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Le Hégarat-Mascle1[0000−0001−8494−2289], Emanuel Aldea1[0000−0001−7065−4809],

Piercarlo Dondi2,4[0000−0002−0624−073X], and Marco
Malagodi3,4[0000−0003−4286−6331]

1 SATIE Laboratory, University Paris Saclay, rue Noetzlin, Gif-sur-Yvette 91190, France
firstname.lastname@universite-paris-saclay.fr

2 Department of Electrical, Computer and Biomedical Engineering, University of Pavia,
Via Ferrata 5, 27100, Pavia, Italy piercarlo.dondi@unipv.it

3 Department of Musicology and Cultural Heritage, University of Pavia,
Corso Garibaldi 178, 26100, Cremona, Italy marco.malagodi@unipv.it

4 CISRiC - Arvedi Laboratory of Non-Invasive Diagnostics, University of Pavia,
Via Bell’Aspa 3, 26100, Cremona, Italy

Abstract. Preventive conservation is a vital practice in Cultural Heritage that
consists in the constant monitoring of the state of conservation of an artwork,
with the final goal of minimizing the risk of damages and thus, to reduce the need
of restorations. In this work, we propose a probabilistic approach for analyzing
alterations appearing on varnished wooden surfaces (such as those of historical
violins) based on an a-contrario framework. Our method works on time series of
images, it is robust to noise and avoids parameter tuning as well as any assump-
tion about the quantity and the shape of the worn-out areas. Furthermore, the
proposed algorithm is adapted to the context of preventive conservation, with few
data samples and imprecise annotations. As test set, we used image sequences in-
cluded in the “Violins UVIFL imagery” dataset. Results illustrate the capability
of the proposed method to distinguish altered areas from the surrounding noise
and artifacts.
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1 Introduction

In the Cultural Heritage field, preventive conservation, namely the constant monitoring
of the state of conservation of artworks and monuments, is becoming a common prac-
tice, fundamental to reducing the risk of damages and the need of restorations [4,28].
Handling an effective preventive conservation is particularly complex and, generally,
requires an interdisciplinary approach to properly interpret and manage the effects of
chemical, physical, and biological alterations [19,33,34]. In this context, image pro-
cessing can be helpful to simplify the overall procedure. Even if images alone are not
enough to perfectly characterize the state of an artwork, they are ideal to provide a quick
preliminary examination and to identify regions of interest on a surface. This paper ad-
dresses this specific problem, focusing in particular on varnished wooden surfaces.
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The varnishes applied on wooden surfaces of historical relics are generally delicate
and can be easily damaged if the artifact is not properly handled. Historical musical in-
struments, such as violins or violas, are a common example of artworks with a varnished
wooden surface that can be subject to wear. In fact, differently from other artworks that
are simply held in museums, historical musical instruments are occasionally played
even today, leading to a clear risk of mechanical wear, especially in those areas in direct
contact with the musician.

Varnished wooden surfaces present various complexities: firstly, they are generally
highly reflective, thus, noisy reflections, that can be confused for alterations, are com-
mon during photo acquisition; secondly, varnish wear can evolve in different ways de-
pending on both the initial conditions of the surface and the different substances present;
finally, the surface can be very complex and stratified due to multiple restorations oc-
curred during centuries (which is very common for historical violins).

The combined use of multiple analytical techniques has proved beneficial for han-
dling these issues [15,40], however, as previously said, this “traditional” preventive
conservation approach is very time consuming. A more efficient procedure should con-
sist of regular but rapid optical analysis of the images to quickly identify possible al-
tered areas. The result of this analysis will indicate where a more thorough multi-modal
analysis is needed. Image acquisition is very fast compared to other chemical-physical
examinations, thus, ideally, using image processing, it would be possible to frequently
examine the state of conservation of one or more artworks in a limited amount of time.

In this work, we describe a probabilistic method for early detection and analysis of
alterations through a multi-temporal image series. We specifically work with varnished
wooden surfaces subjected to mechanical wear over time. Our proposition is based on
the a-contrario framework [10,9] and it improves the method presented in [37] which
deals with detection of changes between two single frames: a reference image and an
up-to-date acquisition. In this study, we extend the detection framework in order to
process a temporal sequence of changes and to account thus for their significance with
respect to the spatial plus time dimensions. The main novelty of our work is that the
analysis is focused on the evolution of the alterations in time, which in turn allows us
to detect the wear earlier and more reliably. This way, we can successfully handle noise
and artifacts that would have been detrimental in change detection between only two
frames.

The remainder of the paper is structured as follows: Section 2 provides a brief
overview of the state of art; Section 3 discusses the proposed approach; Section 4 dis-
cusses the experiments; and finally, Section 5 draws the conclusions.

2 Related Works

2.1 Change and damage detection

In recent years, change detection has been tackled with deep neural networks for a va-
riety of applications, among which remote sensing, traffic and medical monitoring, or
quality control in manufacturing [43,24,29,25,42,46]. Typically, the feature extraction
modules of these architectures are fine-tuned on an appropriate quantity of samples
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of the target domain in order to reach high levels of task accuracy. In our considered
application however, the relative scarcity of the data coupled with the high level of
imprecision of the expert annotations favor statistical approaches in which prior infor-
mation may be more readily integrated into the models. This is a common problem in
the Cultural Heritage field. Even if machine and deep learning approaches are used,
their adoption is not widespread as in other fields, mainly due to the limited availability
of data [16].

In Cultural Heritage, methods for automatic wear and damage detection mainly rely
on traditional computer vision techniques, but nevertheless they proved to be very useful
and applicable in different scenarios. A widely studied topic is the detection of crack
in paintings. Notable approaches in this field include the use of content-based analysis
[1], the extension of morphological operations to hyper-spectral images [8] and the
combination of elongated filters, multiscale morphology and K-SVD [7], subsequently
improved using multimodal data [35].

Another related topic is the damage detection in stone artifacts. For example, Gelli
et al. [18] used Shape from Shading for identifying degradation in historical buildings;
Cerimele and Cossu [5] identified decay in ancient monuments using fast marching
numerical method; while Manfredini et al. [30] used a combination of 2D and 3D seg-
mentation to discriminate among different types of deterioration.

Image processing techniques are also used for monitoring the decay of frescoes [21]
and even for detecting damaged archaeological sites from space [6].

Despite their wide applicability, computer vision methods are still rarely used for
wear detection in varnished wooden surfaces, as those of historical musical instruments.
Attempts have been made to detect areas with established wear, that had peculiar chro-
matic characteristics [13]. More recently, Rezaei et al. [36,37] proposed a method for
detecting changed pixels between two multi-modal images and then grouping them to-
gether, while Dondi et al. [14] presented a segmentation approach based on histogram
quantization and genetic algorithm. However, all these works study the evolution of
alterations using no more than two frames at a time.

2.2 A-contrario framework

Since wear areas are highly variable, we look for some approaches which can handle
the difficulties in wear detection (unknown shape, unknown distribution, high amount
of noise) and at the same time can give us a criterion to judge how surprising a cer-
tain arrangement of points is. Both spatially and temporally extraordinary closeness
of points could indicate a wear region. The a-contrario framework introduced by Des-
olneux et al. [10] has the potential to satisfy the mentioned requirements. Across the
computer vision field, it has been used in variety of areas such as texture analysis [20],
motion detection [44,45], edge and line detection [47,2,3], or reconstruction from mo-
tion [32]. At the same time, grouping principles have been used for tasks related to the
higher-level perceptual organization of scenes as well [31,48], owing to their general
nature.

In our case, we are interested in the applications dealing with the detection of
changed areas across multi-temporal images. In early studies, Lisani and Morel [26]
used a-contrario framework and spectral invariant features to detect meaningful changes
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between two satellite images of the same area taken in different times. In 2007, Rousseau
et al. [39] proposed an a-contrario approach for change detection in three dimensional
multi-modal medical images such as Magnetic Resonance sequences. In 2010, a similar
approach was proposed by Robin et al. [38] for sub-pixel change detection in a time-
series of satellite images. Flenner and Hewer [17] further investigated this approach by
using exchangeable random variables instead of independent and identically distributed
(IID) assumption. As a later example, Liu et al. [27] applied a-contrario framework for
comparing very high-resolution images of urban areas.

In the field of preventive conservation, a-contrario framework has been used for
comparison of two single images to detect candidate points (seed detection) and then
group them together (clustering) [36]. Later, Rezaei et al. [37] introduced a noise model
to detect in one step very unlikely (under noise model assumption) arrangements of
pixels based both on their location and their gray-level value. They assume the gray-
level values to be a third axis and introduce a custom 3D distance to relate all three
axes together. While this approach handles some of the aforementioned problems; it
still only works with two frames of the series at a time, missing some potentially very
useful information present in the evolution of the clusters through time to make the
distinction between wear and noise more evident. The current paper aims to introduce
to notion of time into the a-contrario framework through the definition of the noise
model and the computation of the number of false alarms.

3 Proposed approach

Let {It}nt=0 be a series of nmulti-temporal RGB images taken from a varnished wooden
sample; I0 being the reference image. The size of each It is w × h. We perform the
change detection in each It(t > 0) image with respect to I0 using the method described
in [37]. This results in a set of binary images denoted {Bt}nt=1. It is important to note
that this step is not part of the algorithm; therefore, it can be performed using any proper
2D change detection and clustering algorithm. If the 2D change detection method out-
puts a change map, it needs to be converted to a binary image prior to being used in the
following steps. The proposed algorithm gets this series of binary images as input.

The following sections summarize each step of the algorithm that produces as out-
put, three dimensional clusters ranked based on their significance.

3.1 Distance matrix

Considering the whole series {Bt}nt=1, we create the 3D point cloud P with the two
spatial lines and columns axes of each image alongside time as the third axis (Fig. 1):

P = {(x, y, z), x ∈ {1, 2, . . . , w}, y ∈ {1, 2, . . . , h}, z|z/ct ∈ {1, 2, . . . , n}}, (1)

where ct is the time coefficient; a real valued constant that controls the importance of
a distance in time compared to a distance in image space. If ct = 1, then we give the
same importance to both.
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Fig. 1: Point cloud P derived from the sequence WS01 (left) and SV01 (right). X and
Y axes are in pixels, while the time dimension (Z axis) depends on the factor ct (in
these experiments ct = 2).

After constructing P , we aim to segment it into 3D clusters and rank them based
on their visual significance in the 3D (2D + time) space. The cluster detection using the
a-contrario approach is based on point distance [11]. A Euclidean distance between the
points of P automatically considers their spatial proximity as well as their closeness in
time. The distance matrix D is constructed by computing the 3D distance between each
pair (xa, ya, za), (xb, yb, zb) ∈ P:

Da,b =
√
(xa − xb)2 + (ya − yb)2 + (za − zb)2. (2)

3.2 Number of False Alarms

In order to define and evaluate the significance of the clusters formed by any subset of
points in P , we use an a-contrario criterion. Our naive modelM represents spatial and
temporal inconsistency for the points in P . Specifically,

Definition 1 (Naive modelM) The set of points P is a random set of |P| independent
uniformly distributed variables over the 3D cube of the image series ([1, w] × [1, h] ×
[1, n× ct]).

Let us consider a sub-volume O in the image cube; the probability that a point
belongs to O, under the naive modelM, is given as:

pO =
VO

w × h× n× ct
, (3)

where VO is the volume of O. The probability PM (pO, |P| , κ) of observing κ points
within O by chance, is given by the tail of the binomial distribution. The Number of
False Alarms (NFA) can then be derived by extending the formulation proposed in [9]
to 3D clusters:

NFA (pO, |P| , κ) = Ntest ×
|P|∑
i=κ

(
|P|
i

)
piO (1− pO)|P|−i . (4)
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In practice, the volume VO needed for the computation of the term piO, is estimated
as the lower bound of the volume of the points in O which can form any 3D shape.
The term (1 − pO) on the other hand represents the relative volume of the region that
is definitely outside the cluster i.e., outside the upper bound of the cluster. These two
volumes are calculated by morphological operations extending the approach detailed
in [9] to work with 3D data. It is worth noting that the distance between each two points
indicated in D is defined as a 3D Euclidean distance; therefore, the morphological op-
erations used here are usual dilation and erosion with a 3D kernel.

In Eq. (4), Ntest, called the numbers of tests, controls the average number of false
alarms [11]. In this work, we make this number constant for a given image cube (image
series), i.e., independent of the considered cluster O, so that it is not involved in NFA
minimization.

3.3 Maximal clusters

Using Eq. (2) a minimum spanning tree is created for the points in P . Using this tree,
we group the points from smallest cluster(s) (nearest couple of points) to the biggest
cluster (all points). For each cluster, we compute the NFA using Eq. (4). The used
ranking criterion for clusters (O containing κ points) is their meaningfulness S defined
as:

S(O) = − log(NFA(pO, |P|, κ)). (5)

In our case, we want to partitionP; therefore, from all the possible clusters of points
inP , only the maximal clusters are considered, with maximal clusters defined according
to [9]:

Definition 2 A cluster C ⊂ P is said maximal if ∀L ( C,S(L) < S(C) and ∀L )
C,S(L) ≤ S(C).

The list of maximal clusters sorted by their S value is the output of the algorithm.
The cluster with the highest S is most significant cluster in the image series.

4 Experiments

4.1 Dataset

As test set, we used the “Violins UVIFL imagery” dataset5 [14], a collection of multi-
temporal UV induced fluorescence (UVF or UVIFL) images, referring to both real in-
struments and artificially altered samples created in laboratory.

UVIFL photography is a well-known non-invasive diagnostic technique that allows
us to observe details not perceivable using visible light [23]. For example, in the case of
historical violins, UVIFL images are commonly used to highlight possible restorations
or regions of interest where it would be advisable to apply more precise but slower di-
agnostic techniques [12], such as X-Ray Fluorescence (XRF) [41] or Fourier Transform
Infrared (FTIR) spectroscopy [22]. The capability to see “hidden” details of a surface is

5 https://vision.unipv.it/research/UVIFL-Dataset/
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particularly valuable for our goal since it potentially allows for an early detection of new
alterations. Please note that UV induced fluoresce is a phenomenon due to the specific
properties of substances commonly used in the varnishes, that react to the light in the
UV-A spectrum (315 - 400 nm) re-emitting radiations in the visible spectrum (400-700
nm), and thus, the image acquisition is performed with a standard RGB camera [12].

In our experiments we focused only on the artificially created sequences present in
the dataset, since those referring to real historical violins contain only three sessions
each, too few for performing a proper multi-temporal analysis. Each sequence consists
in one to three images of the initial state of the sample and then a series of subsequent
frames where the surface was altered, and the wear starts and grows. We use the follow-
ing sequences from the dataset: WS01, a 20-frame sequence that displays the appearing
and the growing of an alteration in an area with intact varnish; and SVO1, a 20-frame
sequence that shows the growing of an already worn-out region on a sample violin back
plate.

4.2 Results

Using the sequences WS01 and SV01, for each frame, we generate binary change im-
ages respect to the reference frame, applying the method described in [37]. Figures 2
and 3 show, respectively for WS01 and SV01, four sample frames and their correspond-
ing binary image.

No. UVIFL image Input binary image Detection results Ground truth
10

14

16

20

Fig. 2: Four sample frames from the sequence WS01 and their corresponding cluster de-
tection results. At each frame, the first, second and third cluster according to decreasing
order of meaningfulness are shown in red, green, and blue, respectively.
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No. UVIFL image Input binary image Detection results Ground truth
8

12

16

20

Fig. 3: Four sample frames from the sequence SV01 and their corresponding cluster de-
tection results. At each frame, the first, second and third cluster according to decreasing
order of meaningfulness are shown in red, green, and blue, respectively.

Figure 1 shows the point cloud created by accumulating the change detection re-
sults for each frame of both sequences. The coefficient ct is set to 2 (this gives slightly
more importance to spatial proximity over time proximity, penalizes the clusters which
disappear in some frames and keeps the size of the representation domain small enough
for a better performance). The time domain is the upward axis in all visualizations. As
we can see, there is a considerable amount of noise present in both point clouds. In ad-
dition, there are two sets of artifacts in the left and right sides of both sequences, which
are related to the UV reflections from the the wooden sample.

In practice, the optical monitoring of a varnished wooden surface is an ongoing and
never-ending process. This means that the number of available frames and the accuracy
of the detection increases as the time goes on. Of course, if the sequence of available
images becomes too large, we only keep the last n frames with n chosen as a compro-
mise between computation resources and detection performance. In our case, we keep
every frame available from the first until the last one.

To simulate a practical optical monitoring process and to analyze different detection
results in any given point in time, we started the experiment with 10 frames for the
sequence WS01 and 8 for the sequence SV01; then, we ran the algorithm repeatedly
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(a) t ∈ [1, 10] (b) t ∈ [1, 14] (c) t ∈ [1, 16] (d) t ∈ [1, 20]

Fig. 4: Evolution of the detection by increasing the number of used time frames t in the
sequence WS01. Color code gives the rank according to significance: red first, green
second, blue third. The time domain is the upward axis in all visualizations.

(a) t ∈ [1, 8] (b) t ∈ [1, 12] (c) t ∈ [1, 16] (d) t ∈ [1, 20]

Fig. 5: Evolution of the detection by increasing the number of used time frames t in the
sequence SV01. Same conventions of Fig. 4.
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Fig. 6: The evolution of the meaningfulness value of sample clusters in different runs of
the algorithm for sequence WS01 (left) and SV01 (right).

increasing the considered number of frames in each run until processing all frames.
Each run gives us a list of clusters sorted by their meaningfulness value. The rank
of each cluster among the whole set of clusters can change from one run to another.
In general, assuming that the wear region expands over time, our expectation is that
the wear starts in lower ranks and steadily rises to the first rank. We can also follow
the evolution of the meaningfulness value from one run to the next. Again, we expect
that the significance of the wear region increases as we get more frames. On the other
hand, the meaningfulness value for the noise and artifact clusters should remain nearly
unchanged or go up and down randomly. Another difference between the wear region
and the rest is that it shall be present in every frame after its first appearance. Therefore,
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Fig. 7: Location of clusters 1 to 4 on a sample frame (frame 8) from the sequence WS01.

it is possible that a detected area is divided into two clusters along the time axis. In that
case, we only take into account the one with the highest meaningfulness.

Figures 4 and 5 illustrate the detection results through time, i.e., based on the num-
ber of frames used as input. In each case, the top three clusters have been shown. As
one may notice, firstly, only clusters which are consistent have been detected. Minor ar-
tifacts and small noises have been disregarded, a fact which is a very desirable behavior
when multi-temporal information is available. Secondly, the region of interest which is
the actual changed area has been chosen by the end of the sequence as the most signif-
icant cluster. The evolution of meaningfulness of each cluster for the two sequences is
depicted in Fig. 6.

For a more in-depth analysis, we can consider the four main clusters present in the
sequence WS01 (see Fig. 7 for their location on a sample frame) and as a result in P:

– Cluster 1: the wear area.
– Cluster 2: the artifact related to the right border.
– Cluster 3: the artifact related to the left border.
– Cluster 4: the noise present in the upper part of some frames.

Considering the left chart in Fig. 6, which illustrates the meaningfulness values for
these four clusters in each run of the algorithm, we can deduce the following:

– The values for both clusters 3 and 4 remain fairly constant in each run which indi-
cates artifacts with the same size appearing consistently in all frames. On the other
hand, the values for cluster 2 behave more erratically and go up and down. This
is due to appearing and disappearing of the artifact in some frames. Therefore, the
detection is divided in multiple clusters along the time axis.

– Only cluster 1, the wear region, has values that consistently increase over time.
This is in line with our expectation about an ”ideal” wear that keeps growing. In
practice, the wear may not expand over multiple acquisitions which will show itself
as a plateau. However, it will never shrink or disappear so the values should remain
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increasing overall. Moreover, even if the wear region becomes the most meaningful
cluster only at frame 16, we can notice that it is the only growing cluster already at
frames 11-12, meaning that we can trigger a “possible alteration” alert at this early
stage.

The same deductions for WS01 can be observed for SV01, as well. This time we
have three main clusters (see Fig. 6, right): cluster 1, the wear, and clusters 2 and 3,
which are reflections present on most of the samples. In this case the alteration is cor-
rectly detected early than in sequence WS01. In fact, at frames 7-8, cluster 1 is both the
most meaningful cluster and the most rapidly growing. This is coherent with the type
of input data. Sequence WS01 displays the growing of a completely new damaged area,
which is initially small and slowly growing, while SVO1 shows the worsening of an
already worn-out region, thus it is reasonable that the new alteration appears earlier and
grows faster.

Overall, results clearly show that, with respect to previous works leveraging single
change maps [37], this analysis based on the temporal dynamics of the changes is able
to pinpoint at an earlier stage and more reliably the emergence of a wear, in full accord
with the preventive conservation principle.

5 Conclusions

In this paper, we introduced a probabilistic method for detecting significant changes lo-
cated in clusters within a noisy multi-temporal series of images. The proposed method
can be used in preventive conservation, as a fast preliminary examination of a var-
nished wooden surface able to identify the most likely new altered areas. Thus, a ver-
ification using more precise but slower techniques (like spectroscopic analyses) will
be done only on these detected areas, optimizing the monitoring procedure. This ap-
proach, rooted in the Gestalt theory, is particularly interesting for the task of historical
violin analysis with respect to other statistical learning-based and deep learning meth-
ods, given the limited amount of available data and also the difficulty of performing
reliable annotations.

Future works will involve more tests, to further validate our approach, as well as re-
finements in the clustering method to achieve an even earlier detection of wear (ideally,
as close as possible to the beginning of the alteration, when only a few pixels change).

Acknowledgments

The authors gratefully acknowledge support from the French-Italian Galileo PHC part-
nership (project 44391VL/G20-160, MUSical Instrument Conservation with Optical
Monitoring (MUSICOM)).

References

1. Abas, F.S., Martinez, K.: Classification of painting cracks for content-based analysis. In:
Proc. SPIE 5011, Machine Vision Applications in Industrial Inspection XI. vol. 5011, pp.
149–161 (2003)



12 A. Rezaei et al.

2. Akinlar, C., Topal, C.: Edlines: A real-time line segment detector with a false
detection control. Pattern Recognition Letters 32(13), 1633 – 1642 (2011).
https://doi.org/10.1016/j.patrec.2011.06.001
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in historical violins with optical monitoring. In: Proceedings of the 14th International Confer-
ence on Quality Control by Artificial Vision (QCAV). vol. 11172, pp. 1117210–1 – 1117210–
8 (2019). https://doi.org/10.1117/12.2521702
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