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The context of this work

Modelling high-density crowded scenes
@ Understanding pedestrian dynamics at high densities
@ Understanding how instabilities may build up

@ Micro-analysis: in order to model the system, the particles
(pedestrians) must be tracked individually

The proposed strategy
@ A common FOV multiple camera network, in order to cope with
occlusion and clutter
@ Redundancy also useful for filtering out spurious information (false
detections, wrong associations)

@ However, particle detection in single views is an essential step, and
can not be circumvented
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An ideal testing scenario

Very challenging but also suitable setting: Makkah

& ‘Ibrahim station’
10Ix 10wx 1 5h

v Major interest for improving security

v/ Constant people flow

X High security, important logistical constraints
X Very large scale scene
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The standard strategy

Discriminative learning: used extensively for pedestrian detection in
uncongested and moderately crowded contexts

(b) (c) (d) (¢) ()

@ In 1(a): for comparison, an image used! for learning the head-shoulder
shape; typical patch sizes in the literature: 32x32 to 48x64

7

(a)

Li et al.: Head-shoulder based gender recognition. ICIP 2013
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The standard strategy

Discriminative learning: used extensively for pedestrian detection in
uncongested and moderately crowded contexts

(b) (c) (d) (¢) ()

@ In 1(a): for comparison, an image used! for learning the head-shoulder
shape; typical patch sizes in the literature: 32x32 to 48x64

@ In 1(b): a typical well contrasted head in our dataset; significantly
lower resolution per target

@ In 1(c) - 1(f): low contrast between close targets, between targets
and the dynamic background, strong occlusions

Li et al.: Head-shoulder based gender recognition. ICIP 2013
Spatio-temporal Consistency for Head Detection in High-Density Scenes
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The standard strategy

Discriminative learning: used extensively for pedestrian detection in
uncongested and moderately crowded contexts

(b) (c) (d) (¢) ()

@ Close to the limit of interpretation of a human subject

¥

(a)

@ Can we still apply discriminative learning and obtain something
meaningful in these extreme settings?

@ Or should we fundamentally change the way we approach this
problem?

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Outline

© Discriminative learning

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

The descriptor

@ We rely on the HOG (among 2-3 other “classical” alternatives)

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

The descriptor

@ We rely on the HOG (among 2-3 other “classical” alternatives)
@ Two main assumptions:
o Size of the targets: a disk of a three-four pixel average radius

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:

o Size of the targets: a disk of a three-four pixel average radius
e Occlusions are frequent and strong

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:
o Size of the targets: a disk of a three-four pixel average radius

e Occlusions are frequent and strong

@ Significant impact of the window size parameter

Spatio-temporal Consistency for Head Detection in High-Density Scenes

Aldea et al.



Discriminative learning

Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:
o Size of the targets: a disk of a three-four pixel average radius
e Occlusions are frequent and strong

@ Significant impact of the window size parameter

The learning task
@ We rely on an SVM classifier, and we consider two different kernels:

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:
o Size of the targets: a disk of a three-four pixel average radius
e Occlusions are frequent and strong

@ Significant impact of the window size parameter

The learning task
@ We rely on an SVM classifier, and we consider two different kernels:
o A linear classifier K;(hy, ho) = (h1, hp)

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:
e Size of the targets: a disk of a three-four pixel average radius
o Occlusions are frequent and strong

@ Significant impact of the window size parameter

The learning task
@ We rely on an SVM classifier, and we consider two different kernels:
o A linear classifier Ki(h1, ha) = (h1, ho)
o The Histogram Intersection Kernel (HIK) function

dim

Ki(hy, hp) = me[hl i), ha(i)]
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Discriminative learning

Discriminative learning

The descriptor
@ We rely on the HOG (among 2-3 other “classical” alternatives)

@ Two main assumptions:
o Size of the targets: a disk of a three-four pixel average radius
e Occlusions are frequent and strong

@ Significant impact of the window size parameter

The learning task
@ We rely on an SVM classifier, and we consider two different kernels:
o A linear classifier K;(hy, ho) = (h1, hp)
e The Histogram Intersection Kernel (HIK) function
@ Pixel-wise classification and transfer of the binary classifier decision
into a probability estimation p; ;
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Evaluation criterion

o Getting pixel level ground truth is very costly

@ A human user clicks exhaustively and as accurately as possible in the
centre of the targets

@ We expect pixels located in discretized disks of radius r around
ground truth points be classified as positives

@ p;: classified as positive; p;: labelled as positive

@ true positives: p; A p; o false negatives: — p; A p;

o false positives: p; A= p; e true negatives: — (p; V pj)
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Spatio-temporal consistency

Motivation
o Difficulty: the descriptor varies on a high-dimensional feature space
X The probability of the location may occasionally vary significantly
v We have video sequences, dynamics are low
v/ The detector response should be blob-like

Temporal consistency

@ Assumption: short-term variations in the probability values should be
small for pixels belonging genuinely to targets

@ Secondarily, a target consists in multiple connected pixels, so
encourage clustered responses in the probability distribution

@ Not a tracking algorithm: avoid inference at object level, and we
provide a reliable pixel-wise label for head detection
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Steps
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Spatio-temporal consistency

Temporal consistency

Steps

@ Small movement = reliable dense optical flow

t
i

o Consider a detection threshold 7, a pixel /
projections IiZJfk, where —N < k< N
© Spatial regularization in the immediate neighbourhood of the
projections: maximal voting (8-adjacency) to get /{ 1% of I/
@ maximal vote on the set

and corresponding

Ly = {7 Y neksn

and assign the result to /f;
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Spatial consistency

Steps
@ We refine a posteriori the pixel classification l,.tJ
@ We assume a Markov random field (MRF) over the pixel states.

@ We consider a basic symmetric neighborhood structure based on
4-adjacency

- {I -1, I-‘rl,_]’ll,_j 1 I,J—l—l}
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Spatial consistency

Steps
@ We refine a posteriori the pixel classification litJ
@ We assume a Markov random field (MRF) over the pixel states.

@ We consider a basic symmetric neighborhood structure based on
4-adjacency
t t t t t
NiJ = {Ii—l,ja li—i—lJa li,j—1> li,j-',—l}

@ We consider as observation set the current probability map associating
to the pixel //; the values p}; € [0, 1] provided by the classifier
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Experimental setup

Parameters
@ High-density images acquired at Makkah

@ Training: 1032 patches used as positive and negative examples
@ Descriptor window size was set to 24 x 24

@ Training with the linear kernel: 241 support vectors

°

Training with the HI kernel: 343 support vectors

The cluttered context has a significant impact on classifier performance.
Procedure: detection probability map, thresholding and non-maximal
suppression (linear kernel).

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters
@ High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples

°
@ Descriptor window size was set to 24 x 24

@ Training with the linear kernel: 241 support vectors
°

Training with the HI kernel: 343 support vectors

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters
@ High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples

°
@ Descriptor window size was set to 24 x 24

@ Training with the linear kernel: 241 support vectors
°

Training with the HI kernel: 343 support vectors

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters
@ High-density images acquired at Makkah

@ Training: 1032 patches used as positive and negative examples
@ Descriptor window size was set to 24 x 24

@ Training with the linear kernel: 241 support vectors

°

Training with the HI kernel: 343 support vectors

What threshold should we use?

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters
@ High-density images acquired at Makkah
@ Training: 1032 patches used as positive and negative examples
@ Descriptor window size was set to 24 x 24
@ Training with the linear kernel: 241 support vectors
°

Training with the HI kernel: 343 support vectors

What threshold should we use?

@ Do we need to threshold for our aims?

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters
@ High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples

°
@ Descriptor window size was set to 24 x 24

@ Training with the linear kernel: 241 support vectors
°

Training with the HI kernel: 343 support vectors

@ What threshold should we use?
@ Do we need to threshold for our aims?

@ What about regularization?

Aldea et al. Spatio-temporal Consistency for Head Detection in High-Density Scenes



Experimental setup

Parameters

High-density images acquired at Makkah

Training: 1032 patches used as positive and negative examples
Descriptor window size was set to 24 x 24

Training with the linear kernel: 241 support vectors

Training with the HI kernel: 343 support vectors

What threshold should we use?
Do we need to threshold for our aims?
What about regularization?

Our suggestion: postpone as much as possible in the decision process
the steps that lead to information loss (thresholding, non-maximal
suppression)
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ROC analysis of the detector

Procedure

@ We define a ground truth set consisting of 132 particles
@ We consider different ground truth radii 0 < r <4
@ The threshold 7 is mapped over 7 € [0, 1]

Linear kernel:
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ROC analysis of the detector

Procedure
@ We define a ground truth set consisting of 132 particles

@ We consider different ground truth radii 0 < r <4
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@ We define a ground truth set consisting of 132 particles
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Procedure
@ We define a ground truth set consisting of 132 particles

@ We consider different ground truth radii 0 < r <4
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Conclusions and future work

Conclusions

@ Discriminative learning may be employed, even in extremely cluttered
environments, to provide target cues to tracking algorithms

@ HIK + temporal information provide the most effective results

@ ROC curves highlight the trade-off between the risk of target miss and the
presence of false positives

@ Consistent detection probability maps which present a plateau response in target
locations

@ Particularly adapted to multiple camera tracking and other data fusion strategies

Perspectives
@ A formal framework for regularization with a reasonable computational cost
@ The impact of the topology on the classifier performance
@ Multiple camera based map fusion and tracking
o

Difficulties related to datasets, validation and training
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