
Robust Depth Regularization Explicitly Constrained by Camera Motion
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Abstract

The objective of our work is to reconstruct the dense
structure of a static scene observed by a monocular
camera system following a known trajectory. Our main
contribution is representated by the proposition of a
TV-L1 energy functional that estimates directly the un-
known depth field given the camera motion, thus avoid-
ing to estimate as an intermediate step an optical flow
field with additional geometric constraints. Our method
has two main interests: we highlight a practical mini-
mal parametrization for the given assumptions (static
scene, known camera motion) and we solve the result-
ing variational problem using an efficient, discontinuity
preserving formulation.

1. Introduction

We investigate in the present article the problem of
estimating a dense depth field of a static scene observed
by a monocular camera system following a known tra-
jectory. The localization information may be provided
by proprioceptive sensors, by linear guide, turntable or
unconstrained motion capture systems, or if applicable
by employing a sparse feature based pose estimation al-
gorithm.

One of the fundamental challenges related to recov-
ering scene structure from video is that depth observ-
ability is low for small camera displacements occurring
between consecutive frames. SfM and SLAM systems
often select a subset of the available data, denoted as
keyframes, in order to improve the depth estimation for
a sparse set of salient features; as a result, the estimated
scene structure is also sparse, and the keyframe selec-
tion process is heuristic and application dependent [6].
The use of each available frame allows for the estima-
tion of a dense displacement map, but the temporal in-
tegration of displacements in a depth estimation process

must cope with a high level of noise, while at the same
time being robust to outliers and other undesirable phe-
nomena caused by occlusion and non-Lambertian sur-
faces. The spatial integration of depth estimates may
be performed by an explicit probabilistic model [8], or
by alternative methods which update the weights related
to the surface position (usually involving truncated dis-
tance functions). In [11] we proposed an alternative
method based on asymptotic observers, which ensures
depth convergence from multiple observations within a
robust mathematical framework.

The geometric constraint provided by the known
camera displacement between consecutive frames must
be taken into account for the temporal integration step,
but also when computing the optical flow field between
the frames. A variational approach is the method of
choice for regularizing the flow and favoring piecewise
smooth regions. However, in order to enforce geomet-
ric (epipolar) constraints in the case of static scenes,
most proposed algorithms penalize the functional with
additional data terms, or rely on over-parametrization
(see for example [1, 9]). In the present article, we pro-
pose an algorithm which employs explicitly the general
motion information of the camera into a robust TV-L1

variational problem involving directly the instantaneous
depth field.

2. Proposed method

We present in Figure 1 an overview of our depth es-
timation method. At each time step, we start by apply-
ing the global regularization scheme proposed in this
article, based on the motion information, the current
and the previous image. Then, the current depth map
is merged with the previously estimated depths by the
asymptotic observer which is described in detail in [11].

We continue by introducing the model we employed,
the major assumptions and the formal problem state-
ment.
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Figure 1. General view of our proposed
method.

2.1 Modeling and framework assumptions

The model is based on geometric assumptions intro-
duced in [2, 11], which are recalled in this sub-section.
In a first step, we consider a spherical camera; its mo-
tion is given through the linear and angular velocities
v(t) and ω(t) expressed in the camera frame. More
precisely, the position of the optical center in the ref-
erence frame R is denoted by C(t).A pixel is labeled
by the unit vector η in the camera frame: η belongs to
the sphere S2 and receives the brightness y(t, η).

The scene is modeled as a closed, C1 and convex
surface Σ of R3, diffeomorphic to S2. The camera is
inside the domain Ω ⊂ R3 delimited by Σ = ∂Ω. The
density of light emitted by a point M(s) ∈ Σ does not
depend on the direction of emission (Σ is a Lambertian
surface) and is independent of t (the scene is static).
This means that y(t, η) depends only on s. The distance
‖
−−−−−−→
C(t)M(s)‖ between the optical center and the object

seen in the direction η is denoted by D, and its inverse
by Γ = 1/D. Figure 2 illustrates the model and the
notations. Under the assumptions that v and ω are C0

Figure 2. Model and notations of a spheri-
cal camera in a static environment [2, 11].

functions of t, and y is a C1 function of s, y and Γ obey
to ([2, 11])

ẏ = −∇y · (η × (ω + Γη × v)) (1)

where∇y and ẏ denote the gradient on the Riemannian
sphere S2 and the partial derivative with respect to t of
y, respectively. The Euclidean scalar product of two
vectors a and b in R3 is denoted by a ·b and their wedge
product by a× b.

Equation (1) is another formulation of the optical
flow constraint: instead of the usual two-dimensional
disparity field, the only unknown in this equation is the
depth field Γ.

2.2 Problem statement - the functional

In this paper, the input parameters are two images
y(t, η) and y(t+ dt, η) and the camera motion v(t) and
ω(t) performed between t and t + dt. The objective is
to find the dense depth field Γ(t, η) of the environment
observed by the camera at time t. Inspired by the work
of Chambolle and Pock ([3, 4, 10]), we define the func-
tional J :

J(Γ) =

∫
S2

(|∇Γ|+ λ|ẏ +∇y · (η × (ω + Γη × v))|) dση
(2)

where dση is the Riemannian infinitesimal surface ele-
ment on S2 and λ is a parameter that weights between
the data fidelity and the regularization. Both these terms
deal with the L1 norm, as opposed to previous function-
als involved in optical flow estimation [5] or image de-
noising ([7]). The advantage of the choice of L1-based
total variation and data fidelity terms has been high-
lighted in [4], as it preserves discontinuities and avoids
applying a diffusion scheme on the result.

3. The algorithm

In the following section, we propose a resolution
strategy for the depth regularization problem stated
above, and we provide the main steps of a practical im-
plementation.

Proposition 1. The minimizer of the functional (2) may
be computed by dividing the main minimization task
into two alternatively solved sub-tasks defined by the
functionals J1 and J2:

1. For Λ being fixed, find the argument Γ of the mini-
mum of

J1(Γ) =

∫
S2

(
|∇Γ|+ (Γ− Λ)2

2θ

)
dση (3)



2. For Γ being fixed, find the argument Λ of the mini-
mum of

J2(Λ) =

∫
S2

(
λ |ρ(Λ)|+ (Γ− Λ)2

2θ

)
dση (4)

where ρ(Λ) = ẏ+∇y · (η× (ω+ Λη× v)) is the depth
residual.

Proof. This method has been proved to converge in [4]
by the iterative alternation between dual and primal
variables (Algorithm 1, Section 3). The proof stands
in our case, as the function G : Γ 7→

∫
S2 |ρ(Γ)|dση is

proper, convex and lower semicontinuous as the com-
position of the L1 norm on S2 and an affine function:

ρ(Γ) = Fω,t + ΓFv (5)

with {
Fω,t = ẏ +∇y · (η × ω)

Fv = ∇y · (η × (η × v))
(6)

Under the assumptions of the model presented in 2.1, G
admits a minimum.

The main algorithm steps are given by the following:

Algorithm: (v, ω) driven TV-L1 depth regularization

• Initialization: Γ0 = 0, Λ0 = 0, Γ̄0 = 0 p0 = 0, τ
and σ ∈ [0, 1] s.t. τσL2 ≤ 1 (L being the induced
norm of∇)

• Iterations:

1) pn+1 = pn+σ∇Γ̄n

1+σ|∇Γ̄n|

2) pn+1 = pn+1

max(1,||pn+1||2)

3) Γn+1 = Γn + τdivpn+1

4) Λn+1 = Λn+

 − ρ(Γ)
Fv

, if |ρ(Γ)| ≤ τλF 2
v

λτFv, if ρ(Γ) < −τλF 2
v

−λτFv, if ρ(Γ) > τλF 2
v

5) Γ̄n+1 = 2Λn+1 − Λn

where p = (p1, p2). The first three steps of the itera-
tion process result from the minimization of J1, and the
fourth step is the thresholding method for minimizing
J2 applied to our specific residual. More precisely, it is
based on the first order stationary condition in the cases
where ρ(Λ) = 0, ρ(Λ) < 0 and ρ(Λ) > 0, respectively.
For example, when ρ(Λ) > 0, the minimum may only
be reached if Λ satisfies

λFv −
(Γ− Λ)

θ
= 0 (7)

which yields Λ = Γ − θλFv . Thus, ρ(Λ) > 0 reads
ρ(Γ) > θλF 2

v .

3.1 Adaptation to a pinhole camera model

Note that the abstract model of a spherical cam-
era can be easily adapted to common camera models
through a basic correspondence between the unit vec-
tor η ∈ S2 and the coordinates of a pixel in the con-
sidered model. For simulations and experimentations,
we consider a pinhole camera model: the pixel of coor-
dinates (z1, z2) corresponds to the unit vector η ∈ S2

of coordinates in R3:
(
1 + z21 + z22

)−1/2
(z1, z2, 1)T .

The optical camera axis (pixel (z1, z2) = (0, 0)) cor-
responds here to the direction z3. Directions 1 and 2
correspond respectively to the horizontal axis from left
to right and to the vertical axis from top to bottom on
the image frame. In this camera frame, linear and angu-
lar velocities components are denoted (v1, v2, v3) and
(ω1, ω2, ω3), respectively. The gradient∇y must be ex-
pressed with respect to z1 and z2. Firstly,∇y is tangent
to S2, thus ∇y · η = 0. Secondly, the differential dy
corresponds to ∇y · dη and to ∂y

∂z1
dz1 + ∂y

∂z2
dz2. By

identification, we get the Cartesian coordinates of ∇y
in R3. Injecting these coordinates in (6), we get:

Fω,t(z1, z2) = ẏ(z1, z2)

+
∂y

∂z1

[
z1z2ω1 − (1 + z1

2)ω2 + z2ω3

]
+

∂y

∂z2

[
(1 + z2

2)ω1 − z1z2ω2 − z1ω3

]
Fv(z1, z2) =

∑
i=1,2

∂y

∂zi

[√
1 + z21 + z22(−vi + ziv3)

]
dση = (1 + z21 + z22)−3/2dz1dz2

(8)

Figure 3. An image of the synthetic se-
quence and the associated depth field of
the environment.

4 Simulations

We test the proposed method on a synthetic sequence
of VGA images; the frame rate of the sequence is 60 Hz
and the field of view is 50 deg by 40 deg. The motion
of the virtual camera consists of a realistic human mo-
tion combining translations and rotations. The virtual



scene features a circular panel placed in a room with
walls, floor and ceiling; the observed surfaces are tex-
tured by a sine varying gray pattern. A normally dis-
tributed noiseN (0, 1) may be added to each image. An
image of the sequence, and the corresponding ground
truth depth field are represented in Figure 3.

Figure 4. Comparison of regularizing the
depth field using a L2 method (red) and
our proposed approach (blue)

First, the proposed method is tested on a noisy se-
quence of images, and the results are compared to those
obtained by a method relying on a more straightforward
depth regularization in L2 norm, introduced in [11].
The results are plotted in Figure 4, as the cumulated rel-
ative errors of estimation over the entire field of view.
TV-L1 regularization shows a better performance than
L2 regularization as depth discontinuities are better pre-
served.

Figure 5. Comparison of filtering the
depth field using an observer for the con-
strained flow provided by [9] (red) and the
proposed approach for TV-L1 depth (blue)

In order to highlight the advantage of direct depth
estimation over optical flow filtering in an equivalent
motion-constrained framework, we apply the observer
described in [11] to the optical flow obtained by TV-L1

regularization and constrained by a fundamental matrix

prior [9]. The errors are plotted in Figure 5, and show
that the proposed method is more accurate and provides
instantaneous estimates.

5. Concluding remarks

We have considered a depth map estimation prob-
lem defined for a moving monocular system observing
a static scene. We have proposed a variational method
which takes explicitly into account camera dynamics
information in order to constrain the depth regulariza-
tion by means of a robust TV-L1 functional. The results
show that this approach performs better than an equiva-
lent solution based on optical flow estimation, and that
an asymptotic observer employed for temporal data fu-
sion improves the overall stability of the system, while
avoiding batch optimizations. We intend to extend this
work by coupling it with a sparse keypoint based SLAM
in order to recover a dense depth field on top of a robust
localization system.
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