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Abstract

Detection and tracking of pedestrians in vast crowded
areas is a complex problem addressed actively by the com-
puter vision community. Proposed algorithms should ide-
ally tackle issues of accuracy and speed at the same time.
Lengthy computation times for high-quality optimization-
based algorithms relying on multiple sensors make them
impractical to use on long and detailed sequences. Hence,
an efficient acceleration scheme, which preserves the over-
all accuracy, is vital to be considered. In the current work,
we iterate various steps taken to accelerate a multi-camera
pedestrian detection algorithm formulated as an optimiza-
tion of a height map with local scene geometry constraints.
The work is performed using the NVIDIA CUDA framework
which allows us to efficiently utilize GPU processors and
optimize the various memory accesses. The final results
show more than 1000x speedup on real data frames. With
respect to preserving the output accuracy, we achieve an
accelerated output which is more than 99.9% in agreement
with the original results.

1. Introduction

Computer vision has made significant progress in the last
decade toward more accurate, more robust and faster pro-
cessing of the video data deluge that we create and use.
Non-crowded scenes have represented for a long time the
main area of interest for the computer vision community,
and pedestrian detection algorithms evolved significantly in
the last decade, addressing complex applications such as
identification of people, grouping analysis, estimation of
body parts, gesture based and trajectory based action anal-
ysis etc. However, as it has been already highlighted many
times, all these methods are not appropriate when high-
density crowd analysis is performed, and new methods must
be designed in order to cope with extreme clutter. While
clutter is the main difficulty, practical considerations also
raise difficult questions, i.e. the use and topology of a net-

work of sensors, the transfer and the processing of the data,
or the data fusion strategies. Technical difficulties widen the
gap between proof-of-concept experiments aimed at high-
density crowded scenes and functional solutions.

Our work addresses a difficulty which is pervasive in
pedestrian detection tasks relying on multiple camera net-
works with overlapping fields of view, namely the joint de-
tection of pedestrians which project potentially in different
sensors. During the last decade, a number of works [9, 1]
addressed this matter under various simplificatory assump-
tions incompatible with strong clutter, which impede their
applicability in high density areas. The underlying rationale
is that at least an approximate detection at object level must
be performed before relating uncertain detections from dif-
ferent views. On the other hand, a low-level fusion strat-
egy, such as the one proposed in [2], is applied before the
detection step and is expected to cope better with ambigu-
ous scenes specific to crowded environments. Recently,
the work of [11] redefined the low-level fusion as a global
height map estimation taking into account the local geom-
etry of the scene, represented by the accurate ground plane
location and the vertical vanishing line direction (Figure 1).
The optimization was solved using a Loopy Belief Propa-
gation algorithm, but the price for a high-quality solution
compared to a heuristic based one is the computational cost
(around 18 minutes per triplet of synchronized frames).

The objective of the current work is to reformulate the
algorithm proposed in [11] and to accelerate it by exploit-
ing a massively parallel architecture, in order to render it
compatible with practical applications. Section 2 offers a
synthetic overview of the initial algorithm, then in Section
3 we highlight at different levels the various optimizations
which were performed in order to adapt the algorithm to the
considered architecture. Section 4 presents the results of the
acceleration, and then we conclude in Section 5.

2. Algorithm overview

In [11], the authors propose an unsupervised pedestrian
detection method based on information derived from mul-
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tiple camera sources. They formulate the detector as a
Markov Random Field (MRF) based stereo matcher, which
has to minimize a global energy by assigning some labels
to each pixel p of the reference image I:

E(l) =
∑
p∈I

Dp(lp) + λ
∑

(p,q)∈N

Vp,q(lp, lq) (1)

where: (i) given the label set L, l is a labeling assigning a
value lp ∈ L to each p ∈ I; (ii) N is the set of edges of
the image graph (4-connectivity is assumed); (iv) Dp is the
data cost function; (v) Vp,q is the discontinuity cost func-
tion; (vi) λ is a regularization parameter. The detection task
is performed by the use of a special unknown label implying
that no pedestrian is present at that pixel.

The estimated scene geometry leads to the ability to
project every pixel of one image in another one knowing its
height above the ground plane (in meters). Thus, it is possi-
ble to bound the desired range of detection for a pedestrian
to an interval of heights (from 1.4m to 2m in their exper-
iments). As a consequence, they define the labels of the
energy as height values (as opposed to depth values of clas-
sic stereo matching approaches). In terms of computational
efficiency, such choice simplifies the problem of labels as-
signment, since each pixel, at a fixed range of heights, can
live in a range of depths which is not fixed and which does
not scale linearly.

The data cost is expressed as the combination of DAISY
[13] dissimilarities between the reference pixel and the pos-
sible correspondences (lying along an epipolar segment) in
each of the other views. The data cost is an input and can
be precomputed, thus it has no impact when studying the
acceleration of the optimization (except the initial access
time).

The discontinuity cost derives from the observation that
the direction of expected maximum height variation rp
points towards the vertical vanishing point. Moreover, with
the estimated geometry, the magnitude of such variation
|∇p| can be estimated. While such value depends also on
the current estimated height of lp,the authors suggest that
pre-computing it for an average height leads to a negligible
error, and thus this will be exploited as a fixed parameter in
the acceleration. Being d(p, q⊥) the projection of pixel q
avrp, the discontinuity cost is estimated as [11]:

Dp,q(lp, lq) =
∣∣∣lp − lq − sp|∇p|d(p, q⊥)

∣∣∣ (2)

In computational terms, the pre-computation of such cost
for any possible pairs of labels is not scalable with the do-
main cardinality, and thus should be avoided. However, the
term sp|∇p|d(p, q⊥) could in theory be precomputed, since
each node p relates to 4 possible values (one for each neigh-
bor), and only 2 of them are distinct in absolute value (while
the other two being their negation).

With the data cost, height variation magnitude, and a part
of the discontinuity cost being possibly precomputed, the
trade-off between computational speed and memory foot-
print becomes critical for the speedup of the algorithm.

To minimize the energy function (Equation 1), the Loopy
Belief Propagation (LBP) algorithm has been used. LBP is
an algorithm for computing approximate marginal statistics
over graphs with cycle. LBP works over a graph by trans-
mitting messages between nodes and computing beliefs at
each node [12]. Thus, each iteration of the algorithm con-
sists in computing new messages between each neighbor-
ing nodes. An outgoing message from m to n is computed
by considering all the incoming messages to m except the
one coming from n itself. After convergence, the belief for
a given node is computed by considering all the incoming
messages to that node [8].

3. GPU Implementation
In recent years, general purpose processing on GPU

(Graphics Processing Unit) provided significant support for
many scientific fields in which efficiency and speed is a vi-
tal factor. Specifically, NVIDIA CUDA framework has en-
abled us to rely on a GPU parallel environment with greater
ease. [4] describes the structure of NVIDIA GPUs in two
levels: each GPU chip consists of streaming multiproces-
sors (SM), which have their own cores (Figure 2). CUDA
uses the term ’grid of thread blocks’, where multiple blocks
map onto multiple SMs and multiple threads map onto the
cores. Each thread block contains several threads. Each
thread has its own local memory while it can also commu-
nicate with other threads inside the block via shared mem-
ory. Every thread has also access to a bigger and slower
global memory. GPU groups threads together in execution
warps. Threads inside a warp execute concurrently. The
size of warps depends on the device being used (in our case
it equals to 32). Generally, it is not necessary to follow the
exact hardware specifications when utilizing CUDA; we can
use more threads than cores and leave the scheduling to the
hardware. Having these details in mind, the next section
will describe our approach to the GPU implementation.

3.1. Basic optimizations

To optimize the pedestrian detection algorithm, we
started with basic changes from a mostly serial CPU im-
plementation to a highly parallel GPU code. The next three
sections iterate over the main decisions taken in order to
make the translation as efficient as possible.

3.1.1 Thread mapping

The first step to translate a serial algorithm to a parallel
paradigm is to assign the responsibility of each processing



(a) left camera (b) central camera, overlaid detections (c) right camera

Figure 1: Regents Park Mosque dataset, Dense sequence [11]. Three camera views are used.
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Figure 2: GPU architecture hierarchy (adapted from [4])

unit (in our case GPU threads). In our problem, this means
to specify how the grid of threads is related to our compu-
tation grids. As our data come from 2D images, if we de-
cide on different dimensions for the thread blocks we need a
proper translation between the two. In the remainder of this
section N will denote the number of pixels, M the number
of messages for each pixel and V number of labels.

First we choose the responsibility of each thread block.
One pixel per thread block: In this configuration, we will
have N thread blocks either in 1D fashion or similar to the
image in 2D with a (Width,Height) matrix of thread blocks.
Each block tends to messages originating from only one
pixel. So each thread depending on its block index tends
to a different pixel.
Multiple pixels per thread block: This way, we assign
more than one pixel for each thread block in hope of doing
more work in parallel. Each thread, depending on its block
index and also its thread idx (for example third dimension
of the thread index) knows which pixel to access.

In practice, putting computation of more than one pixel
in a block will not give us any improvement. In our tested
GPU we had the limit of 32 active blocks and 64 active
warps per SM. This means with just 2 active warps per
thread block we can theoretically achieve 100% occupancy
for the GPU. In our case, for computing four messages for
one pixel we need four active warps (assuming warp size is
32 and V < 32). Therefore, there is no actual need for more
active warps per thread block.

We also have to arrange threads inside a block.

Each block containing M*V threads: Each thread is in
charge of calculating the message for one neighbor regard-
ing one particular label. Whether the formation is in one
dimension or two will not affect the performance but struc-
turing the block as M vectors of length V helps the program-
ming process.
Each block containing M*32 threads: This means instead
of using the number of labels as the width of the block we
use the nearest power of two greater than V. This way we
make sure each computation warp only deals with messages
related two one neighbor.

As mentioned in [5], GPU architecture follows a Single
Instruction Multiple Data (SIMD) execution model, which
is not suited for kernels with divergent execution flow.
Thus, as a general rule we need to make sure threads in the
same warp follow the same (or similar) path. In our case,
there is significant divergence between code execution paths
for different messages. Therefore, in order to keep the di-
vergence minimal in each warp, we chose the dimensions
of the blocks to be M*32 (assuming the warp size is 32),
limiting each warp to one message.

After deciding on how to map to the GPU threads, the
conversion to parallel code is straightforward, as loop in-
dexes are replaced by thread and block indexes. In the next
two sections we describe in more details two major parts of
the parallel code.

3.1.2 Parallel reduction

Part of the message passing process used in this algorithm
is to compute minimum and sum of messages. Both of
these fall under the family of reduction vector operations
(i.e. deriving one value from a K-sized vector). There-
fore, to parallelize these operations we can follow the same
procedure. To choose the best option, we considered two
conventional approaches to a parallel reduction mentioned
in [7] and [10]. The first approach uses each thread block
shared memory to reduce at each step two elements of the
vector. This means we will need a vector of size V in shared
memory for each reduction. The reduction algorithm made
possible on new GPUs [10], uses a process called shuf-



fling to communicate a variable between threads inside a
block. This way there is no need for shared memory and
synchronized access. After testing in our case, which we
uses around 400k blocks and 25 labels, shuffling has been
more effective as expected, although the difference is not
considerable but significant.

3.1.3 Computing the discontinuity cost function

During each LBP iteration, considerable time is dedicated
to the calculation of the discontinuity cost function. This
part includes many summations and multiplications which,
as mentioned before, are the same at each iteration. There-
fore it is a good idea to pre-compute this part and exclude
it from the run-time and turn it into a single memory look
up. Each run of the function needs six arguments: two pairs
of pixel locations and two labels. Since the locations are
always neighbors, we can reduce the input to one pair for a
pixel location and another argument indicating the direction
of the neighbor. This means for completely pre-computing
this function we will need a five dimensional matrix. The
size of the discontinuity matrix SDM will be equal to:

SDM = H ∗W ∗ 4 ∗ V 2 (3)

where H and W are the input image height and width re-
spectively. Complete pre-computation of the function led to
speed up in runtime of each iteration; but at the same time
cost more than 4GB of graphics memory, for 400k pixels
and a label set of 25. This could prove problematic if we
decide to increase the label-set or use larger images. There-
fore another approach was used to divide the function in
two parts: one was to be computed beforehand and one to
be calculated at every iteration. The part of the function re-
lated to the geometry is precomputed and stored in a matrix
with a size proportional to the size of the image. The com-
putation depending on the labels proved to be very simple
and manageable in each iteration. This way we decreased
the amount of required memory to around 1.5GB which is a
fairly reasonable usage. This new approach also decreased
the number of global memory accesses. Before we had V 2

global memory access per message. Now we have only one
per message. This gave us an overall improvement on iter-
ation runtime.

3.2. Further optimization

In this part, we will briefly iterate over some further op-
timizations done in order to run the algorithm as efficiently
as possible. Some of these points are general best practices
which will work on any parallel GPU program, but in some
cases the changes make sense only in the context of our
problem.

3.2.1 Memory optimization

In the process of minimizing the mentioned energy func-
tion, there are three major group of stored data: pre-
computed data cost function, partially pre-computed dis-
continuity cost function and previously calculated mes-
sages. All these sources are needed for computing new
messages, therefore in each iteration there are many mem-
ory reads from the GPU global memory. Also, in the final
step of the computation we need to store the messages in the
global memory again to be used in the next iteration. This
makes a calculated memory access scheme vital for the al-
gorithm to run as fast as possible. We will mention two
general important points to achieve a better access time.

Benefiting from memory hierarchy: In some cases we
need to use the same data more than once. The data cost
function in our case is frequently needed. In these cases,
it is not advisable to access the global memory each time.
The best choice is to load the data once and store it in a
faster memory, either shared memory or each threads local
memory. The choice between the two depends how much
of each memory we have available to use. Overuse of local
memory can lead to using more registers which can reduce
the overall occupancy of GPU. For example, in our tested
GPU each block was limited to 65536 registers and 98KB
of shared memory.

Coalesced access: [6] considers coalescing memory opera-
tions as one of the general optimization directives for a par-
allel program which can lead up to 10x speedup. In simple
words, this means consecutive threads access consecutive
memory addresses (among other conditions). When access-
ing incoming messages to each pixel it is not possible to
maintain a coalesced access but in other cases maintaining
such access gave us considerable improvement.

3.2.2 Instruction optimization

After optimizing the memory operations, the bottleneck
of the kernel falls on too many mathematical instructions.
Mostly in the discontinuity cost function, floating point di-
vision and multiplication caused a considerable delay. One
possible solution to alleviate this problem is to sacrifice ac-
curacy for more speed by using GPUs fast mathematical
instructions. Actual usefulness of this approach obviously
varies case by case. In our algorithm, considerable trial and
error with these functions led to use of fdividef, fmul rd
and fsub rd instead of regular division, multiplication and
subtraction in limited cases. This gave us reasonable im-
precision which did not affect the end result while saving
significant time.



3.2.3 Algorithm optimization

The last step in our optimization process was to investi-
gate whether or not any change in the core algorithm can
be helpful. Following the advise of [3], we decided to al-
ternatively calculate only half of the messages in each it-
eration. Basically, if we divide the pixels into two subsets
A and B following a checkerboard pattern, in each iteration
we only compute the outgoing messages of pixels belong-
ing to either A or B. This makes sense because the messages
sent from nodes in A only depend on outgoing messages of
nodes in B. The same can be said about calculation of mes-
sages from nodes in B. [3] also describes the new message
from node p to q at iteration t as: if t is odd (even) then

m̄t
p→q =

{
mt

p→q if p ∈ A (if p ∈ B)
mt−1

p→q otherwise
(4)

This means the new messages are almost the same as the
standard ones, and regarding convergence this method also
converges to the same fixed point i.e. after convergence
mt−1

p→q = mt
p→q While being an approximation, this change

practically did not affect the end result of the algorithm but
it managed to decrease the iteration time by half.

4. Results
In this section, we will report the recorded execution

time of the algorithm using real captured data on a selected
platform. For testing, we have used a system with NVIDIA
Geforce GTX1080 graphic card and 8GB of graphical
memory. The system is also equipped with an Intel®
Core™ i7-6900K CPU with 3.20GHz processing speed.
The iteration time was measured using NVIDIA’s own pro-
filer nvprof. Figure 1 shows a sample input/output of the
algorithm which is extracted from a sequence of captured
images. The images cropped down to the size of 781*621
which will give us around 500K pixels to work with. As
mentioned before, the algorithm is tested with a label set of
size 25; from 1.4 meters to 1.975 with inclusion of a spe-
cial label for pixels without heads. The algorithm consists
of three main kernels - one for pre-computation, one for
each iteration of loopy belief propagation, and one for final
belief computation. The first and last kernel will run once
for each image while the second one will run depending on
the number of iteration needed for convergence, in this case
100. Figure 3, shows the general time-line of the program.
As we can see, about 98% of the runtime is occupied by
the iteration kernel, which makes it the most important ker-
nel to optimize. Figure 1 shows the execution time of these
kernels using ten consecutive frames.

Since more than 98% of execution time belongs to the
iteration kernel, we will conduct our comparison with CPU
code only for this kernel. We achieve over 3000x speed-up
for each iteration. As said earlier, the process of getting to

Frame precomputation Average
iteration

Belief
computation

1 3.854 3.781 3.201
2 4.268 4.267 5.415
3 3.66 4.147 4.016
4 3.788 3.799 3.054
5 3.899 4.401 3.983
6 3.936 4.032 3.203
7 3.886 3.934 3.704
8 3.79 3.8 3.235
9 5.031 4.262 3.116
10 4.284 4.101 3.094
average 4.0396 4.0524 3.6021

Table 1: Time taken by the three main kernels in 10 consec-
utive frames. Times are in millisecond

Version Iteration time
CPU code ∼11s
Naive GPU implementation ∼1s
Using initial pre-computation ∼0.25s
Memory optimizations ∼0.05s
Improved pre-computation ∼0.02s
Using fast instruction approximation ∼0.01s
Message passing approximation ∼0.004s

Table 2: Step by step optimizations and their time in sec-
onds

this level of efficiency involved several general purpose op-
timizations as well as some strategies specific to our prob-
lem. Table 2 shows the progression of iteration time for
a sample frame in different version of the algorithm, from
initial serial code to the current most optimized state.

It was crucial to make sure no part of the optimization
introduces any intolerable deviation from the original out-
put. Inherently, CPU and GPU codes give us slightly dif-
ferent floating point operations which can cause differences
in final labels. On top of that, as covered in section 3.2,
we have used two approximations namely the use of fast
arithmetic operations and computing alternatively only half
of the outgoing messages. Depending on each frame these
changes cause some misidentification and misjudgment of
height labels. A comparison of both versions of the algo-
rithm was done on a set of 15 consecutive frames. Table
3 shows the result of this comparison. Three metrics are
considered: the number of pixels in which both algorithms
detect a head but disagree on the height (second column);
the number of pixels in which the two implementations dis-
agree on the presence of a head (third column), and finally
average of absolute difference for the pixels which disagree
on the height. As we can see, considering the total number
of pixels, very few misidentifications happen and also the



Figure 3: Overall time-line of the execution of belief propagation for one frame with 100 iterations

Figure 4: Comparison between the CPU and GPU code in
total execution time for each frame

height difference stays around 2.5cm which is the elemen-
tary height increment.

Figure 4 shows the overall execution time for each frame
in both CPU and GPU code. These times include the read-
ing of precomputed data cost function from disk. Overall,
a solid 1100x speedup means we can process a long video
sequence which used to take several days, in a matter of
minutes.

Frame Number of pixels
with wrong height

Number of pixels
with wrong

identification
of head presence

average absolute
difference of height

(meter)

1 18 5 0.025
2 44 62 0.025
3 41 12 0.025
4 34 11 0.025
5 31 5 0.025
6 2 3 0.025
7 47 112 0.025
8 14 9 0.025
9 15 3 0.025

10 3 2 0.025
11 41 32 0.032
12 60 15 0.046
13 43 10 0.04
14 50 15 0.027
15 18 1 0.038

Table 3: Result of comparing the output of optimized code
with the original CPU code. Window size is 781*621
(485001 pixels)

5. Conclusions
In the current text, we iterated over several steps taken

to optimize and accelerate the multiple camera pedestrian
head detection algorithm [11] and adapt it to run efficiently
on GPU using NVIDIA CUDA framework. We presented
the details of the adaptation for the GPU structure as well
as problem specific approximations which helped reach-
ing greater speed without losing precision. In the end, we
achieved over 1000x speed up in overall execution time for
each frame, while preserving over 99.9% of original out-
puts.
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