
Spatio-temporal Consistency for Head Detection in
High-Density Scenes

Emanuel Aldea1, Davide Marastoni2 and Khurom H. Kiyani3

1Autonomous Systems Group, Université Paris Sud, France
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Context

The context of this work

Modelling high-density crowded scenes

Understanding pedestrian dynamics at high densities

Understanding how instabilities may build up

Micro-analysis: in order to model the system, the particles
(pedestrians) must be tracked individually
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Context

An ideal testing scenario

Very challenging but also suitable setting: Makkah

20 metres

~60 m ~7
0 m

~70 m

~400 m2 area to study

Static object 1
‘Al- Ka’aba’

10lx10wx15h

Static object 2
‘Ibrahim station’
10lx10wx15h

3 Major interest for improving security

3 Constant people flow

7 High security, important logistical constraints

7 Very large scale scene
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Context

The standard strategy

Discriminative learning: used extensively for pedestrian detection in
uncongested and moderately crowded contexts

(a) (b) (c) (d) (e) (f)

In 1(a): for comparison, an image used1 for learning the head-shoulder
shape; typical patch sizes in the literature: 32×32 to 48×64

In 1(b): a typical well contrasted head in our dataset; significantly
lower resolution per target

In 1(c) - 1(f): low contrast between close targets, between targets
and the dynamic background, strong occlusions

1Li et al.: Head-shoulder based gender recognition. ICIP 2013
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Context

The standard strategy

Discriminative learning: used extensively for pedestrian detection in
uncongested and moderately crowded contexts

(a) (b) (c) (d) (e) (f)

Close to the limit of interpretation of a human subject

Can we still apply discriminative learning and obtain something
meaningful in these extreme settings?

Or should we fundamentally change the way we approach this
problem?
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Discriminative learning

Discriminative learning

The descriptor

We rely on the HOG (among 2-3 other “classical” alternatives)

Two main assumptions:

Size of the targets: a disk of a three-four pixel average radius
Occlusions are frequent and strong

Significant impact of the window size parameter
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Discriminative learning

Evaluation criterion

Getting pixel level ground truth is very costly

A human user clicks exhaustively and as accurately as possible in the
centre of the targets

We expect pixels located in discretized disks of radius r around
ground truth points be classified as positives

true positives: pi ∧ pj

false positives: pi ∧¬ pj

false negatives: ¬ pi ∧ pj

true negatives: ¬ (pi ∨ pj)
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Spatio-temporal consistency

Spatio-temporal consistency

Motivation

Difficulty: the descriptor varies on a high-dimensional feature space

7 The probability of the location may occasionally vary significantly

3 We have video sequences, dynamics are low

3 The detector response should be blob-like
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7 The probability of the location may occasionally vary significantly
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3 The detector response should be blob-like

Temporal consistency

Assumption: short-term variations in the probability values should be
small for pixels belonging genuinely to targets

Secondarily, a target consists in multiple connected pixels, so
encourage clustered responses in the probability distribution

Not a tracking algorithm: avoid inference at object level, and we
provide a reliable pixel-wise label for head detection
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Spatio-temporal consistency

Temporal consistency

Steps

Small movement ⇒ reliable dense optical flow

Consider a detection threshold τ , a pixel I ti ,j , and corresponding

projections I t+k
i ,j , where −N ≤ k ≤ N

1 Spatial regularization in the immediate neighbourhood of the
projections: maximal voting (8-adjacency) to get l t+k

i,j of I t+k
i,j

2 maximal vote on the set

Lti,j = {l t+k
i,j }−N≤k≤N

and assign the result to I ti,j
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Spatio-temporal consistency

Spatial consistency

Steps

We refine a posteriori the pixel classification l ti ,j
We assume a Markov random field (MRF) over the pixel states.

We consider a basic symmetric neighborhood structure based on
4-adjacency

Nt
i ,j = {I ti−1,j , I

t
i+1,j , I

t
i ,j−1, I

t
i ,j+1}

We consider as observation set the current probability map associating
to the pixel I ti ,j the values pti ,j ∈ [0, 1] provided by the classifier
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Experiments

Experimental setup

Parameters

High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples

Descriptor window size was set to 24 × 24

Training with the linear kernel: 241 support vectors

Training with the HI kernel: 343 support vectors
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Experiments

Experimental setup

Parameters

High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples

Descriptor window size was set to 24 × 24

Training with the linear kernel: 241 support vectors

Training with the HI kernel: 343 support vectors

The cluttered context has a significant impact on classifier performance.
Procedure: detection probability map, thresholding and non-maximal
suppression (linear kernel).
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What threshold should we use?

Do we need to threshold for our aims?

What about regularization?

Our suggestion: postpone as much as possible in the decision process
the steps that lead to information loss (thresholding, non-maximal
suppression)
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Experiments

ROC analysis of the detector

Procedure

We define a ground truth set consisting of 132 particles

We consider different ground truth radii 0 ≤ r ≤ 4

The threshold τ is mapped over τ ∈ [0, 1]
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Experiments

ROC analysis of the detector

Procedure

We define a ground truth set consisting of 132 particles

We consider different ground truth radii 0 ≤ r ≤ 4

The threshold τ is mapped over τ ∈ [0, 1]

Linear kernel:
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Conclusions and future work

Conclusions and future work

Conclusions

Discriminative learning may be employed, even in extremely cluttered
environments, to provide target cues to tracking algorithms

HIK + temporal information provide the most effective results

ROC curves highlight the trade-off between the risk of target miss and the
presence of false positives

Consistent detection probability maps which present a plateau response in target
locations

Particularly adapted to multiple camera tracking and other data fusion strategies

Perspectives

A formal framework for regularization with a reasonable computational cost

The impact of the topology on the classifier performance

Multiple camera based map fusion and tracking

Difficulties related to datasets, validation and training
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