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Abstract

This paper addresses the problem of pedestrian detec-
tion in high-density crowd images, characterized by strong
homogeneity and clutter. We propose an evidential fusion
algorithm which is able to exploit multiple detectors based
on different gradient, texture and orientation descriptors.
The evidential framework allows us to model the spatial im-
precision arising from each of the detectors. A first result
of our study is that the fusion results underline clearly the
good complementarity among the four descriptors we con-
sidered for this specific context. Moreover, the proposed
algorithm outperforms a fusion solution based on Multiple
Kernel Learning on difficult high-density crowd images ac-
quired at Makkah at the height of the Muslim pilgrimage.

1. Introduction
For video surveillance, the automatic detection of pedes-

trians is a fundamental task which is directly related to ap-
plications such as tracking or action recognition. Recently,
the accurate detection of pedestrians in high-density scenes
gained traction due to the increased frequency of large scale
social events, and due to the security risks linked to this con-
text. Although a significant effort has been devoted in the
last decade to pedestrian detection, the advances proposed
in the literature are not always transferable to crowd detec-
tions for multiple reasons, among which we can recall the
absence of background, the heavy occlusion of body parts,
the high visual homogeneity and the small size of the tar-
gets. Under these circumstances, it is essential to rely on
multiple visual descriptors which are able to provide aug-
menting views of the data, and which may thus represent
the foundation for independent detectors. Then, a global
decision has to be performed by taking into account the
partial verdicts provided by the individual detectors. Classi-
fier fusion is a well known problem in artificial intelligence,
and for the specific task of pedestrian detection a number
of solutions have been proposed over the years. Again, fu-

sion strategies exhibiting a good performance for standard
pedestrian detection may behave differently in a crowded
context where individual detectors operate poorly.

The objective of our work is twofold. We aim to high-
light, among some descriptors which are widely used in
pedestrian detection, those which are the best suited for de-
tection in high-density crowds. Secondly, we propose an
evidential fusion solution adapted for this decision context
which is particularly difficult for individual detectors. The
experiments show that the proposed method performs better
than a state of the art statistical learning fusion framework.

2. Related work
For the detection task in high-density crowds, it is not

immediately clear which descriptors are the most adapted
or discriminative, and which fusion strategy is the most ef-
fective. For example, one of the most effective preprocess-
ing steps in pedestrian detection is the background subtrac-
tion. Beside removing (potentially significant) parts of the
scene which do not contain objects of interest, background
subtraction allows for the use of descriptors built upon the
blobs associated to the foreground, such as their skeleton
or the shape of the foreground connected components [13].
Unfortunately, in a cluttered scene this approach is ineffec-
tive due to the limited presence of background, and detec-
tors adapted for crowded areas need to rely exclusively on
appearance cues.
Detectors Among the appearance cues, the simplest de-
scriptors rely on a local color histogram, which may be as-
sociated to skin, hair or clothes. However, this approach
is limited by multiple factors: the object resolution needs
to be relatively high, the color spaces are not discriminative
enough for difficult tasks, and lastly many surveillance cam-
eras provide gray level data. Likewise, common face detec-
tors such as Viola-Jones [21] are unsuited, since pedestrian
faces are not detailed enough.

Among the descriptors related to the image gradient, the
Histogram of Oriented Gradients (HOG) descriptor [5] is
very popular and has exhibited in various contexts an ex-
cellent performance when used either in conjunction with



a linear SVM, or with a histogram intersection kernel
(HIK) [24]. More generally, the contour related to the spe-
cific shape of the head and shoulders is indeed highly dis-
criminative, but it may fade away due to clutter. Supervised
learning may be used in order to enhance the local edge
map according to a training contour dataset [23], but it is
also advisable to rely on descriptors aimed at other features
than shape.

Such a feature which has been often used for detection
in crowded scenes is the Local Binary Pattern (LBP) opera-
tor [15]. The traditional use of LBP is in texture classifica-
tion, but due to its local sampling strategy it exhibits a rea-
sonable robustness to occlusion as well. Some alternative
solutions are the covariance matrix based descriptors [10],
but the main advantages of LBP are its compactness and low
computational cost. Also related to texture representation,
Gabor filter banks have been used for head detection [11] to
encode the local frequency and orientation.
Fusion Regarding the fusion of detectors based on differ-
ent features, some fundamentally different approaches are
popular in the literature for the pedestrian detection task. In
order to avoid fusing different detectors altogether, a radical
choice is to simply concatenate all the available representa-
tions before classification. The fundamental limitations of
this solution are due to the suboptimal projection of all the
features into a common discriminative space, and to the risk
of overfitting.

Another straightforward, popular strategy is to use a cas-
cade of detectors, where the first detector has a low compu-
tational cost and a low false negative rate, while the subse-
quent detection is costlier and more accurate [10]. Although
this strategy is beneficial for real-time performance, the de-
cision fusion does not benefit systematically from all the
available information, and this fact is detrimental in a diffi-
cult setting such as high-density detection, where individual
classifiers exhibit rather modest performance.

In order to benefit simultaneously from all the available
features, AdaBoost is well positioned in terms of computa-
tion requirements and it remains very popular on architec-
tures with limited power and/or real-time constraints, but
it has been shown that nonlinear classification exploits bet-
ter the available data [8, 3] (with a significant increase in
computation cost). In this latter case, the fusion of the
classifiers may be performed by recovering their output in
a probabilistic form, and then applying some combination
rules which are more or less ad-hoc, such as a product, or
a pseudo-likelihood as the averaged sum of the individual
likelihoods over the detectors [7] in order to cope better with
individual missed detections. Alternatively, multiple kernel
learning (MKL) is a well established methodology which
aims to combine different kernels relying on different data
representations as a linear combination, by casting this in-
formation fusion task as a convex optimization problem [9].

The problem scales very well with the number of individ-
ual classifiers, and efficient implementations can cope with
millions of data sources. However, the main limitation of
MKL, as with nonlinear SVMs in general and with neu-
ral networks, is the difficulty to interpret the final decision
function, and to account for spatial imprecision.

Belief function theory is often presented as a general
framework that allows us to model both the uncertainty as
using probability theory and imprecision as using fuzzy sets
or possibility theory. From the seminal work of Dempster
and Shafer [18], the Transferable Belief Model proposed
by Smets [19] makes the theory very popular and numer-
ous applications have been carried out in very various do-
mains [6], including (video-)surveillance problems such as
target recognition [17] or multi-sensor system [2]. Combi-
nation of detectors has been proposed by [25] but in a very
different context: multi-class problem but with much higher
target resolution, whereas in this work we focus on spatial
features of the considered descriptors.

3. Proposed fusion method
In this study, we propose to use belief function frame-

work [18] to perform fusion between different SVM based
pedestrian detectors which provide a probabilistic output.
In our setting, the crowd exhibits high density characterized
by strong occlusions, rendering the head of each pedestrian
barely visible. Besides, due to the specific geometry of such
recordings, each head corresponds to few pixels. The most
effective head detectors are based on features computed in
sub-windows around the pixel of interest, which further in-
crease the spatial imprecision of the detection.

Since belief function theory has been proposed to han-
dle both uncertainty and imprecision, we naturally look to
this framework. Details about it will be provided after the
presentation of the descriptors we considered.

3.1. Descriptors

HOG features The HOG, introduced in [5], grasps the
shape of interest by histograms of the distribution of local
intensity gradients or edge directions. For each pixel, HOG
is computed considering a larger window around it, which
is in turn divided into smaller cells, and for each cell a local
histogram of gradient directions is accumulated. Cells can
be then grouped into blocks, and the histograms contained
in each block are normalized to take into account changes
in illumination and contrast. The resulting histograms are
lastly concatenated into a single vector.
LBP features The LBP [15] is a powerful texture descrip-
tor. For each pixel, the 3 × 3 neighborhood is thresholded
with respect to the pixel value, and the resulting string read-
ing the neighbors’ values clock-wise is interpreted as a bi-
nary number and used as a label. Then, a histogram is de-



rived from the labeled image.
LBP has been enhanced in [16] to support neighbor-

hoods of different sizes, and to consider uniform patterns,
i.e. patterns which have at most two transitions from 0 to 1
or vice-versa in a circular fashion. In fact, it has been ob-
served that uniform patterns represent well local primitives,
such as corners or edges, and hold most of the information
related to texture. This has the advantage to reduce consid-
erably the size of the histogram, since all the non-uniform
patterns fall in the same bin. Formally, the LBP operator at
(xc, yc) location having a gray-scale value of gc is defined
as:

LBPp,r(xc, yc) =

p−1∑
p=0

s(gp − gc)2p, (1)

where p is the number of points interpolated on a r radius.
The notation LBPu2

p,r means that uniform patterns are con-
sidered.

Following the idea of [1], we subdivide the image in
small regions from which histograms are extracted and then
concatenated, in order to enhance the locality of the LBP.
Gabor features Gabor filter banks are widely used in object
recognition and texture segmentation, for capturing global
information thanks to the flexibility in the choice of spa-
tial frequencies and orientations. An input image I(x, y)
is convolved with Gabor filters G(x, y), i.e. gaussian func-
tions modulated by an oriented complex sinusoidal signal,
at different scales and orientations:

G(x, y) = e−
x′2+γy′2

2σ2 · cos (2πfx′ + φ) , (2)

where x′ = x cos θ+ y sin θ and y′ = −x sin θ+ y cos θ, σ
regulates the ellipticity of the kernel, f is the frequency of
the spatial wave and θ determines the rotation angle in the
[0, 180◦) domain.

To build the final feature vector, instead of just concate-
nating the raw responses of every filter in the bank, we sub-
divide the window around each pixel in several blocks, and
then we compute their first and second order statistics.
Daisy features Daisy is a more recent descriptor which has
gained popularity particularly in the field of stereo match-
ing [20]. For a given input image, H orientation maps
are firstly computed and then convolved several times with
Gaussian kernels of different Σ on Q concentric layers with
T circles centered on the considered location. Then, his-
tograms of orientations are derived from the central loca-
tion and from all the Gaussian in every layer, and finally
concatenated. Normalization can be applied for every his-
togram independently or for the whole vector.

The amount of Gaussian smoothing is proportional to the
radius of the circle, giving rise to larger Gaussian kernels in
the outers rings. For this reason, we consider that Daisy is

well suited for our application, as we benefit from a finer de-
scription in the center of the head and a coarser description
moving away from it. Gaussian smoothing, together with
the sampling overlap, naturally enforce spatial consistency.
To our knowledge, this descriptor has not been previously
used for head detection in crowds.

3.2. Evidential fusion

To handle both uncertainty and imprecision, belief func-
tions are defined on a larger hypothesis set than probabilis-
tic framework. Specifically, if Θ denotes the discernment
frame, i.e. the set of mutually exclusive hypotheses, be-
lief functions are defined on the set of the subsets of Θ,
noted 2Θ in reference to its number of elements: 2|Θ| where
|Θ| is the cardinality of Θ. In our case, denoting by H
and H̄ the two singleton hypotheses, head and not head,
2Θ =

{
∅, H, H̄,

{
H, H̄

}}
.

There are five basic belief functions that are in one-to-
one relationship so that the definition of any of them is suf-
ficient to define the other ones. Classically, mass function
noted m is the basic belief assignment (bba) that satisfies
∀A ∈ 2Θ,m(A) ∈ [0, 1],

∑
A∈2Θ m(A) = 1. The hy-

potheses for which mass function is non null are called focal
elements. Then, other belief functions are used either for de-
cision, namely the plausibility and the credibility functions,
noted Pl and Bel respectively, or for some computations.
Pl and Bel functions may also be interpreted as upper and
lower probabilities [18] and they check the duality property:
∀A ∈ 2Θ, P l(A) = 1−Bel(Ā) (where Ā denotes the com-
plement of A with respect to Θ).

In our case we aim at using bba to model the spatial im-
precision due to the close resolutions of object (head) and
descriptor respectively. Now, applied in the spatial domain,
the work of [4] allows us to define a bba taking into account
the spatial imprecision. Specifically, let us consider a struc-
turing element b (related to spatial neighborhood of interest)
and an initial bba having only two focal elements simultane-
ously on b. Then, erosion and dilation (respectively opening
and closing) morphological operators may be applied to the
initial mass of the considered focal element in order to get
Pl and Bel values for the final bba. Indeed, duality prop-
erty between erosion and dilation (or between opening and
closing) allows us to get a well-defined bba. In our case,
initial bbas are bayesian (i.e. bbas having only singleton fo-
cal elements) defined from binary classifier output (scores
for each Θ class) so that initial bbas have only two focal
elements. Then, in every pixel s of the image, the bba mi,s

associated to descriptor i is simply defined by

mi,s(A) = γa

(
mi,s

0 (A)
)
,∀A ∈

{
H, H̄,

}
,

mi,s(
{
H, H̄

}
) = 1−mi,s(H)−mi,s(H̄), (3)

mi,s(∅) = 0,



where γa is the opening operator of parameter a. We con-
sider opening rather than erosion since, as already pointed
in [4], obtained results are much better due to the filtering
property of this morphological operator. Now, conversely
to [4], we propose the use of a structuring element espe-
cially crafted for the spatial descriptors, namely a spatial
Gaussian structuring element fitted in a window of radius a.

At the end of bba allocation, considering N descriptors
(for this study, N = 4), in every pixel s, N bbas are de-
fined that represent the soft output of each of the N binary
classifiers. According to bba i, the uncertainty of a head
presence in s ranges between Beli,s(H) = mi,s(H) and
Pli,s(H) = mi,s(H) + mi,s(Θ) so that mi,s(Θ) repre-
sents the imprecision on the uncertainty value provided by
ith descriptor in s. In our model, uncertainty comes from
the binary classifier score whereas imprecision comes from
spatial heterogeneity of uncertainty values within the con-
sidered structuring element.

Defining the bbas associated to the N descriptors al-
lows for combining them. As the descriptors are con-
sidered as cognitively independent, the orthogonal sum
or its unnormalized version, the conjunctive combination
rule [19], are well-suited for this task. For two sources m1

and m2, conjunctive rule writes ∀A ∈ 2Θ,m1∩©2 (A) =∑
(B,C)∈2Θ×2Θ,

B∩C=A

m1 (B)m2 (C). When N > 2, associativity

property of the conjunctive rule may be used. However, in
our case where |Θ| = 2, the analytical result may be easily
derived:

∀A ∈
{
H, H̄

}
,

ms
∩©N

1
(A) =

∑
(B1,...,BN )∈{A,Θ}N ,
∃j∈[1,N ]s.t.Bj=A

N∏
j=1

mj,s (Bj) ,

ms
∩©N

1

({
H, H̄

})
=

N∏
j=1

mj,s
({
H, H̄

})
, (4)

ms
∩©N

1
(∅) = 1−ms

∩©N
1

(H)−ms
∩©N

1

(
H̄
)
−

ms
∩©N

1

({
H, H̄

})
.

Finally, in every pixel, the decision is taken from ms
∩©N

1
.

Several rules have been proposed in the literature. Most
popular ones only consider singleton hypotheses (in order
to avoid ambiguous decision) and are based on functions
that have a probabilistic interpretation: maximum of plau-
sibility, credibility, or pignistic probability [19]. However,
with only two hypotheses in Θ, previous criteria boil down
to the same decision: Â = argmaxA∈{H,H̄}m

s
∩©N

1
(A).

To illustrate the interest of modeling imprecision in ad-
dition to uncertainty, let us consider the following toy ex-
ample with a pixel belonging to a head and four sources

Table 1. Probability of H in s neighborhood; s is the central pixel;
Probability of H̄ is the complement with respect to 1.

descriptors 1 to 3 descriptor 4
.7

.5 .6 .5
.5

.5
.5 .1 .5

.5

Table 2. Mass allocation, combination and decision (in bold) in
case of Table 3.2 probability maps; for example simplicity, erosion
with a flat 4-connectivity structuring element is used; for compar-
ison, probability product is shown.

hypothesis, pixel s H H̄
{
H, H̄

}
∅

ms,1 = ms,2 = ms,3 .5 .3 .2 0.
ms,4 .1 .5 .4 0.
ms
∩©4

1
.17 .11 .0.004 .18∏4

j=1 p
s,j .02 .06 / /

available to detect it. Three of them provide a probability
of H equal to .6 (Pi∈{1,2,3}(H̄) = .4); however punctual
noise present in the fourth source leads to P4(H̄) = .9 (and
P4(H) = .1) so that decision based on probability prod-
uct leads to the wrong label, H̄ . Now, using the proposed
evidential approach, neighborhood information introduced
during bba allocation allows for the discounting of the unre-
liable source (according to the pixel spatial neighborhood).
Table 3.2 shows that it leads to the right decision, H .

4. Experimental results
4.1. SVM settings

For the classification step we rely on SVM, with kernels
adapted to each descriptor; cross-validation is performed
to set the parameters. Considering that head sizes in our
dataset span between 8 and 12 pixels, we compute HOG
descriptors in 24 × 24 windows, in order to include infor-
mation about the immediate surrounding of the actual head
while at the same time avoiding other targets. A L2-hys nor-
malization is applied for each block. For learning, we rely
on the HIK.

A LBPu2
1,8 is used over 12×12 windows subdivided into

four 6×6 blocks. The choice of the window size is sensitive,
as larger windows result in wide detections, overflowing the
actual heads. Stride between blocks has also been tested but
it does not provide consistent improvement. Following the
example of [1] which employs on a χ2 distance as a dis-
similarity measure, we rely on a χ2 kernel function which
has been shown to be positive definite and suited for data
generated from histograms [12].

We use a Gabor filter bank of 5 scales and 4 orientations;
a high number of scales is essential to obtain good results,
while increasing the number of orientations does not pro-
vide an effective gain in performance. For each Gabor fil-
ter response image, we compute and concatenate mean and



standard deviation over 4 × 4 blocks on 16 × 16 windows.
Then, a RBF kernel is considered for learning.

For the Daisy descriptor, we use a radiusR = 8 from the
center to the outer ring, with Q = 3 number of layers and
T = 8 histograms of H = 8 bins at each layer. As for the
HOG, the HIK is employed for SVM classification.

4.2. Results

We tested our proposed fusion method on high-density
crowd images acquired at Makkah during Hajj.

Figure 1. Example of classification results. First row: colormap
of the fusion output. Second row: detections after thresholding at
precision = 0.92 and recall = 0.72. Third row: detection deci-
sion after NMS. Fourth and fifth rows: detections and colormaps
respectively for the employed descriptors, namely HOG, LBP, Ga-
bor and Daisy.

Figure 1 shows an example of the classification result,
namely a colormap of the finalBetP (H) map (for |Θ| = 2,
BetP (A) = m(A) + m(Θ)

2 ,∀A ∈ Θ), and a thresholding
result to visualize easier the inferred head locations. For
the highlighted box, each independent source is presented.
We notice that each source has a specific behavior, which
underlines their complementarity. HOG and Gabor pro-
vide a localized detection, but more small false positives are
present. On the contrary, LBP and Daisy provide larger and
rougher results. In particular Daisy provides very smooth
detections, due to the Gaussian based spatial sampling.

SVM performs a dense classification across the test area,
and decision with fusion is taken at pixel level. To be able
to quantitatively assess the results with object level statistics
based on detection level, we perform a non maxima sup-
pression (NMS) on the output probability map [14]. Setting
r = 2 as head radius, the minimum distance between two
maxima is fixed to 2r+1, to avoid overlapping between dif-
ferent detections. Fig. 1 shows an example of the detections

after NMS, highlighting in green True Positives (TPs), in
red False Negatives (FNs) and in blue False Positives (FPs).
Although the crowded scene is difficult, most of the heads
are correctly detected, even if a clear problem remains with
regards to the detection of dark veils, which are not well
handled by the initial sources. Nevertheless, the number of
FPs is consistently reduced.
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Precision-recall curves for all the possible descriptors' combinations

HOG

LBP

Gabor

Daisy

Gabor + Daisy

Gabor + HOG

Gabor + LBP

HOG + Daisy

LBP + Daisy

LBP + HOG

HOG + Daisy + Gabor

LBP + Daisy + Gabor

LBP + HOG + Daisy

LBP + HOG + Gabor

HOG + LBP + Daisy + Gabor

Figure 2. Precision-recall curves for the fusion of all the possible
descriptors’ combinations. Initial sources are shown as reference.
The proposed fusion approach outperforms other approaches.

Figure 2 shows the precision-recall (PR) curves for the
four descriptors, namely the sources of the proposed evi-
dential approach, and the fusion results achieved combin-
ing any subset of sources. The plot underlines the tendency
of HOG and Gabor descriptors to detect more FPs, which
translates into having a lower overall precision, while LBP
and Daisy reach higher levels of precision but have a lower
recall, as they miss more heads. Likewise, we note that the
combination HOG+Gabor provides the best recall, and in
the same way LBP+Daisy consistently improves the preci-
sion values. This plot shows that each descriptor contributes
to the overall results, which highlights again their comple-
mentary relationship.

Figure 3 shows the PR curve of the proposed fusion
method compared to the MKL implementation provided
by [22] and the ‘naive’ product of probabilities. The curves
related to the four initial descriptors are left as a reference.
The proposed fusion method provides higher recall and pre-
cision values with respect to product and MKL. Compared
to the linear kernel combination computed by MKL, the fu-
sion algorithm takes advantage at a local scale of the infor-
mation provided by the independent detectors. The good
performance of the product can be explained by the rela-
tively consistent behavior of the classifiers and by the pres-
ence of only two singleton hypotheses. However, as shown
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Figure 3. Precision-recall curves for our fusion approach, MKL
and product of probabilities. Initial sources are shown as refer-
ence. The proposed fusion provides overall better precision and
recall values.

in the toy example, this approach would not extend well to
less reliable detectors.

5. Conclusion

In this paper we proposed an evidential framework which
addresses pedestrian detection in high-density crowds. The
study of the combinations of the different classifiers which
were considered proves that the underlying descriptors
complement each other, and that the fusion algorithm is able
to exploit their synergy and to take into account spatial im-
precision. Finally, since our solution does not perform as a
“black box” algorithm, our work opens up some interesting
avenues for refining the selection, training and use of the
individual detectors which were considered in this work.
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