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Context

Why do we study uncertainty with DNN?

Figure: Con�dence histograms (top) and reliability diagrams(bottom) for a
5-layer LeNet (left) and a 110-layer ResNet (right)on CIFAR-100. [1]
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Context

Why do we study uncertainty with DNN?

Imagine an autonomous car with a perception system based on Deep
learning without Uncertainty:
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Uncertainty and Deep learning

Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise (problems
caused by sensor quality, natural randomness, that cannot be
explained by our data).

Epistemic: Our ignorance about the correct model that generated
the data (lack of knowledge about the process that generated the
data).
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Bayesian Deep Neural Network

Bayesian approach and DNN

The Goal of DNN is to �nd P(Y |X ,ω). In the classical bayesian
approach we �nd ω such that we have the maximum a posteriori (MAP).

ω̂ = argmax
ω

logP(ω|Dl)

ω̂ = argmax
ω

logP(Dl |ω) + logP(ω)

This leads to l2 regularization.
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Bayesian Deep Neural Network

Bayesian DNN

Bayesian DNN is based on marginalization instead of MAP optimization.

P(Y |X ) = Eω∼P(ω|Dl )
(P(Y |X ,ω))

P(Y |X ) =

∫
P(Y |X ,ω)P(ω|Dl)dω

In practice:

P(Y |X ) '
∑
i

(P(Y |X ,ωi )) with ωi ∼ P(ω|Dl)

Di�erent techniques to estimate P(ω|Dl) .

6 / 24



TRADI: Tracking deep neural network weight distributions

Bayesian Deep Neural Network

Dropout[14]

Dropout is a technique that was proposed to avoid over�tting in CNN.
At each training step (i.e., for each sample within a mini-batch)

Remove each node in the dropout layers with a probability p

Update the weights of the remaining nodes with backpropagation.

7 / 24



TRADI: Tracking deep neural network weight distributions

Bayesian Deep Neural Network

MC dropout [4]

Gal and Ghahramani [4] propose to average the predictions of several
DNN where they apply the dropout:

P(y∗|x∗) = 1

Nmodel

Nmodel∑
j=1

P(y∗|ω(t∗)� bj , x∗) (1)

with bj a vector of the same size of ω(t∗) which is a realization of a
binomial distribution.
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Bayesian Deep Neural Network

Deep Ensembles[5]

They [5] propose to average the predictions of several DNN with di�erent
initial seeds:

P(y∗|x∗) = 1

Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (2)
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Our method

TRADI

ω(0) is the initial set of weights {ωk(0)}Kk=1 following N (0, σ2k),
where σ2k are �xed as in [2].

L(ω(t), yi ) is the loss function used to measure the dissimilarity
between the output gω(t)(xi ) of the DNN and the expected output
yi . One can use di�erent loss functions.

Weights on di�erent layers are assumed to be independent of one
another at all times. [9]

Each weight ωk(t), k = 1, . . . ,K , follows a non-stationary Normal
distribution (e.g. Wk(t) ∼ N (µk(t), σ

2
k(t))) whose two parameters

are tracked.
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Our method

TRADI

We had the following state and measurement equations for the mean
µk(t): {

µk(t) = µk(t − 1)− η∇Lωk (t)
+ εµ

ωk(t) = µk(t) + ε̃µ
(3)

with εµ being the state noise, and ε̃µ being the observation noise, as
realizations of N (0, σ2µ) and N (0, σ̃2µ) respectively.
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Our method

TRADI

The state and measurement equations for the variance σk are given by:

 σ2k(t) = σ2k(t − 1) +
(
η∇Lωk (t)

)2
+ εσ

zk(t) = σ2k(t)− µk(t)2 + ε̃σ
with zk(t) = ωk(t)

2

(4)

with εσ being the state noise, and ε̃σ being the observation noise, as
realizations of N (0, σ2σ) and N (0, σ̃2σ), respectively.
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Our method

TRADI

(Normal DNN ) (Bayesian DNN)
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Our method

TRADI

We sample new realizations of W (t∗) using the following formula:

ω̃(t∗) = µ(t∗) +Σ1/2(t∗)×m1 with Σ the covariance matrix. (5)

m1 is a realization of the multivariate Gaussian N (0K , IK ). Then we take
the expectation over this distribution :

P(y∗|x∗) = 1

Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t∗), x∗) (6)

W(0) W(t) W(t*)
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Experiments

Classi�cation

Table: Comparative results on image classi�cation

Method
MNIST CIFAR-10

NLL ACCU NLL ACCU

Deep Ensembles 0.035 98.88 0.173 95.67

MC Dropout 0.065 98.19 0.205 95.27

SWAG 0.041 98.78 0.110 96.41

TRADI (ours) 0.044 98.63 0.205 95.29
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Experiments

Metrics[1]

First we group predictions into M bins, each of size 1/M. Let Bm be the
set of indices of samples whose prediction con�dence falls into the
interval Im =]m − 1/M,m/M].
The accuracy of a set Bm is de�ned as:

acc(Bm) = 1/|Bm|
∑
i∈Bm

δyi (ŷi ) (7)

The average con�dence in Bm is de�ned as:

conf(Bm) = 1/|Bm|
∑
i∈Bm

p̂i (8)

where p̂i is the con�dence for sample i .
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Experiments

Metrics [1]

Expected Calibration Error (ECE) measures the di�erence in expected
accuracy and expected con�dence. It is de�ned as:

ECE =
M∑
m

1/|Bm||acc(Bm)− conf(Bm)| (9)
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Experiments

Metrics[11]

The dataset is divided in two:

Out of distribution

in distribution

The con�dence score p̂i for sample i p̂i is used to detect OOD data. To
eveluate the quality we can use :

Area Under the ROC Curve → AUC

Area Under the Average Precision Curve → AUPR

FPR at 95% TPR can be interpreted as the probability that a
negative (out-of-distribution)example is misclassi�ed as positive
(in-distribution) when the true positive rate (TPR) is as high as
95%. True positive rate can be computed by TPR = TP /
(TP+FN) and , the false positive rate (FPR) can be computed by
FPR =FP / (FP+TN).
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Experiments

Out of distribution (Results on the CamVid experiments)

Figure: First row: input image and ground truth, second, third and fourth rows:
output and con�dence score given by MC dropout, Deep Ensembles and our
TRADI, respectively.
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Experiments

Out of distribution

(a) input image (b) MC dropout con�dence

(c) Deep Ensembles con�dence (d) TRADI con�dence

Figure: Zooms of the con�dence results on the CamVid experiments. In the
bottom left of the input image (a), there is a human, hence a pixel region of an
unknown class for all the DNNs, since the pedestrian class was amongst the
ones marked as unlabeled. Yet, only the TRADI DNN (d) is consistent.
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Experiments

Out of distribution

Dataset OOD technique AUC AUPR FPR-95%-TPR ECE Train time

MNIST/notMNIST

3 hidden layers

Baseline (MCP) 94.0 96.0 24.6 0.305 2m
Gauss. perturbation ensemble 94.8 96.4 19.2 0.500 2m
MC Dropout 91.8 94.9 35.6 0.494 2m
Deep Ensembles 97.2 98.0 9.2 0.462 31m
TRADI (ours) 96.7 97.6 11.0 0.407 2m

CamVid-OOD
ENET

Baseline (MCP) 75.4 10.0 65.1 0.146 30m
Gauss. perturbation ensemble 76.2 10.9 62.6 0.133 30m
MC Dropout 75.4 10.7 63.2 0.168 30m
Deep Ensembles 79.7 13.0 55.3 0.112 5h
TRADI (ours) 79.3 12.8 57.7 0.110 41m

StreetHazards
PSPNet

Baseline (MCP) 88.7 6.9 26.9 0.055 13h14m
Gauss. perturbation ensemble 57.08 2.4 71.0 0.185 13h14m
MC Dropout 69.9 6.0 32.0 0.092 13h14m
Deep Ensembles 90.0 7.2 25.4 0.051 132h19m
TRADI (ours) 89.2 7.2 25.3 0.049 15h36m

BDD Anomaly
PSPNet

Baseline (MCP) 86.0 5.4 27.7 0.159 18h08
Gauss. perturbation ensemble 86.0 4.8 27.7 0.158 18h08m
MC Dropout 85.2 5.0 29.3 0.181 18h08m
Deep Ensembles 87.0 6.0 25.0 0.170 189h40m
TRADI (ours) 86.1 5.6 26.9 0.157 21h48m
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