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A B S T R A C T

Preventive conservation is the constant monitoring of the state of conservation of an
artwork to reduce the risk of damages and so to minimize the necessity of restorations.
Many methods have been proposed during time, generally including a mix of differ-
ent analytical techniques. In this work, we present a probabilistic approach based on
the a-contrario framework for the detection of alterations on varnished surfaces, in par-
ticular those of historical musical instruments. Our method is a one step Number of
False Alarms (NFA) clustering solution which considers simultaneously gray-level and
spatial density information in a single background model. The proposed approach is
robust to noise and avoids parameter tuning as well as any assumption about the shape
and size of the worn-out areas. Tests have been conducted on UV induced fluorescence
(UVIFL) image sequences included in the “Violins UVIFL imagery” dataset. UVIFL
photography is a well known diagnostic technique used to see details of a surface not
perceivable with visible light. The obtained results prove the capability of the algorithm
to properly detect the altered regions. Comparisons with other the state-of-the-art clus-
tering methods show improvement in both precision and recall.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Preventive conservation, a crucial procedure in Cultural Her-
itage, consists in the constant monitoring of artworks and mon-
uments, performed with the aim of mitigating the risk of dam-
ages and of minimize restorations [1, 2].

Historical wood musical instruments (such as violins or vio-
las) are a peculiar kind of artworks since they are both held in
museums and played (even nowadays), leading to a major risk
of mechanical wear and entailing the need of routine monitor-
ing through a non-invasive technique such as optical imaging.
Nevertheless this latter presents various complexities: (i) the
instruments have undergone multiple restorations during cen-
turies, leading to a stratified surface difficult to analyze; (ii) var-
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nish wear can evolve in different ways depending on the initial
conditions of the surface and on the different substances being
present; (iii) the rounded morphology and the high reflectance
of the varnishes generate noisy reflections during photo acqui-
sition (almost impossible to avoid completely) that can be con-
fused with potential alterations; (iv) in order to avoid damages
to the varnishes, violins cannot be rigidly fixed to a support,
thus, slight misalignment between photographic sessions can
occur. Then, the objective of regular analysis of images is
to quickly identify potentially altered areas despite noise, and
then, to apply only on them spectroscopic techniques, such

as X-Ray Fluorescence (XRF) or Fourier Transform Infrared
(FTIR) spectroscopy, as confirmation.. This approach is less
time consuming and more focused with respect to traditional
monitoring solutions that involve the use of multiple analytical
techniques on a large portion of the surface (e.g., continuously
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check the entire bottom and top areas of the violin back plate)
[3, 4].

Wear detection can be viewed as a semantic segmentation
problem with two semantic classes, namely the altered re-
gion(s) and the unchanged areas. Having a reference image is
important since we want to focus on the presence of new alter-
ations. Historical violins have been played for centuries before
to be held in museums, thus, they can already have some worn-
out regions. Using a single image it is possible to properly iden-
tify established wear [5], but, without a reference image, small
new alterations would be missed, especially in their initial stage
when they can be confused with nuances of the varnishes. Thus,
instead of an anomaly detection problem, we would rather cast
wear detection as a change detection problem assuming we

have at our disposal a reference image representing the initial
state of the instrument.

In terms of image processing techniques, various approaches
have been proposed to detect change areas that are highly vari-
able both in terms of radiometry and in terms of geometric
shape. These approaches include the statistical rejection tests in
which decisions are taken based on the probability of the null
hypothesis representing the absence of change, binary segmen-
tation including image thresholding techniques and recent ma-
chine learning methods, and clustering approaches. However,
in the case of tenuous changes due to wear, possibly buried in
noise, one has to rely on both spectral and spatial cues to decide
on the presence of a change.

Application 
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Image acquisition

Illumination correction

Spatial Registration

Difference map

Color difference

Transformation

Change 
detection and 

clustering

NFA computation

Gray level 
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Two RGB 
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Fig. 1: General steps of the proposed algorithm.

In this work, motivated by our problem of subtle change de-
tection, we define a new method based on the a-contrario frame-
work [6, 7]. The main contribution of the proposed approach is
to encompass in a single model both spatial and radiometric
criteria that change areas present. Moreover, the significance
based decision process allows us to be free from any threshold
or parameters characterizing the clusters (shape, number, po-
sition etc.). The general layout of our approach is presented in
Fig. 1. The first two blocks (discussed in Section 4) deal mainly
with sensor data acquisition and computing a raw difference
map. Their purpose is basically to construct a normalized in-
put for the change detection, but our core contribution related to
the significance based decision corresponds to the third block.
The proposed method (which extends [8] both from theoretical
and experimental point-of-view) has been validated for early
detection of superficial alterations on historical violins. How-
ever, we are confident that, by adapting the acquisition and pre-
processing steps, a wider range of change detection problems

may be addressed as long as the decision is driven by spatial
and radiometric considerations at the same time.

2. Related works

In recent years, many solutions for the problem of change
detection have gone towards the use of deep neural networks.
Various fields such as medical imaging and remote sensing have
defined several network architectures to address the inherent
difficulties of the problem [9, 10, 11, 12, 13, 14, 15]. The
fine-tuning process in these works require enough amount of
samples to work properly. For example, the network proposed
in [16] uses 104 labeled images only for network fine tuning and
for the detection of defects in radiography images. However, in
optical monitoring for cultural heritage, the acquisition of new
data is a time consuming process and expert annotations are not
always as precise and consistent as desired.

Working in an unsupervised way, clustering approaches have
been proposed to cope with the lack of labeled data. Further-
more, when performed in an adequate feature space, some of
them have the ability to consider both spatial and spectral fea-
tures. However, each family of clustering methods introduces
its own driving set of sensitive parameters (cluster number for
partition based methods [17], distance threshold for density
based methods [18, 19] including hierarchical ones [20], etc.)
to be tuned which in our case can be difficult since we do not
have any prior knowledge about the number of changed areas
(if any) and their relative extent.

The a-contrario framework introduced by Desolneux et
al. [6] has proven its efficiency in image analysis in a vari-
ety of applications such as texture analysis [21], motion de-
tection [22, 23], edge and line detection [24, 25, 26, 27], or
reconstruction from motion [28]. In all these studies, the detec-
tion is performed by rejecting a naive model which describes
the statistic of the unstructured data. At the same time, group-
ing principles have been used for tasks related to the higher
level perceptual organization of scenes [29, 30], thanks to their
general nature.

In our case, we are interested in the applications dealing with
the detection of changed areas across multi-temporal images.
In early studies, the a-contrario framework and spectral invari-
ant features have been used to detect meaningful changes be-
tween two satellite images of the same area taken at different
times [31]. An a-contrario approach has also been proposed
for change detection in three dimensional multi-modal medi-
cal images such as Magnetic Resonance sequences [32]. In
2010, Robin et al. [33] use the a-contrario framework for the
definition of a criterion assessing the level of coherence in a
sequence of images for detecting sub-pixel changes in a time-
series of satellite images. Flenner et al. [34] further investigated
this approach by using exchangeable random variables instead
of relying on the independent and identically distributed (IID)
assumption. Previously cited works focused on the gray level
values (and their changes) so that the considered naive model
deals with gray level discrepancy.

Now, other works have been proposed to deal with objects
characterized by their spatial feature consistency. Searching for
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a pattern using a-contrario framework can be done either by
computing the significance of every pattern corresponding to
a given parametric shape (e.g., circle [35], line, ellipse [36]),
or even several shape categories at once [37], or by checking
possible clusters of points regardless of their shape [38, 39].
In these works, even though one may consider more complex
models which allow for taking into account dependencies in the
image [40], the usual naive model that represents unstructured
data is the uniform distribution, for instance that of the gradient
orientations in [41] or simply of the location of the 1-valued
pixels in [6] and [42] that process binary images.

Based on all the previously cited works, a straightforward
solution for involving gray-level and spatial features consid-
ered in [26, 43] is to first use an a-contrario approach to detect
points that, according to their gray-level values, are likely to
belong to a change area, to store these points as a binary im-
age, and then group these points (1-valued in the binary image)
together as clusters when applicable [7]. However, with such
an approach the two criteria on gray-level values and spatial
features of the researched objects or areas are considered se-
quentially and there is an implicit threshold (at the end of the
first step) that leads to a loss of information regarding the inten-
sity of the change. Our proposal is thus to combine both steps
and cluster a gray-level image by using a single naive model.
The core idea is the same as the one proposed in [8], but the
algorithm itself has been improved to make it more consistent
mathematically while some implementation guidelines are pro-
vided in order to facilitate the adoption of the underlying idea
in broader applications. On the experimental side, we add a
study on synthetic data which strengthens the assumptions aris-
ing from the a-contrario model, along with tests on more real
data and comparisons with other approaches.

3. Proposed approach

3.1. Notations and key idea

Although the violin monitoring process collects a series of
images acquired at pre-defined time intervals, in the proposed
approach, only the current and the reference images are con-
sidered. They are denoted I and I0 respectively and, being in
conventional RGB format, their comparison by using a color
difference formula [44] provides a difference map ∆I such that
∆I is a gray-level image defined on the pixel domain P ⊂ N2.

Our problem boils down to segmenting ∆I, with respect to se-
mantic classes, one of which representing the unchanged area.
As previously stated, we propose to rely on a single naive

model which will account for both radiometric and spatial cri-
teria characterizing a wear area that is present in ∆Ii images.

The basic idea is to extend the meaningfulness concept speci-
fying that a cluster is all the more significant that it is very dense
(i.e., its points are ‘surprisingly’ close) not only spatially but
also in terms of gray-level differences. Now, to include gray-
level features in a-contrario detection, we could either adapt the
naive model to gray-level features in case of unstructured data
(no change in our case), or adapt the gray-level values so that
the uniform distribution can be used as naive model as usual.

In this work, we adopt the second approach. Considering gray-
level differences, low values correspond (mainly) to no change
and high values (mainly) to changes, so that a gray-level trans-
form is required to meet the assumption that a change can be
detected as surprisingly structured or dense. Then, using the
cluster NFA based on distance, the proposed method also needs
the specification of the considered distance. These two points
are presented in the next subsections before the presentation of
the NFA computation and cluster detection algorithm.

3.2. Gray-level transformation

Let us first enumerate the desirable properties of the required
gray-level transformation for ∆I pixel values: following the
transformation, (i) the gray-level values of pixels belonging to
unchanged areas shall be stretched, (ii) the gray-level values of
pixels belonging to change areas shall be similar and (iii) close
to zero. This last property aims at controlling not only the rela-
tive values of gray-level differences but also their absolute val-
ues. Then, the gray-level function ( f ) that we can consider has
to:

• be decreasing;

• spread not significant gray-level differences so that uni-
form distribution will be acceptable.

In this study, two f functions, denoted here by f1 and f2, were
evaluated: ∀x ≥ τ, f1(x) = 1

x−τ , f2(x) = 1 + tanh(τ − x),∀x <
τ, f1(x) = f2(x) = +∞. The parameter τ has been introduced
to allow us to control the number of points considered in the
following steps of the algorithm. Indeed, the values of ∆I
which are lower than τ will result in an infinite distance (cf.
Section 3.3) so that they are simply discarded; therefore, the
higher the τ the less points the algorithm considers. Note that,
in order to remain parameter free (but at the expense of memory
and computational resources), one can set this parameter equal
to zero.

(a) (b)

Fig. 2: Comparison for τ = 3.0 between (a) f1(x) = 1
x−τ and (b) f2(x) =

1 + tanh(τ − x).

We focus on these two functions since, while having the
desirable properties, the resulting value spread is quite differ-
ent. The inverse function gives a gradual decline while the tanh
function provides a more sudden drop for high values (Fig. 2).
The point clouds provided considering respectively each of the
two functions are shown in Fig. 3; both provide the expected
discrepancy of the difference values, the tanh function result
appearing somehow more uniformly distributed. Therefore, in
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(a)

(b) (c)

Fig. 3: 3D point cloud (a) before applying the function f , (b) after applying
f1(x) = 1

x−τ and (c) after applying f2(x) = 1 + tanh(τ − x). The vertical axis
represents the (transformed) gray-level values while the other two axis originate
from the 2D image plane.

the following of the paper, we focus on tanh function that allows
for better consistency with the considered naive model.

3.3. Distance between two points
The cluster detection using the a-contrario approach is based

on point distance [45]. In order to take into account both spa-
tial proximity and (transformed) gray-level differences, the pro-
posed distance is a weighted sum of two terms: the 2D spatial
distance and a term representing the modified gray-level of each
point. Thus, the proposed distance is defined as the minimal
path length among the paths relating two points and passing
through the z = 0 plane with z being the gray-level axis. In this
way, we can enforce that points with higher gray-level values
after f -transformation be considered farther apart compared to
points with lower f -transformed gray-level values. Since the

gray-level values and spatial distance are inherently in different
scales, we use the scale factor c ∈ R+ to control the weight of
the spatial term with respect to the gray-level one in the dis-
tance definition. The choice of c value is further discussed in
Section 4.

Denoting by yi the value at pixel i ∈ P, by zi = f (yi) its
transformed gray-level value and by Dsp(i, j) the 2D spatial dis-
tance between the locations of pixels i and j, ∀(i, j) ∈ P2, if
i = j,D(i, j) = 0, and otherwise

D(i, j) =

√(
Dsp(i, j)

)2
+ c ×

(
zi

2 + z j
2
)
. (1)

Let us specify that, without the constraint “if i = j,D(i, j) =

0”, D would be only a metametric since, if the symmetry prop-
erty and triangle inequality hold (they can be easily demon-
strated provided that Dsp also check triangle inequality), the

identity of indiscernibles does not. Indeed, D(i, j) = 0⇒ i = j,
but the opposite (i = j ⇒ D(i, j) = 0) is not true but for pixels
such that zi = z j = 0.

Finally, a cluster C ⊆ P is defined as a set of close points
with respect to the distance value d: C ⊆ P is the set of points i

such that ∀i ∈ C,
{
∃ j ∈ C s.t. D(i, j) ≤ d,
∀ j′ ∈ P \ C,D(i, j′) > d.

Note that for a given d there may be several distinct clusters
Ci satisfying the previous definition. Inversely, for a given clus-
ter C, there is a range of distances leading to C that allows us
to associate an inner border and an outer border to cluster C. In
the following, we denote dmin(C) and dmax(C) the bounds of this
interval.

3.4. Number of False Alarms
The Number of False Alarms (NFA) is based on the consid-

ered naive model which in our case is the uniform distribution:

Definition 1 (Naive modelM). The set of points S is a random
set of |S| independent uniformly distributed variables over the
3D (2D+gray-level) space of the image.

Note that a key point of a-contrario approaches is that the
naive model does not have to be accurate, but it only has to be
contradicted in the case of the target structured data (wear in
our application).

The Number of False Alarms is computed by extending the
NFA proposed in [7] for 2D cluster detection. Considering here
a 3D space, the 2D surface areas are replaced by 3D volumes
and the 2D distance by the distance defined in Eq. (1) so that,
for any cluster C of 3D (2D+gray-level) points,

NFAM(C,M) = Ntest

M∑
i=k

(
M
i

)
V i
C

(1 − VC)M−i, (2)

where k is the number of points in the cluster, M is the total
number of points and V

C
and VC are the lower and upper bounds

of the relative volume of the cluster with respect to the whole
image cube volume. Therefore 1 − VC represents the volume
of the region that is definitely outside the cluster while V

C
rep-

resents the volume of the region which is definitely inside the
cluster. These volumes are obtained by relying on morphologi-
cal operations as specified in the next section. Finally, Ntest that
is a normalization term equivalent to the number of tests coef-
ficient is set as a constant so that it does not impact the NFA
minimization and can be discarded if one is interested only in
the cluster ordering with respect to their NFA-based meaning-
fulness.

3.5. Calculating the lower and upper volumes
Let us first define the distance between a cluster C and a sin-

gle point i as the minimum distance between all the points in C
and i.

Then, let δ be the maximum distance between any pair of
points inside the cluster C, and δ′ be the distance between C and
the closest point outside C. The lower and upper volumes of C
are computed by performing a 3D mathematical morphological
dilation [46]:
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• The lower region is the dilation of the union of the points
in C by a ball structuring element having the radius δ/2.
Let us then denote by V

C
the volume of this region divided

by the volume of the image cube.

• The upper region is the dilation of the union of the points
in C by a ball structuring element having the radius δ′. Let
us then denote by VC the volume of this region divided by
the volume of the image cube.

It is worth noting that since we have used a modified dis-
tance formula (Eq. 1), all dilation operations have to be done
using this custom distance. Further details will be discussed in
Section 4.

3.6. Most meaningful clusters

After each cluster has an assigned NFA, we compute the
meaningfulness for each cluster:

SM(C,M) = − log(NFAM(C,M)). (3)

In the following, only comparing cluster significance values
at given value M and naive modelM, we shorten significance
notation as S(C) = SM(C,M).

By construction of the minimum spanning tree, for any pair
of considered clusters C and K , either C ∩ K = ∅ or C ( K or
K ( C. Then, to avoid redundant results (detection of the same
cluster several times), we focus on maximal clusters such that
a cluster C ⊂ P is said maximal if ∀K ( C,S(K) < S(C) and
∀K ) C,S(K) ≤ S(C) [7].

In Algorithm 1, meaningfulness maximality is handled as a
constraint: to be added to the list of maximal meaningful clus-
ters C, a cluster must not intersect any of the clusters already in
C.

4. Implementation

The implementation process (Fig. 1) begins with an appli-
cation dependent step. This step can be modified to adapt our
proposed algorithm to new applications. Once the acquisition
is complete, it is imperative to make sure the two images we
compare are spatially co-registered and have the same general
illumination level. Indeed, the images can be taken in differ-
ent conditions, for which the most relevant influencing factors
are the lighting and/or the field of view. In Fig. 1, these pre-
processing steps are grouped in a block called “Acquisition de-
pendent steps”.

The next block deals with the computation of ∆ISince the
UVIFL images are classic RGB images (cf. Section 5.2), we
have employed the CIEDE2000 formula, after projecting the
RGB values into the CIELAB color space. Alternatives may
be considered to create the difference map, from a simple Eu-
clidean distance between RGB values to more sophisticated
color difference models. However, in this study, the employed
difference formula provides consistent results which agree with
the expected wear areas.

The third block is the proposed change detection algorithm
that applies to any difference image provided by block 2 and

used for finding the clusters and computing their significance.
The process is outlined step by step in Algorithm 1, as follows.

First, we create a minimum spanning tree of the points de-
rived from the difference image based on the distances com-
puted using Eq. (1). The spanning tree is constructed as follows
[7]: we initialize a graph whose nodes are finite-coordinate
points, there are no edges, and all distances between pairs of
points are pre-computed. The spanning tree is then constructed
in an iterative way, during which, at each iteration (i) we se-
lect the two nearest nodes among the unconnected nodes and
(ii) we create an edge between these two nodes. For an easier
derivation of clusters of connected points, we also introduce a
hierarchical representation of this iterative process, in which, at
each iteration, the nearest nodes are merged in a parent node
which stores as well the maximum distance between pairs of
points belonging to the node. That is to say, for any created
parent node, this additional stored value is simply the largest
distance between any of the children nodes. In the algorithm,
we call a subtree a node along with all its children nodes.

Each parent node is then considered as a potential cluster. As
mentioned earlier, for each cluster, we compute two separate
dilations, one being performed for the lower bound and one for
the upper bound region. These dilations are done in 3D by using
Eq. (1) as the distance. As expected, this step produces differ-
ent shapes than those obtained by using the standard dilation
based on a 3D-ball structuring element or Euclidean distance.
The volumes of these regions are involved in the computation
of the NFA and of the meaningfulness values for each cluster.
For saving computational time (and since preliminary tests did
not show a difference in the derived ordering of the clusters),
we only compute NFA up to scale owing to Ntest which boils
down to deriving meaningfulness values up to a shift. The final
step is to find the maximal clusters. Starting with an empty set
C and the list of clusters Ci ranked in decreasing order of mean-
ingfulness, at each step, we increment i to select the next cluster
Ci, and, only if it is disjoint from any cluster already stored in
C, we add it to C. In the end, C represents the output of the
algorithm which is the ranked list of detected clusters based on
their S value.

Let us finally provide some practical notes:

• The choice of the parameter c in Eq. (1) is driven by both
the data features and the expected clusters. Indeed, when
c & 0, the clusters would be spatially large and very dense
including pixels almost whatever their gray-level transfor-
mation value. Conversely, a value c � 0 favors clusters
spatially scattered and very sparse only including pixels
with very low values (after transformation). Then, c pa-
rameter is set based on image resolution spatial and radio-
metric features. Based on performed experiences, we set
c = 0.1 as default value (used in all our experiments).

• When calculating Eq. (2), intermediate values of
(

M
k

)
can

get very large and generate overflows. In cases with a
small M (around 2000 or lower), we can deal with this
by using Big number data types. Otherwise, instead we
can approximate Eq. (3) using the Hoeffding approxima-
tion like in [47].
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Algorithm 1 Change detection between the current frame and
the reference frame.

1: Perform the pre-processing for I0 and I
2: Compute the color difference map ∆I between I and I0
3: for each pixel j in ∆I do
4: ∆I( j) = f (∆I( j))
5: end for
6: P ← 3D points derived from pixels j such that ∆I( j) < +∞

7: M ← |P|
8: for each pair of points i and j in P2 do
9: Compute D(i, j) according to Eq. (1)

10: end for
11: Compute the minimum spanning tree for the P points

based on D(i, j) so that each subtree in hierarchical repre-
sentation stores in its root the maximum distance between
its points

12: VP ← volume of image cube
13: for each subtree T do
14: C ← cluster of points in T
15: δ← value stored in the root of T
16: δ′ ← value in the parent node of T
17: V

C
← [volume o f dilate(C, δ/2)]/VP

18: VC ← [volume o f dilate(C, δ′)]/VP
19: k ← the number of points in C
20: Compute NFA value (up to scale owing to Ntest) accord-

ing to Eq. (2) using values k, M, V
C

and VC
21: S ← − log(NFA)
22: end for
23: J ← list of indices of the clusters sorted according to S
24: C← ∅
25: for each index j in J do
26: C j ← jth cluster according to J
27: if ∀Cl ∈ C,C j ∩ Cl = ∅ then
28: C← C ∪ {C j}

29: end if
30: end for
31: C is the list of detected clusters

• Decreasing the quantization level for the gray-level values
(e.g 128 levels instead of 256) can help improving the per-
formance by reducing the number of calculations in the 3D
morphological operations.

• In practice, the parameter τ can also be set to higher val-
ues to reduce the number of points M (cf. Eq. (2)). This
will not affect the output as long as the omitted points have
color difference values less than the minimum amount of
difference perceivable (this value depends on the applica-
tion, amount of noise present and the color difference for-
mula used). In all our experiments, we set τ = 3 which
allows us to focus on only 20% of the pixels (which is still
much more important that the wear areas that represent
only up to a few percents of the whole image).

5. Results

5.1. Evaluation of the algorithm robustness on simulated data
In this section, we use a simulated difference image to eval-

uate the performance of the proposed algorithm. First, we cre-
ated a binary map which serves as ground truth to distinguish
the background and the foreground. The foreground region
was hand drawn to represent two clusters with complex shapes.
Then, the pixel values in both regions were randomly drawn as-
suming two different heavy-tailed distributions. We focus on
the case of a heavy-tailed distribution since a) it simulates the
high value noise present in the background that is more disrup-
tive than Gaussian noise for instance and b) it allows us to illus-
trate that the naive modelM (Def. 1) does not need to be exact.
Specifically, since the drawn values have to simulate color dif-
ference values that are strictly non-negative, we focused on a
Nakagami distribution base in both cases (however any similar
distributions with the adequate parameters can be used here).
Specifically, for the foreground, we use a Nakagami distribu-
tion plus a shift value which allows us to easily control the mean
without changing the shape of the distribution. To represent re-
alistic data with respect to our application, the background is
a spread out distribution near zero and a tail with high values
while the foreground, much less spread out, has a higher mean
value than the background. Then, the aim is to detect the two
clusters present in the image and to evaluate the result using the
binary map as the ground truth.

For a quantitative evaluation of the proposed algorithm, we
simulate data considering a large range of mean and standard
deviation values for the foreground and the background. Specif-
ically, we consider the two following experiments:

• Experiment 1: we increase progressively the spread of the
background with respect to fixed foreground distribution
parameters;

• Experiment 2: we vary the mean value of the foreground
with respect to fixed background distribution parameters.

The Nakagami distribution has two parameters, denoted µ
and ω, which control the shape and spread of the distribution,
respectively. In the first experiment, we change the spread ω0
of the background (from 2.0 to 11.0 by steps of 0.5; and then to
15 by steps of 1.0) while keeping the shape of the background
µ0 constant. The parameters of the foreground (ω1 and µ1) are
also kept constant (Fig. 4). From the shape and spread of the
distribution, we can derive the mean of the background that is
found to vary from 1.16 in the first step to 3.19 in the last. Since
the mean of the foreground is constant at 4.42 we expect the
detection to become progressively harder as the two means get
closer.

In the second experiment, given constant parameters for
both regions, the distribution of the foreground is progressively
shifted towards higher values, which results in a gradual in-
crease of the mean of the foreground from near zero to higher
values. This allows us to evaluate the performance with respect
to the overlapping between background and foreground distri-
butions. Specifically, the background shape µ0 is set to 0.6 and
ω0 to 6.0. This results in a mean of nearly 2.0 and a standard
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(a) (b)

Fig. 4: Experiment 1: a) histogram of the foreground (gray) and background
(black) in the first step and b) the last step.

(a) (b)

Fig. 5: Experiment 2: a) histogram of the foreground (black) and background
(gray) in the first step and b) the last step.

deviation of nearly 1.4 . For the foreground, the mean will pro-
gressively increase from 1.92 to 8.42 in steps of 0.5 (Fig. 5).

In both experiments, for each simulated image correspond-
ing to a gradual change of parameters, we apply our algorithm
to detect the clusters. Besides, to get statistically significant
results, 10 image realisations are considered for each given
set of distribution parameters. From the ground truth binary
map, the detection results are evaluated in terms of F-score
that is computed from precision and recall values as follows:
F1 =

precision×recall
precision+recall .

The evaluation results using the F-score are shown in Fig. 6
for each experiment. In each step, the range observed during the
repetitions, along with their average and outliers (if any) have
been shown. According to these charts, experiment 1 produces
an F-score (on average) higher than 0.8 until step 12 for which
the mean of the background is 2.24; and higher than 0.7 until
step 20 for which the mean of the background is 2.85. In ex-
periment 2, the algorithm provides F-scores (in average) higher
than 0.8 from step 4 for which the mean of the foreground is
3.42. Considering the fact that the background is chosen to not
represent the naive model, thus providing a greater challenge,
the F-score plummets only in cases with extreme amount of
high value pixels in the background.

Figures 7 and 8 show examples of the output of the algo-
rithm for each experiment. Ideally, in each frame two separate
clusters should be detected, namely one bigger to the left and
one smaller. In addition, we expect that the red colour, which
indicates the most significant cluster, highlight the bigger one.
In both cases, the algorithm shows resilience to the presence of

(a)

(b)

Fig. 6: The F-score for the results of the algorithm with different (a) spread for
the background (experiment 1) and (b) mean for the foreground (experiment 2).

the noise until the background and foreground become indistin-
guishable from each other.

These two experiments show the resilience of the algorithm
to background noise and how well it can detect minute differ-
ences between the background and foreground. It is worth men-
tioning that these simulations aim at evaluating the proposed
approach in worst scenario cases, since we expect actual data
be less noisy and/or pre-processed by a noise removal process.
In the next section, we continue the evaluation by using real
images.

5.2. Performance on actual data

5.2.1. Dataset description
In this study, we used multi-temporal UV induced fluores-

cence (UVF or UVIFL) images collected in the “Violins UV-
IFL imagery” dataset1 [48]. UVIFL photography is a non-
invasive diagnostic technique, widely adopted in Cultural Her-
itage studies, that allows us to see details not perceivable using
visible light [49]. It exploits the characteristic of some sub-
stances present on the varnishes that absorb UV radiations re-
emitting light in the visible spectrum. In the case of historical
violins, UVIFL images are generally used to highlight possible

1https://vision.unipv.it/research/UVIFL-Dataset/
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(a) (b) (c) (d) (e) (f)

Fig. 7: Experiment 1: the detected clusters from (a) to (f) in steps 1,8,12,17,21 and 27. (a) shows the perfect segmentation.

(a) (b) (c) (d) (e) (f)

Fig. 8: Experiment 2: the detected clusters from (a) to (f) in steps 1,2,3,6,9 and 14. (f) shows the perfect segmentation.

restorations or interesting areas [50] where to apply more pre-
cise but slower diagnostic techniques, like XRF [51] or FTIR
spectroscopy [52]. The capability to see “hidden” details of a
surface is crucial in our scenario, since it increases the chances
of an early detection of new alterations. In fact, visible light
can be deceptive. When a new alteration is clearly identifiable
under a standard illumination, it is likely that an irreversible
damage to the surface varnish has already occurred. Moreover,
substances used for cleaning the instruments can temporarily
hide the presence of alterations, and, thus, slow down the detec-
tion. On the contrary, the effectiveness of UVIFL photography
to characterize variations in the varnishes is well known in the
Cultural Heritage field [53].

The “Violins UVIFL imagery” dataset contains UVIFL im-
ages of both historical and sample violins. Regular acquisitions
have been performed on two historical violins held in Museo
del Violino in Cremona (Italy), “Carlo IX” (c.1566) made by
Andrea Amati and “Vesuvio” (1727) made by Antonio Stradi-
vari. However, as good news concerning them, they did not
show any new wear areas (only “Vesuvio” showed a very slight
alteration on its back plate). Thus, for wear monitoring pur-
pose, we considered three artificially created sample sequences
containing images of artificially altered samples for the study
of various possible alterations over a long-term use.

The alterations were created scrubbing the surface with a
cloth damped with alcohol to reproduce, as faithfully as pos-
sible, the effect of mechanical wear during playing. The al-
teration process was repeated multiple times. At each step we
took (at least) three photos of the samples, for safety, to exclude
errors due to accidental wrong acquisitions. During the experi-
ments we considered only the best shot for each time frame.

The first artificial sequence, called WS01 (Fig. 9(a) and (b)),
is a wood sample which simulates an alteration in an area with
intact varnish. This set contains one reference image of the
initial state of the sample and 20 altered frames.

The second artificial sequence, called WS02 (Fig. 9(c) and
(d)), is a wood sample which simulates an alteration in an area
with a thin layer of varnish. This set contains one reference
image of the initial state of the sample and 8 altered frames.

The third sequence, called SV01 (Fig. 9(e) and (f)), contains
images of the lower part of the back plate of a sample violin.

This set simulates the growing of wear starting from an area al-
ready ruined and consists of one reference image and 20 altered
frames.

All the images were acquired following a rigorous acquisi-
tion protocol designed to minimize, as much as possible, the
presence of ambient noise [54, 55]. The wood samples were
placed on a small support to maintain them stable during the
shot, while the instruments were placed on an ad-hoc rotating
platform that allow us to move them precisely at the needed an-
gle. The photos were taken with a Nikon D4 full-frame digital
camera with a 50 mm f/1.4 Nikkor objective, 30s exposure time,
aperture f/8, ISO 400. We used two wood lamp tubes (Philips
TL-D 36 W BBL IPP low-pressure Hg tubes, 40 Watt, emission
peak ∼ 365nm) as UV-A lighting source. The lamps were ori-
ented at 45 degree to uniformly illuminate all the surface of the
samples/instruments. Note that, even with such a rigorous ac-
quisition protocol, some noise can still occur, especially in the
most rounded part of the violins.

The image preprocessing includes spatial registration per-
formed as follows. We rely on extracting and matching
SIFT [56] features in the original image and in the subsequent
frames. These matched points are then used to estimate a spe-
cific transformation between a given couple of frames using the
robust estimation [57]. Since our captures have been performed
on a rigid object in a controlled environment, this on-shelf ap-
proach proved to provide alignment at pixel level that is suffi-
cient for the following process given the expected scale change.

Finally, to make the evaluation of the algorithm possible, the
ground truth for each frame has been created manually from
careful visual inspection. In the absence of any exact (due in-
trinsically to the wear construction process) knowledge on the
boundaries of wear regions, they have been defined intention-
ally very loose.

5.2.2. Evaluation regarding 3D clustering
Figure 10 shows the result of the proposed NFA-based clus-

tering for four sample frames of WS01. In each frame the top
4 significant clusters have been indicated by their borders. The
blue border shows the most meaningful cluster. As we can see,
small noises change from frame to frame, big artefacts have a
constant size and location, and the wear area grows over time.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Samples of UVIFL images contained in the dataset (for clarity we have
chosen those where the alterations are particularly visible): (a) and (b) from set
WS01, (c) and (d) from set WS02, (e) and (f) from set SV01.

In all cases, small noises have been ignored and significant high
change areas have been identified.

We have compared the clustering output of our algorithm
with several other clustering methods, namely: Agglom-
erative hierarchical clustering with complete linkage [58],
Kmeans++ [59], robust spectral clustering [60], Expectation
Maximization for Gaussian Mixture models (EM GM) [61],
clustering by fast search [62], GBKmeans [63], clustering by
local gravitation [64] and HDBSCAN [65]. Thus, the chosen al-
gorithms belong to different families of clustering methods and
include both established approaches and more recent works.
Each of these algorithms have their own strength and weakness
features such as their robustness to noise and their need to get
the number of clusters as input. To make the comparison fea-
sible we have set the number of clusters k equal to 4 whenever
needed. Also, we have chosen manually the best cluster in the
output to ensure to get an upper bound for performance metrics
of that algorithm.

Considering every image sample present in the three consid-
ered sequences (Seq. WS01, WS02, SV01), the precision, re-
call and F-score metrics have been computed for each cluster-
ing result obtained on the point cloud P generated considering
the pixels with ∆I values greater than τ (for fair comparison
with our approach). Table 1 summarizes the obtained results
in terms of the average and standard deviation of F-score val-
ues for each sequence. The NFA clustering performs well for
all three sequences (high average F-score); and maintains that
performance for each frame in the sequence (very low standard
deviation).

Furthermore, it appears that the performance of each cluster-
ing method (except the proposed NFA-based one) varies from

Table 1: Average and standard deviation of F-score values for different clus-
tering algorithms on Seq. WS01, WS02 and SV01. Best results are in bold,
second best results are underlined.

WS01 WS02 SV01
Algorithm Avg Std Avg Std Avg Std
Agglomerative
[complete] [58]

0.5318 0.0935 0.6160 0.0848 0.6065 0.1023

Kmeans++ [59] 0.4914 0.1129 0.6769 0.0665 0.5930 0.0912

Robust Spectral [60] 0.6916 0.1479 0.6475 0.0665 0.6753 0.1177

EM GM [61] 0.5668 0.1437 0.6379 0.0798 0.7503 0.1157

Fast Search [62] 0.4227 0.1150 0.5273 0.0620 0.5828 0.0799

GBKmeans [63] 0.3715 0.0858 0.4870 0.0559 0.5760 0.1051

Local Gravitation [64] 0.6939 0.0902 0.6569 0.1213 0.6139 0.0936

HDBSCAN [65] 0.6272 0.1319 0.5968 0.0477 0.6418 0.0866

NFA(Alg. 1) 0.8493 0.0492 0.7634 0.0382 0.8018 0.0530

one sequence dataset to another and the best alternative to our
algorithm is different for each sequence. This is due to the
volatile nature of the noise and artifacts present in our data.
Therefore, it seems difficult to choose, among previous works,
a performing clustering method that manages successfully and
consistently the different kinds of noise.

5.2.3. Comparison with 2D segmentation
An alternative to clustering is ∆I image segmentation (to de-

tect the altered areas) followed by labelling of cluster compo-
nents. Therefore, we also evaluate our proposal against a two-
step method: a binary segmentation, namely FRFCM [66], fol-
lowed by a 2D clustering, namely HDBSCAN [65].

FRFCM is a modified fuzzy c-means algorithm that incorpo-
rates local spatial information by using morphological recon-
struction, which improves the classic fuzzy c-means to help in
dealing with the different types of noise. Applied to our data, it
provides rather good separation between background and fore-
ground. Then, to spatially cluster the points produced from FR-
FCM we use HDBSCAN (Hierarchical Density-Based Spatial
Clustering with Application with Noise) which is a framework
for density-based cluster analysis. The algorithm provides a
complete clustering hierarchy of all possible density based clus-
ters and - crucially for us - it also provides a global, optimal
non-hierarchical solution which maximizes the overall stability
of the proposed clusters. This means we can evaluate our auto-
matic process (regarding the number of clusters) with a direct
comparison of resulting clusters from both methods. In addi-
tion, for each frame, the closest cluster to the ground truth is
selected manually for the calculation of the performance met-
rics.

Tables 2, 3 and 4 show three sample frames from each
dataset: their ground truth and output of each method. Also,
for comparison with earlier attempts at wear detection on the
same dataset, we included the results obtained from the process
proposed in [48]. This solution was based on histogram quanti-
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(a) (b) (c) (d)

Fig. 10: Clustering output from frames 3, 9, 15 and 20 of set WS01 using the proposed NFA clustering (Algorithm 1).

Table 2: Comparison between the proposed NFA clustering, Dondi et al. [48],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames
from set WS01.

No. Ground truth NFA clustering (Ours) Dondi et al. [48] FRFCM+HDBSCAN
S 1 : 9

S 1 : 15

S 1 : 20

Table 3: Comparison between the proposed NFA clustering, Dondi et al. [48],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames
from set WS02.

No. Ground truth NFA clustering (Ours) Dondi et al. [48] FRFCM+HDBSCAN
S 3 : 4

S 3 : 7

S 3 : 9

zation and genetic algorithm, and was designed to minimize the
false positive detection and to quickly give a rough estimation
of the likely position of the altered region(s).

A qualitative analysis of the results from all three methods in-
dicates that we have successfully dealt with background noise
and artifacts from UV reflections in the majority of cases. For
example, in the sequence SV01, reflections on the border of the
violin are very close to the actual wear region. The NFA cluster-
ing has managed to avoid them (almost) completely, while FR-
FCM+HDBSCAN have grouped them together with the wear
in a few cases. We have also improved the results with re-
spect to [48], that, even if generally less prone to false detec-
tion than FRFCM+HDBSCAN, is also less effective that NFA
in properly identifying the boundaries of the altered regions. In-
herently the NFA clustering allows for controlling the number
of false alarms. This results in globally better wear detection
(lower number of false positives).

Table 4: Comparison between the proposed NFA clustering, Dondi et al. [48],
FRFCM+HDBSCAN clustering and the ground truth for some sample frames
from set SV01.

No. Ground truth NFA clustering (Ours) Dondi et al. [48] FRFCM+HDBSCAN
S 2 : 9

S 2 : 15

S 2 : 20

To summarize both experiments, we compare the perfor-
mance of two of the 3D clustering methods mentioned above
(Local Gravitation [64] and robust spectral clustering [60]); FR-
FCM+HDBSCAN [66, 65] and our proposal (Alg. 1). Fig-
ure 11 shows the precision/recall charts for sequences WS01,
WS02 and SV01. In all three sets, the proposed NFA cluster-
ing has better precision while maintaining an acceptable recall
in most cases. As we can see, the FRFCM+HDBSCAN method
tends to have good recall values but with poor precision i.e high
false positives. This is due to the fact that the binary segmen-
tation step only filters out the low value noise present in the
image. Therefore, in the clustering step, the high value artifacts
are hard to separate from the actual wear. As a result, it is vital
to consider the gray-level values at the same time as the spatial
information.

5.2.4. Computational cost

We use a MATLAB vanilla implementation of the algorithm,
and the cost is divided evenly between morphological opera-
tions and the computation of the NFA value. In the current
non-optimized form, the computational time is roughly equal
to the one of robust spectral clustering, which is however op-
timized. For a more time-constraint application, our algorithm
could thus benefit straightforwardly from parallelization and a
better implementation of the morphological operations (e.g. by
relying on run-length encoding [67]).
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Fig. 11: Precision-Recall plot for WS01 (a), WS02 (b) and SV01 (c). For a given algorithm (indicated by the color), each point highlights the performance at a
specific time-step of the sequence.

6. Conclusion

In this work, we proposed a probabilistic algorithm to detect
clusters of change between two temporally different images of
the same scene. Our proposal is based on an a-contrario frame-
work and performs the clustering process directly on the grey-
level difference image, while dealing with the background noise
and artifacts. Series of test cases generated by random num-
bers, used to test the limitations of the method, show flexibil-
ity to background noise and the ability to detect minute differ-
ences. Also, comparisons with recent clustering methods show
meaningful improvements while having the benefit of an inher-
ent ranking criterion for the resulting clusters.

This approach can be used in preventive conservation as a
fast, preliminary examination of the surface of a violin able to
identify the most likely altered areas. Thus, a verification using
more precise but slower techniques (like spectroscopic analy-
ses) will be done only on the detected areas, reducing the time
needed for completing the monitoring procedures.

For future studies, we intend to perform a long-term monitor-
ing process considering real historical violins which are played
weekly. Beside creating a valuable dataset for our community,
this will allow us to validate our algorithm as well on real wear
patterns. In addition, the current version of the algorithm can
benefit from parallel implementation and perhaps alternative
methods for faster 3D dilation operations. Lastly, while in the
current work we have only used one pair of images at a time
to track the changes, it is interesting and useful to incorporate
time information in our model. Inherently, the evolution of the
wear region through time is different from that of artefacts be-
ing present in the image; this can help us to differentiate wear
regions better. In addition, in an ongoing monitoring process, it
can help us detect a newly created wear at an earlier stage.
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[36] V. Pătrăucean, P. Gurdjos, R. G. von Gioi, Joint a contrario ellipse and
line detection, IEEE TPAMI 39 (2017) 788–802.

[37] O. Martorell, A. Buades, J. L. Lisani, Multiscale detection of circles,
ellipses and line segments, robust to noise and blur, IEEE Access 9 (2021)
25554–25578.

[38] G. Palma, I. Bloch, S. Muller, Detection of masses and architectural dis-
tortions in digital breast tomosynthesis images using fuzzy and a contrario
approaches, Pattern Recognition 47 (2014) 2467–2480.
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