 0.157
ConfidNET 89.9/52.8 78.3 56.4 91.2 0.232
Ensemble OVA (ours) 89.9/52.8 91.2 86.2 95.7 0.072
OVNNI (ours) 90.7/55.4 91.9 86.6 95.9 0.081

Tab. 1: Comparative results for classification tasks on CIFAR-10
and CIFAR-100. The results are averaged over three seeds.

Dataset OOD technique AUC AUPR FPR-95%-TPR

MNIST/Not MNIST
3 hidden layers

Baseline (MCP) 94.0 96.0 24.6
MCP + One class SVM 96.9 98.0 12.5
MC Dropout 91.8 94.9 35.6
Deep Ensemble 97.2 98.0 9.2
TRADI 96.7 97.6 11.0
ODIN 94.9 96.7 17.5
ConfidNET 97.9 99.0 12.7
Ensemble OVA (ours) 98.9 99.4 5.9
OVNNI (ours) 99.3 99.6 3.5

CIFAR10
ResNet50

Baseline (MCP) 80.4 89.7 61.5
MCP + One class SVM 78.8 89.6 61.5
MC Dropout 80.4 89.7 62.6
Deep Ensemble 93.0 96.2 19.3
ODIN 80.3 89.9 61.3
ConfidNET 84.8 94.0 68.3
Ensemble OVA (ours) 88.5 93.0 30.9
OVNNI (ours) 92.2 95.8 23.3

Camvid
ENET

Baseline (MCP) 75.4 10.0 65.1
MC Dropout 75.4 10.7 63.2
Deep Ensemble 79.7 13.0 55.3
TRADI 79.3 12.8 57.7
ConfidNET 81.9 13.8 55.8
Ensemble OVA (ours) 97.1 71.1 13.5
OVNNI (ours) 96.1 61.2 16.5

StreetHazards
PSPNet (ResNet50)

Baseline (MCP) 88.7 6.9 26.9
MC Dropout 69.9 6.0 32.0
Deep Ensemble 90.0 7.2 25.4
TRADI 89.2 7.2 25.3
ConfidNET 83.6 2.3 26.2
Ensemble OVA (ours) 91.6 12.7 21.9
OVNNI (ours) 91.2 12.6 22.2

BDD Anomaly
PSPNet (ResNet50)

Baseline (MCP) 86.0 5.4 27.7
MC Dropout 85.2 5.0 29.3
Deep Ensemble 87.0 6.0 25.0
TRADI 86.1 5.6 26.9
ConfidNET 85.4 5.1 29.1
Ensemble OVA (ours) 87.0 4.9 29.0
OVNNI (ours) 87.2 6.7 25.0

Tab. 2: Comparative results obtained on the OOD task for semantic
segmentation. The results are averaged over three seeds.

Fig. 4: Results of OVNNI on BDD Anomaly and StreetHazards. The first
column is the input image, the second is the ground truth, the third is

prediction and the fifth is the confidence score of OVNNI. For comparison, we
add the MCP confidence score in the fourth column. We can see that OVNNI
has a low score on the motorcycle on the three first rows and on the train on

the last row which correspond to the OOD classes.

CONCLUSIONS
In this work, we presented an approach based on One versus All training and mixed with a modern approach based on deep learning. We show that the combination of these approaches reaches states of
the art performance on all segmentation experiments. Regarding classification tasks, OVNNI exhibits the best calibration performance. Concurrent approaches suffer from a lack of performance in
calibration in most datasets, hence the scores that they provide are overconfident, potentially leading to dangerous scenarios in critical applications. In addition to the reported performance, our approach
needs little hyperparameter tuning and is easy to implement.
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