
EVALUATING CROWD DENSITY ESTIMATORS VIA THEIR UNCERTAINTY BOUNDS

Jennifer Vandoni, Emanuel Aldea and Sylvie Le Hégarat-Mascle
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ABSTRACT

In this work, we use the Belief Function Theory which ex-
tends the probabilistic framework in order to provide uncer-
tainty bounds to different categories of crowd density estima-
tors. Our method allows us to compare the multi-scale per-
formance of the estimators, and also to characterize their re-
liability for crowd monitoring applications requiring varying
degrees of prudence.

Index Terms— density estimation, crowd counting,
multi-scale evaluation, uncertainty bounds

1. INTRODUCTION

Understanding crowd systems and predicting their evolution
is of paramount importance when considering the world pop-
ulation growth and urbanization rates. One of the reasons for
which the urban infrastructure sector has not fully taken ad-
vantage of vast available video data is the difficulty to ex-
tract accurately microscopic and macroscopic observations in
high-density conditions. Although it does not require accurate
target localization, density estimation inside crowds is still a
challenging problem, due to phenomena such as strong oc-
clusion and visual homogeneity. However, deep learning ad-
vancements significantly improved the state-of-the-art perfor-
mance (see [1] for a comprehensive survey). Recent methods
are mostly based on the estimation of a density map whose in-
tegral over a region provides the number of people within it,
in such a way to incorporate spatial information directly into
the learning process (e.g. MCNN [2], Cascaded-MTL [3],
Hydra CNN [4], CSRNet [5]). In the vast majority of the pro-
posed works, the estimator evaluation is performed at image
scale, with error metrics such as MAE or MSE [1]. However,
from the point of view of modelling the crowd as a dynamical
system, accurate local densities are required in order to char-
acterize wave-like propagation phenomena. The error met-
rics above are related to large scale statistics, which do not
apply to small scales due to compensation between overesti-
mating and underestimating the density in different areas. An
additional limitation of current density estimators is the ab-
sence of an uncertainty range provided along with the scalar
density. Ranges on the pedestrian count are greatly needed,
as the trade-off between safety concerns and optimal use of
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infrastructure capacity promotes different levels of conges-
tion in different contexts. In statistical learning theory, the
uncertainty of classification or regression processes has been
studied based on how models are affected by the skewed dis-
tribution and noise of training data, by inaccurate training
data labeling or by the regularization policy. SVM output un-
certainty has been studied [6] due to algorithm’s convenient
generalization ability coupled to the simple underlying prin-
ciple. In [7] a new strategy was introduced for addressing the
epistemic uncertainty estimation in Deep Neural Networks
by approximating the probabilistic output distribution using
dropout during inference.

In this line of research, we propose a generic approach
for evaluating the uncertainty of the output of a crowd density
estimator. As a second contribution, we apply the proposed
evaluation on a multiscale domain derived from the image
lattice, which allows us to characterize the estimator perfor-
mance locally as well. We show that we are able to com-
pare different learning algorithms across the scale space and
to provide density estimations with bounded uncertainties.

2. EVIDENTIAL CNN-ENSEMBLE

FE+LFE network. Following recent advancements on den-
sity estimation [5], we propose a fully convolutional network
which makes use of dilated convolutions instead of pooling
layers, in order to preserve the output resolution in presence
of small targets. However, as highlighted in [8], aggressively
increasing dilation factors through the network layers is detri-
mental in aggregating local features. By taking inspiration
from this latter work we propose a network which is com-
posed of two parts, i.e. a front end (FE) module with increas-
ing dilation factors to consider larger context around small
objects, and a local feature extractor (LFE) module with de-
creasing dilation factors to enforce the spatial consistency of
the output by gathering spatial information. Moreover, un-
like [8], we add batch normalization before ReLU activation
functions for faster convergence. The structure of the pro-
posed FE+LFE network is detailed in Table 1. The number
of filters per layer is kept small to avoid overfitting since we
intend to be able to train the network with relatively small
datasets. Note that we employ a ReLU activation function
also after the last layer. This has the effect of a zero-threshold;
nevertheless, it has beneficial effects on backpropagation with



Layers - part 1
FE Conv 3× 3, F = 16,D = 1

Conv 3× 3, F = 32,D = 1
Conv 3× 3, F = 32,D = 2
Conv 3× 3, F = 64,D = 2
Conv 3× 3, F = 64,D = 3

Layers - part 2
LFE Conv 3× 3, F = 64,D = 2

Conv 3× 3, F = 64,D = 2
Conv 3× 3, F = 64,D = 1
Conv 3× 3, F = 64,D = 1
Conv 1× 1, F = 1, D = 1

Table 1: Architecture of the FE+LFE network. F is the num-
ber of filters and D is the dilation factor of dilated convolu-
tions. Each convolutional layer is followed by batch normal-
ization (except for the last one) and ReLU activation function.

respect to a simple post-processing thresholding. The local
density estimation is therefore enhanced, since the network
loses its tendency to add noise to compensate between low
and high values.

Finally, a L2 loss function is used between the estimated
density map and the ground-truth derived by placing a Gaus-
sian on each head center as in [2]. Since we know the ge-
ometry of the scene, we apply perspective correction as in [9]
instead of geometry-adaptive kernels.
Building a CNN-ensemble. Recently ensemble techniques
have been successfully exploited by the deep learning com-
munity since they allows for more robust predictions as well
as for a measure of predictive uncertainty, i.e. the confidence
of the network with respect to its prediction (which in our
case represents the likelihood of head presence). In the con-
text of Bayesian Neural Networks (BNNs), the authors of [7]
developed a new theoretical framework called MC-dropout
casting dropout [10] as approximate Bayesian inference in
Gaussian processes. This method overcomes the major lim-
itations of BNNs that generally require prohibitive compu-
tational costs [11, 12, 13]. In [7] instead, after training the
network, Monte Carlo (MC) methods are used at inference
time to draw samples from a Bernoulli distribution across the
network weights, by performing T stochastic forward passes
through the network with dropout. The ensemble is thus com-
posed by T different realizations given by dropping out differ-
ent units of the network at each forward pass. Another ensem-
ble approach (although non-Bayesian) has been recently pro-
posed in [14], where a deep ensemble is derived by training
the same network on the same data but with different random
weight initializations. Compared to MC-dropout, this method
has nonetheless the immediate drawback of requiring multi-
ple training of the network.

In this work, we derive a CNN-ensemble relying on
MC-dropout. We train the network once and then we sam-
ple the posterior distribution over the weights using dropout
at inference time, obtaining T different realization maps
M̂1, . . . , M̂T , outputs of different dropout-perturbed ver-
sions of the original network. Classically, the mean map Mµ,
given by the mean value evaluated independently for each
pixel, would be interpreted as the final prediction map, while
the standard deviation map Mσ would be interpreted as an
estimate of the predictive uncertainty. However, we propose
to work in the Belief Function (BF) framework [15, 16], that
we consider more suited to model the specific imprecision of

each different realization obtained with dropout, allowing us
to derive the uncertainty bounds for density estimation.
Modeling imprecision with BFT. To handle both the uncer-
tainty provided by the classification and the related impreci-
sion that may exist due to the specific classifier and/or data
used in the training process, Belief Function Theory (BFT),
also called evidential theory, is designed to handle a larger
hypothesis set than the probabilistic one. Denoting by Θ
the discernment frame, i.e. the set of mutually exclusive hy-
potheses of cardinality |Θ|, belief functions are defined on
the powerset 2Θ. In our setting, denoting by H and H the
two mutually exclusive (singleton) hypotheses “Head” and
“Not Head”, the discernment frame is Θ =

{
H,H

}
while

2Θ =
{
∅, H,H,

{
H,H

}}
. Classically, the mass function

m is the Basic Belief Assignment (BBA) that satisfies ∀A ∈
2Θ, m(A) ∈ [0, 1],

∑
A∈2Θ m(A) = 1. The hypotheses as-

sociated to non-null mass functions are called focal elements.
BBAs that have only singleton hypotheses as focal elements
are called Bayesian BBAs.

Now, we want to consider the imprecision that possi-
bly arises performing inference on unknown images with a
model learned by a neural network, by modelling the pixel-
wise classification outputs as BBAs. We therefore exploit the
the CNN-ensemble composed by the T realizations obtained
with MC-dropout. Firstly, we derive Bayesian BBA maps
MB1 , . . . ,MBT , where a BBA is associated to each pixel
x of every realization, so that we obtain T maps of BBAs{
mBx,t

}
x∈P , whereP is the pixel domain and t ∈ {1, . . . , T}.

These Bayesian BBA maps are 4-layer images where each
layer corresponds to the mass value of any hypothesis in{
∅, H,H,Θ

}
respectively. For example, MBt (A) corre-

sponds to the layer image associated to hypothesis A for
the realization (source) t. In this preliminary Bayesian BBA
allocation, layer images corresponding to non-singleton hy-
potheses are null by definition, whereas for each source t,
with t = 1, . . . , T :MBt (H) = M̂t, andMBt (H) = 1− M̂t.

In order to account for the reliability of the pixel-wise pre-
diction given by every source, we perform a pixel-wise tai-
lored discounting, namely a generalization of each BBA on
the basis of its reliability [15]. To evaluate this latter, noting
that the median has been shown to be a more robust estimator
than the average in presence of outliers, for each source t we
compute a discounting coefficient map Γt : {γx,t}x∈P such
that a different coefficient γx,t is associated to every pixel of
each source,

Γt = α

(
1−

(∣∣∣∣M̂t −median
({

M̂
}T

1

)∣∣∣∣)) . (1)

In this way, we discount more pixels whose value is more dis-
tant to the median value among the T realizations, since they
are supposed to be less representative (even possibly outliers).
The α parameter is a scaling factor which allows us to control
the amount of discounting. Applying the proposed discount-
ing, we derive the following BBAs map for every source t:



∀A ∈
{
H,H

}
,

Mt(∅) = {0}x∈P ,
Mt(A) = Γt ?MBt (A),
Mt(Θ) = {1}x∈P −Mt(H)−Mt(H),

(2)

where M1 ? M2 represents the Hadamard product between
matrices M1 and M2.

To combine the T different maps to obtain a single output
mapMwith BBAs associated to each pixel x, i.e. {mx}x∈P ,
we use the conjunctive combination rule [16]. In our case
where |Θ| = 2, the analytic result may be easily derived:
∀A ∈

{
H,H

}
,

mx (A) =
∑

(B1,...,BT )∈{A,Θ}T ,
∃t∈[1,T ]s.t.Bt=A

∏T
t=1mx,t (Bt) ,

mx (Θ) =
∏T
t=1mx,t (Θ) ,

mx (∅) = 1−mx (H)−mx

(
H
)
−mx (Θ) .

(3)

The result is thus a four-layer mapM of BBAs mx, that can
be used to derive evidential measures of uncertainty about
the network prediction. To this extent, we can obtain the
ignorance map as M(Θ), that represents the remaining ig-
norance which has been decreased by the combination but
not completely solved, indicating a lack of sufficient infor-
mation during training to perform a reliable prediction. Like-
wise, M(∅) is often interpreted as a conflict map [17], and
presents higher values for pixels whose prediction completely
disagrees through the various realizations.

Finally, in every pixel x the decision is taken from mx.
Pignistic probability [16] may be used to give a probabilis-
tic interpretation to the BBAs. Since in our setting |Θ| = 2,
∀A ∈

{
H,H

}
, BetPx(A) = 1

1−mx(∅)

(
mx(A) + mx(Θ)

2

)
.

This allows us to assign a BetPx(H) value to the resulting
BBA associated to each pixel x that will be differently nor-
malized on the basis of its conflict value, mx(∅).

Then, other functions are in a one-to-one relationship with
mx, and can be used either for decision or for some com-
putations, namely the Plausibility (Pl) and the Belief (Bel)
functions. In this particular setting where |Θ| = 2 applying
a normalization to the BBAs (so that mx(∅) = 0), they are
defined as: Belx(A) = 1

1−mx(∅) (mx(A)), and Plx(A) =
1

1−mx(∅) (mx(A) +mx(Θ)). These functions may also be
interpreted as upper and lower probabilities respectively [15]
and they check the duality property: ∀A ∈ 2Θ, P lx(A) =
1−Belx(A) (where A represents the complement of A with
respect to Θ).

3. DENSITY UNCERTAINTY FOR BOUNDING
PEDESTRIAN COUNTS

In this work we propose a multiscale evaluation strategy
which computes for each considered scale S indicators based

on all squared subdomains S ∈ Si. These indicators use
the derived upper and lower density bounds s

¯
(S), s(S):

s
¯
(S) = w

∑
x∈S Belx(H) and s(S) = w

∑
x∈S Plx(H).

The factor w relating the numerical output to the actual
pedestrian count is 1 for networks trained on actual density
maps, but in the general case it may be determined as in [18]
on a validation set consisting of BetP (H) maps. We then
calculate for Si the prediction error probability (PEP) as:

PEP i =
∣∣∣{S ∈ Si|g(S) ∈ [s

¯
(S), s(S)]}

∣∣∣/|Si|, (4)

and the relative imprecision (RI) interval as:

RIi =
( ∑
S∈Si

(s(S)− s
¯
(S))/g(S)

)
/|Si|, (5)

where g(S) is the ground-truth count over S. In our work, we
take S1 as the set of the largest possible squares which fit the
image space, and then we use a scale factor δ to reduce the
square side for subsequent scales.

The RI criterion highlights the size of the imprecision in-
terval around the estimated count, while the PEP criterion in-
dicates the error rate of the prediction, namely whether the
ground-truth count for the considered region is outside the
estimated interval. Thus, a two-axis plot presenting the evo-
lution of RI vs. PEP across multiple scales and for different
estimators allows one to compare them and to select an op-
erating point with an explicit uncertainty tied to a desired er-
ror rate. In order to compute the values required by Eqs. (4)
and (5), the process may be accelerated significantly by using
the Integral Histogram [19] trick, given that the most intensive
task is to compute sums over rectangular supports defined in
the bounded image space.

4. EXPERIMENTAL RESULTS

We validated our proposed approach on high-density crowd
images acquired at Makkah during Hajj [20]. Besides eval-
uating the proposed FE+LFE network, we compared it to
U-Net [21], originally introduced for medical image segmen-
tation and very effective even on relatively small training
datasets as in our case (35 crowd images). The two net-
works are trained by using Adam stochastic optimizer with a
learning rate of 7×10−3 (FE+LFE) and of 10−2 (U-Net). Ad-
ditionally, we perform data augmentation and early stopping
in order to limit overfitting. A CNN-ensemble of size T = 10
is then obtained by applying dropout at inference time in the
central layers as in [22] with probability pdrop = 0.5.

Figures 1a and 1b show the results when applying the pro-
posed uncertainty bound evaluation for the FE+LFE and U-
Net networks respectively. Ideally, an estimator should pre-
dict with a high confidence (low PEP) that the estimated count
is within a small RI interval. One may increase the size of
the RI interval by decreasing the α parameter in Eq. (1), in
order to obtain better prediction accuracy (at the expense of
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(a) FE+LFE
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(b) U-Net [21]
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(c) FE+LFE (trained on less data)
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(d) SVM [20]

Fig. 1: Density estimator evaluation with the proposed RI
vs. PEP plot at multiple scales and with different discounting
amounts. Each horizontal cluster corresponds to a different
discounting factor.

a larger RI). We tested different discounting factors, corre-
sponding to horizontally aligned clusters of dots. For each
cluster, each dot depicts the performance obtained at a differ-
ent scale, with a scale factor δ = 1.1, S1 being the largest
scale. Both networks perform better at larger scales, due to
error compensation. The proposed FE+LFE network outper-
forms U-Net, showing the importance of preserving spatial
information without pooling operations in presence of small
targets, while increasing at the same time the contextual in-
formation with dilations.

To stress the independence of the proposed evaluation ap-
proach with respect to the classifier used, Fig. 1d shows the
results of the density estimation obtained with SVM using
active learning (AL) as in [20], where an SVM-ensemble is
built iteratively by training SVMs with different descriptors
on selected informative samples. The imprecision derives
both from possible errors in the calibration procedure to ob-
tain probability estimates out of SVM scores, and from the
score heterogeneity in the image space. Moreover, Fig. 1c
shows the results obtained training the proposed FE+LFE net-
work with a smaller amount of data (i.e. the pool of unlabeled
samples U available for AL in [20]). This allows us to per-
form two different types of analysis. Firstly, we can perform
a fairer comparison between the two classifiers. To this ex-
tent, we notice that FE+LFE, even when trained on less data,
outperforms the SVM-based approach, especially at larger
scales. Nonetheless, the two methods exhibit almost identical
performance when considering the smaller scales. Secondly,
it is interesting to evaluate the same network trained with dif-
ferent amounts of data. According to Figs. 1a and 1c, we

(a) Image patch S,
g(S) = 12.3

(b) BetP (H) map,
s(S) = 12.01

(c) M(Θ) map,
s(S)− s

¯
(S) = 3.2

Fig. 2: Results of the density estimation map (Fig. 2b) along
with the estimated uncertainty bounds (Fig. 2c). The input
data and the ground truth annotations are shown in Fig. 2a.

see that a larger training set is beneficial for density estima-
tion especially at larger scales. However, considering smaller
scales, the performance gap is consistently reduced, indicat-
ing thus an implicit limit in the network capacity (increasing
the number of layers and/or filters per layer could help, pay-
ing attention to overfitting).

Figure 2a shows an image patch with corresponding
ground-truth count (obtained after Gaussian smoothing). Fig-
ure 2b shows the resulting BetP (H) map which represents
the scalar density estimation map, while Fig. 2c shows the im-
precision mapM(Θ) (in our case for pixel x the imprecision
value Plx(H) − Belx(H) is equal to mx(Θ)). The values
in M(Θ) may be interpreted as the predictive uncertainty,
and provide a bound for the density estimation itself. For
the given region S indeed, by integrating over the BetP (H)
map we obtain the estimated number of people within it.
Similarly, integrating over the M(Θ) map we obtain the
imprecision interval s(S) − s

¯
(S). Then, the corresponding

RI interval is given by (s(S) − s
¯
(S))/g(S) = 0.26, so that

we can conclude that in S there are 12.01 ± 13% heads, i.e.
s(S) ∈ [10.4, 13.6]. Moreover, from Fig. 2c we can notice
that, in addition to head edges, ignorance is particularly high
on heads with lower gradient on the borders and strong clut-
ter, reflecting in a smaller confidence about the prediction.
Finally as expected, we underline the desirable effect of igno-
rance being higher in circularly-shaped areas (e.g. shoulders,
or round dark blobs) which are similar to heads, even if they
have a low corresponding score.

5. CONCLUSION

We proposed a strategy for associating an uncertainty inter-
val to crowd density estimation using BFT. A new evaluation
method taking into account the output uncertainty at multi-
ple scales was proposed as well. The results show that our
contributions are effective in characterizing the multi-scale
performance of different density estimators. Our work opens
a promising avenue for crowd safety applications which ac-
count for estimation uncertainty during planning and moni-
toring. Future work will be devoted to applying our evalua-
tion to other widely used density estimation networks such as
MCNN or CSRNet across more datasets.
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