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Abstract— In this study, we propose a novel solution to
regulate the amount of interest points extracted from an image
without significant additional computational cost. Our method
acts at the very beginning of the detection process by using
a corner occurrence model in order to predict the optimal
threshold for a user-defined number of detections. Compared
to existing approaches which guarantee a reasonable amount
of corners by using a low threshold and then pruning the
result, our approach is faster and more regular in terms of
computation time as it avoids scoring and sorting the detected
corners.

Using the FAST detector as testbed, the strategy outlined in
this article is evaluated in typical environments for robotics ap-
plications, and we report improved detection reliability during
important scene variations. Taking into account the underlying
visual navigation algorithms, we show that by regularizing the
data input our solution facilitates a stable processing load,
lower inter-frame computation time, and robustness to scene
variations.

I. INTRODUCTION

For intelligent systems characterized by autonomy in het-
erogeneous environments and by high reactivity, accurate 3D
perception is an essential characteristic supporting them in
performing their tasks. Vision sensors have the advantage of
being compact, low-cost and power efficient, hence they are
widely used for exteroception. A wide range of fundamental
actions such as scene reconstruction, localization, object
detection and tracking may be approached by first identifying
in each view a set of salient features or landmarks exhibiting
invariance properties, that are generally denoted as corners;
the interested reader may refer to [1], [2], [3] for examples
of such applications.

In the last decade, the research community devoted a lot of
effort to developing efficient corner detection and descriptor
extraction algorithms. These methods are judged mostly on
their ability to provide detection repeatability and descriptor
invariance for a wide range of variations in lighting condi-
tions and perspective. Owing to its excellent performance, the
SIFT detector [4] remains one of the most popular solutions
in all the circumstances in which its computational burden is
acceptable. However, small autonomous systems with limited
processing power, very common for consumer robotics, are
the typical example in which SIFT use is out of the reach of
the computational budget. Alternative solutions are provided
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Fig. 1: The graph presents the number of corners detected for
an urban video sequence by FAST detection (τ = 20) and
by SuperFAST. For challenging situations (tunnel entry/exit,
underpass) FAST output varies significantly and most appli-
cations rely on low thresholding and filtering. Comparable
in terms of cost to a base FAST execution, SuperFAST
predicts an optimal threshold and provides a stable number
of detections.

by the lighter SURF detector [5], or for real time processing
purposes by the Harris detector [6] and more recently by
FAST [7], [8].

Despite its computational advantage, this last algorithm
does not provide a descriptor, and subsequent processing
tasks rely typically on patch based matching or on light
descriptors with limited invariance properties. Vision algo-
rithms compensate these shortcomings through data associa-
tion and robust statistics, which can cope with a large fraction
of unreliable detections at a significant computational cost.
On the other hand, real time constraints require detections
to be as scarce as possible. Due to these considerations,
FAST thrives in terms of usefulness in a narrow band of
detections per image which is architecture, application and
content dependent; the ideal number of corner responses is
mainly defined according to experimental observations (see



for example [9]). In order to obtain a precise number of
detections or to approach this number as much as possible,
FAST must be combined with a heuristic selection process
which introduces by itself a significant additional cost.

Our work aims to address this problem of keeping the
corner detection count at an optimal level under varying
scene conditions. Figure 1 shows in blue the typical output
variation of the FAST detector on an outdoor sequence, with
a threshold set at τ = 20. In order to guarantee a mini-
mal number of detections in homogeneous scenes (tunnels,
underpasses, over-exposition), a low threshold is required.
However, this results in a significant computational burden
for highly contrasted scenes, where the large detection output
must be pruned and processed. We manage to adapt the
detection threshold to the image content in order to stabilize
the output (Figure 1, in red), while actually speeding up the
overall process. We also illustrate that by regularizing both
the extraction time and the amount of data to be processed
by the subsequent tasks, we also improve the stability and
the average computation time of the overall visual processing
algorithm. We argue that beside repeatability and invariance,
another feature that is of utmost importance for a detector
in the context of real-time robotics is its adaptiveness to the
algorithm employing it.

II. THRESHOLDING AND ADAPTIVE DETECTION

In the following section, we discuss the importance of
adaptive thresholding and its implications when using FAST
as a lightweight detector. The detector works by labelling
pixels {x1, . . . , x16} located on a discrete circle around the
analysed location p in image I in three categories, using the
following decision function:

Sp(xi) =

 d, I(xi) ≤ I(p)− τ
s, I(p)− τ < I(xi) < I(p) + τ
b, I(p) + τ ≤ I(xi)

(1)

where the threshold τ controls whether surrounding pixels
will be considered significantly brighter or darker than the
analysed location. An image location is considered to be
a corner if a contiguous number m ≥ N (where typically
N = 9) of pixels on the discrete circle are labelled either d
or b.

As any corner detector, FAST will get for a fixed threshold
τ more responses in highly contrasted areas and much fewer
in homogeneous regions of an image, typically varying by
an order of magnitude. Depending on the application, this
behaviour may cause two fundamental problems:

1) temporal instability: in a heterogeneous video se-
quence, images with a high number of corners require
more processing time from other algorithm modules,
and for real time processing applications the compu-
tational cost may exceed the available resources. Con-
versely, the same threshold may detect an insufficient
number of corners in other images. This degrades the
performance of pose estimation algorithms (optimiza-
tions will be insufficiently constrained) and mapping
algorithms (failure to extend the cartography)

2) spatial instability: even if an image exhibits a high
number of corners on the whole, the detections may
not be uniformly distributed. The scarcity of corners
in parts of the image has the same negative impact as
in the previous case.

In order to mitigate the effect of these two phenomena,
an adaptive method must be considered. A widely employed
solution is to use a fixed, low threshold which is permissive
enough to generate an acceptable number of responses in
a low contrast context. In this case, guaranteeing a target
number of detections amounts to filtering the initial responses
based on their saliency (either in the form provided by FAST,
or by using other measures [10]) and discarding the necessary
amount. However, choosing a low threshold comes with a
cost which is mainly related to the longer processing time
required by the detector. FAST is particularly affected by a
lower threshold as its cascading test on surrounding pixels
will be able to advance further in the decision tree. Moreover,
such a method amplifies the variation in processing time per
frame as it relies on attributing a score to each corner and
sorting a varying number of corners for selection. Another
important observation is that since this solution still uses a
fixed threshold, albeit providing a more stable output, it does
not behave fundamentally as an adaptive method.

An alternative approach (used for example in [1]) address-
ing the temporal instability is to vary the threshold based on
a simple proportional feedback between the current detection
and the desired result. Although this solution does adapt to
image content, it has two main limitations. Firstly, it does
not cope robustly with sudden variations either in terms of
scenery or in terms of global illumination (such as a tunnel
entry or exit). Low cost camera sensors are widely employed
in consumer systems and their auto exposure correction may
aggravate this problem, as it assumes a linear response of
the sensor and is also based on average image statistics. Sec-
ondly, the assumption supporting the proportional feedback
is the linearity between τ and the output.

Conditioned by the presence of one of the solutions
for adaptive detection, the problem of spatial instability
is usually addressed by two strategies. If a global, low
threshold is used, the detection result may be filtered by
an algorithm which favours an even distribution of corners
across the image, such as by using a quad-tree for selection
[9]. Alternatively, detections with independent thresholds
may be performed on non overlapping regions of the image,
a process which is called bucketing [1], [11], [12].

In conclusion, FAST based algorithms and more generally
corner detection methods aim ideally to provide a stable,
uniformly distributed number of responses per image. How-
ever, predicting the number of responses for a given threshold
requires a content dependent model, and existing solutions
either incur a computational cost by using a conservative
threshold, or they adapt the threshold using a feedback
mechanism which is ineffective in varying conditions.



III. A CONTENT ADAPTIVE CORNER OCCURRENCE
MODEL

In the following section, we propose a fast method for
estimating the number of detections in an image for a given
threshold τ based on a corner occurrence model. In Figure
2 we illustrate the dependence between the threshold τ and
the number of detections in a typical image (in blue), for
the original resolution and for the next three down-sampled
levels in the image pyramid. For illustration, we vary the
threshold in the range τ ∈ [5, 80]; in applications τ may vary
from τmin = 10, a low level which is frequently used in order
to guarantee a minimum number of detections, to high values
which are adapted to contrasted regions; some particularly
sharp scenes may feature a large number of detections even
for thresholds as high as τ = 50. Based on the profile
of the corner distribution, we found that the square root
exponential model [13] which depicts the spatial interaction
(contamination) with respect to the isolation distance in
biological systems fits remarkably the empirical distribution
observed in typical human environments. In our case, the
model is expressed as:

N(τ) = C exp

{
−
√
τ

σ

}
(2)

where C is the initial population and σ is the scaling
parameter.

In the same figure, we provide in red the best fit for the
experimental observations according to the model; the graphs
highlight clearly the remarkable correlation across all the
scales and across the threshold range.

A. Fitting and prediction
The proposed model features two parameters, and a fast

extrapolation may be performed using two measurements.
In order to optimize the process, we rely on the following
specific properties of the FAST detector.

For an unknown scene, extrapolation may be performed
using points corresponding to high threshold values, since
detections will execute faster in this range. Actually, we
perform the detection only for τ1 and then we iterate through
the results and count the responses for the higher threshold
τ2, where τ2 is chosen in order to guarantee a robust
extrapolation, typically τ2 = τ1 + 10. Assuming that N1

and N2 are the number of detections for the two control
thresholds, we get after some simple algebraic manipulations
for the model parameters:

σ =
(
√
τ1−
√
τ2)

2

ln2(N1/N2)

C = N1 exp

{√
τ1
σ

}
(3)

and for the threshold τ̂ predicted to provide an ideal number
N̂ of corners:

τ̂ = σ ln2 C

N̂
(4)

However, in poorly contrasted areas, the number of detec-
tions may be too low to provide reliable extrapolation data
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Fig. 2: For a regular image we plot in blue, for the initial res-
olution (scale 0) and for three progressively down-sampled
versions, the observed distribution of corners depending on
the detector threshold, and in red the best fit using the
model proposed in Equation 2. The model approximates very
accurately the experimental data at all scales.

points, or the detection result might even be null for the
extrapolation thresholds τ1 and τ2. In this case, we assume
that the content exhibits low contrast and we set τ1 = τmin.

B. Temporal consistency and multi-scale analysis

A frequent phenomenon which is encountered in the
presence of rapid scene variations with low-cost cameras is
the erratic impact of auto exposure; as a typical example,
we present in Figure 3 two consecutive frames which are
visually similar. However, in terms of corner detection,
the difference is extensive with an output of 6067 versus
3200 corners for the same threshold τ = 20. Even though



(a) Frame 2763 (b) Frame 2764

Fig. 3: Two consecutive frames which are visually similar.
However, the number of FAST detections varies by a factor
of 2 (τ = 20)

auto-exposure has a beneficial effect in the presence of
illumination changes, it introduces important dynamics for
which FAST is particularly sensitive as it does not perform
normalization with regard to contrast.

It is therefore essential in this situation to predict reliably
the modification of the detection threshold. We propose to
rely on a pyramidal image representation and to adapt the
threshold prediction based on the assumption that effects
such as scene change, camera auto-exposure or white balance
have a similar effect on each level of the pyramid. More
precisely, we rely on the fact that:
• properties of image content at a coarse scale may be

used as a predictor for properties of image content at
finer scales

• properties of image content for a scale at time t may
be used as a predictor for properties of image content
at time t+ 1 for the respective scale

Variations in corner detection results at a coarse scale may
be promptly integrated in the prediction for the subsequent
levels of the pyramid, based on the correlation assumption
between pyramid levels stated above. As threshold estimation
is more critical for robotic tasks for the finer scales, we
propose a multi-scale analysis in which we apply a correction
on a level given the prediction errors observed at coarser
levels. The overall strategy is to choose the first extrapolation
threshold τ1 as close as possible to the optimal unknown
threshold, and then rely on the observed mismatch in terms
of detected corners for adjustment at the following time step.

Beside the interest for propagating prior information for
thresholding in varying contrast settings, pyramid represen-
tations are essential and commonly used as well in robotic
vision for coarse-to-fine egomotion estimation or cartography
(see for example [2]). Therefore, relying on a pyramid
representation for threshold prediction should integrate in
the underlying application without determining a notable
computational penalty. For our purposes, the total number
of pyramid scales being considered is l. In the following
paragraphs, we explain how we use the temporal and the
hierarchic correlation assumptions for predicting optimal
thresholds.

For the current time step t, the algorithm starts by setting
for the coarsest level I l−1 a predicted threshold τ l−11,t equal
to the optimal threshold which was estimated at t−1 for the

same level:
τ l−11,t = τ̂ l−1t−1 (5)

This is due to the fact that at the coarsest level we do
not have any other scale information; a slightly costlier
solution would be to set τ l−11,t at a constant low value in
order to guarantee a good detection rate but we did not
find any significant improvement by adopting this strategy.
Then, the FAST detector is called using τ l−11,t . In order to
cope with significant contrast variation with respect to the
previous frame, we resort to a conservative low threshold if
the result of the detection using τ l−11,t is inadequate, especially
since FAST computation time is negligible at this level. The
occurrence model is fitted and then, based on the desired
number of detections N̂ l−1 for the coarsest level we estimate
a posteriori an optimal threshold τ̂ l−1t and also a penalty
between the value used for corner detection and the value
predicted by our model:

∆τ l−1t = τ̂ l−1t − τ l−11,t (6)

For any other scale Ik , we assume that coarser levels
have been analyzed and we predict a threshold τk1,t in a
similar manner, except the fact that we also integrate the
penalties provided by the higher levels. We search τk1,t as
τk1,t = τk1,t(τ̂

k
t−1, {∆τ

q
t }k<q<l) which gives at first order:

τk1,t = τ̂kt−1 +
∑
q>k

λk,q∆τ
q
t (7)

The weights {λk,q}0≤k<q<l control how the hierarchical
and temporal cues are integrated for the current scale pre-
diction. They are estimated for each scale pair under the
assumption that detection variation created by phenomena
such as auto-exposure follows a constant pattern over time.
For a given level k, the set {λk,q}k<q is updated at each
time step as the solution of the following optimization:

{λk,q}q>k = arg min
∑
t

[
τ̂kt − τk1,t

]2

(8)

= arg min
∑
t

[
τ̂kt − τ̂kt−1 −

∑
q>k

λk,q∆τ
q
t

]2

Using a simple minimization of Equation 8 with respect to
variables {λk,q}k<q , we determine the set of unknowns for
each level k by inverting a symmetric matrix equal in size
to the number of coarser levels. The terms of each matrix
related to the minimization of the sum of squared errors are
updated at each time step.

Alternatively, the parameters {λk,q}k<q may be computed
offline on a characteristic sequence but we choose to compute
them online since their determination is computationally
light and we prefer to limit the parameters requested by
SuperFAST to the number of detections desired at each
level. Also, another solution to cope with intensity variations
could be implemented by taking into account camera auto-
exposure settings if available, since both these settings and
the parameters {λk,q}k<q are involved in handling contrast
variations.



C. Bucketing

The model proposed in the previous paragraphs assists
the corner detection process in providing an optimal number
of detections for each frame. However, the optimization of
the number of responses is performed for the whole image,
and thus the problem of spatial instability is not addressed.
The challenge raised by uniform regions of the image is
that in these locations successful detection requires very low
thresholds; a more uniform repartition of corners may be
facilitated by a bucketing strategy.

Instead of considering for image I a corner detection
model determined by a parameter pair (C, σ), we divide I in
r × c non-overlapping rectangular cells Ii,j with 0 ≤ i < r
and 0 ≤ j < c. Under these circumstances, each cell benefits
from an independent occurrence model (Ci,j , σi,j) which is
adapted to the local variability.

The extra cost required by bucketing is minimal; it is
mainly determined by the estimation of a set of r × c
parameter pairs instead of a single global model.

In order to apply bucketing to the pyramid representation,
at scale k with 0 ≤ k < l we consider a cell representation
for Ik of size rk×ck and in the following we denote the cell
elements as Iki,j . The strategy introduced in Section III-B is
identical, except the fact that correlations are performed at
cell level. The temporal prediction (τ̂kt−1)i,j is provided by
the corresponding cell at t−1 and the pyramid penalties are
provided by the corresponding cells in the coarser levels:

(τk1,t)i,j = (τ̂kt−1)i,j +
∑
q>k

λk,q∆τ
q
t (9)

IV. EXPERIMENTAL RESULTS

In the following section, we estimate the reliability of
our model, and we compare the prediction performance
of SuperFAST to that of different FAST based detection
strategies for an indoor and an outdoor sequence1. Regarding
the hardware platforms, we run our tests on an architecture
featuring an i5 quad core processor at 3.3 GHz, and also for
the benchmarking section on an ARM quad core Cortex-A9
processor at 1.7 GHz.

For all tests, the video resolution of the frames is VGA
and we use a pyramid representation with l = 4 levels.
Whenever bucketing is considered, we rely on the following
cell repartition:

{(rk × ck)}0≤k<l = {(4× 6), (2× 3), (1× 1), (1× 1)}

The desired number of corner detections per pyramid level
is defined as {N̂k}0≤k<l = {7000, 2000, 1000, 500} for
experiments depicted in Sections IV-A to IV-C.

A. Model accuracy

The performance of the results provided by SuperFAST
in real-time applications is bounded by how accurately the
square root exponential model is able to approach the corner

1An implementation for testing is available at http://hebergement.u-
psud.fr/emi/superfast/

distribution. In order to estimate the error of the model with
respect to the observations, we proceed as follows.

For the indoor sequence and for each pyramid level k
and time step t we measure the number of FAST points
Nexp(τ, t, k)for a threshold in the range τ ∈ [10, 80]. Using
the experimental observations, we determine the best pos-
sible parameters (C, σ)t,k according to the proposed model
(Equation 2), through nonlinear optimization. Let N(τ, t, k)
be the resulting function. We define the error bound as
the infinity norm between the model predictions and the
measurements:

εt,k = max
τ
|Nexp(τ, t, k)−N(τ, t, k)| (10)

We present in red in Figure 4 the evolution of the error
defined above for the finest scale of the pyramid. In order
to provide an intuitive interpretation of the result, let us
consider τε the threshold value that maximises the model
error for a given scale k and time step t. In blue we plot
the value of Nexp(τε + 1, t, k) − Nexp(τε, t, k) which is
an approximation of the local derivative of Nexp at τε,
which is influenced by the discretization of τ . The results
show that the error introduced by the model is bounded by
the discretization of τ , and also that relatively to the local
variation of number of corners our model approaches the
observations very accurately.
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Fig. 4: For the finest scale, we present in red the error
(infinity norm) between the observations and the best fit
according to the model, as well as the local variation of
the measurements at the maximum error point (in blue). The
error introduced by the model remains below or around this
level. The behaviour is similar for the other three scales
considered in the experiments.

Next, we compare in Figure 5 the thresholds selected in
order to obtain a specific number of responses per pyramid
level. The red line indicates the best possible threshold,
chosen according to the observed detections Nexp(τ, t, k),
and in blue we plot the thresholds selected according to
the best fit model. Again, we note that the model follows
remarkably well the experimental data and is effective in
guiding the choice towards the optimal threshold; the average
error between the model threshold and the best choice is
ε1 = 0.32 for the entire indoor sequence.

B. Model extrapolation and threshold prediction

Although we show that the SuperFAST model approaches
the corner occurrence distribution very accurately, in the

http://hebergement.u-psud.fr/emi/superfast/
http://hebergement.u-psud.fr/emi/superfast/
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(b) Zoom of the first figure

Fig. 5: At the highest scale, we compare the threshold value
selected in order to obtain a specific number of points for
different strategies. In red we use the experimental data to
select the best possible threshold. In blue, we provide the
threshold selected by the best model fit for Equation 2 from
experimental data (average error ε1 = 0.32). In green, we
provide the result of SuperFAST selection (average error
ε2 = 0.54). The behaviour of SuperFAST is similar for the
other three coarser scales considered.

actual algorithm we do not have available the set of values of
Nexp(τ, t, k), and in practice we extrapolate the model based
on a single measurement Nexp(τ1, t, k) (a second evaluation
regarding Nexp(τ2, t, k) is performed only on the result of
the former evaluation, and is much faster). Then, as we
explained in Section III-B, our algorithm tries to predict a
threshold which is as close as possible to the optimal value,
relying on temporal and multi-scale analysis.

In Figure 5 we plot in green the threshold selection in the
actual SuperFAST execution, against the optimal choice (in
red) inferred based on the actual observations Nexp(τ, t, k).
The results illustrate that the extrapolation and the prediction
strategies allow for a precise estimation of a threshold
compared to the best possible choice, and also compared to
the best model fit through nonlinear optimization. This time,
the average error between the SuperFAST threshold and the
best choice is ε2 = 0.54.

C. SuperFAST regularization of the detection

Figure 6 presents for comparison the number of detections
during the video sequence by adopting different strategies.
In Figure 6a, we show the variation of detected corners
using FAST with a fixed threshold τ = 25. Then, in Figure
6b we present the output of SuperFAST if we take into
account only the temporal prediction, i.e. we use the same
strategy as in Equation 5 for the whole image pyramid.
Compared to the standard FAST behaviour, the temporal

prediction regularizes significantly the number of detected
corners. For comparison, we also show for the finest scale
the result of using a proportional controller (P-controller),
where the proportional gain has been determined using a grid
search aiming to minimize the overall error for the same
sequence. On initial consideration, both methods perform
similarly and experience problems when consecutive frames
exhibit strong saliency variability (average errors for optimal
threshold estimation are respectively 1.20 for SuperFAST
with temporal prediction and 1.29 for the P-controller).
However, by looking more in detail we note that our method
contributes significantly on the following points:
• the optimal proportional gain depends on the scene, and

the result of the sequence-optimized P-controller shown
in Figure 6b is not representative of a typical instance
which usually performs much more poorly.

• the gain also depends on the number of corners to
extract; the optimal gain varies by two orders of mag-
nitude for the same scene depending on this input
whereas SuperFAST does not need a parameter. On
the illustrated sequence, the P-controller is instable
compared to SuperFAST when the scene is less salient.

• the P-controller has an implicit dependence on multiple
previous frames which can lead to consecutive failures;
for an underlying navigation algorithm, a pattern of
recurrent failures is much worse than occasional, spread
misses.

Moreover, a key feature of our approach is to provide a good
a posteriori estimation of the optimal threshold which can
be used to improve the performance within a coarse to fine
detection.

Finally, Figure 6c depicts the SuperFAST regularization
when the hierarchical correction is taken into account as well,
according to Equation 7. The role of the occurrence model
is critical when we exploit it additionally for hierarchical
prediction. In this way, SuperFAST is much more reactive,
being able to adapt to sudden variations of image content as
it performs a coarse-to-fine analysis in the image scale space
(Figure 6c compared to Figure 6b).

TABLE I: Average detection time required by FAST9 with
a fixed threshold τ = 18, and by SuperFAST with bucketing
on the indoor and outdoor sequences.

Arch. Algorithm Detection time in ms (µ± 3σ)
type Indoor Outdoor

i5 FAST9-18 1.01 ± 0.57 0.56 ± 0.24
SFAST-B 0.86 ± 0.47 0.59 ± 0.21

Cortex-A9 FAST9-18 4.86 ± 2.31 2.86 ± 0.77
SFAST-B 4.14 ± 1.18 2.97 ± 0.73

D. Detection times

In Table I we present the average detection time required
by FAST9 with a fixed threshold τ = 18 and by Super-
FAST with bucketing on the indoor and outdoor sequences.
The implementation of FAST9 is SIMD-optimized for each
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(a) FAST with τ = 25
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(b) SuperFAST with temporal prediction
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(c) SuperFAST with temporal and scale prediction

Fig. 6: The figures above plot the number of corners detected
for the four scales using different strategies, for the indoor
sequence. In Figure 6a, FAST is employed with fixed thresh-
olding. In Figure 6b, SuperFAST exploits only the temporal
prediction at each scale based on the occurrence model.
Finally, in Figure 6c SuperFAST makes use of temporal and
scale prediction and provides the most stable output.

architecture and SuperFAST relies for the actual detection
calls on the same optimized FAST9 implementation. Both
algorithms are tested on the i5 and ARM architectures, with
a single core being used each time.

For SuperFAST, we have requested a number of cor-
ners per scale (uniformly distributed within the cells)
more adapted to real-time processing: {N̂k}0≤k<l =
{2000, 1300, 600, 500}. Both algorithms are tested on the i5
and ARM architectures.

In terms of detections, the output of the algorithms is in
both cases similar to the situation depicted in Figure 1. In
the outdoor sequence, SFAST-B is slightly slower than FAST
for two reasons. The lower cells of the image are poor in
corners, and the algorithm relies on lower thresholds than
FAST for detection. Conversely, the indoor sequence features
more corners overall, and a fixed τ = 18 is costlier than the
adaptive thresholds.

The results show that for a similar computational burden,
SuperFAST provides a much more reliable and regularized
output. In the following paragraphs, we will underline why

this result is highly relevant for real-time robotic vision.

E. SLAM benchmark

Lastly, as an illustration of a full robotic vision application
we run a visual SLAM on the indoor sequence. Our SLAM
follows a typical strategy similar to [1], [2], with a tracking
thread which performs matching between map points and
current frame corners for pose estimation, and a mapping
thread responsible for map augmentation and correction.

For each test, the same SLAM algorithm relies on different
FAST based corner detection strategies performed on the i5
and the Cortex-A9 processors depicted at the beginning of
the section. The algorithms tested are: an implementation
SIMD-optimized for each architecture of FAST9 with a fixed
threshold τ = 18, the same FAST9 with a fixed threshold
τ = 12 and with bucketing, and SuperFAST with bucketing
and relying for the actual detection calls on the optimized
FAST9 implementation. For FAST9 with bucketing, we have
requested the same number of corners per cell as in the case
of SuperFAST.

Regarding the pruning that we use for FAST9-12B, the
most effective strategy we identified works as follows.
Firstly, we detect all FAST corners in the image using a
threshold τ = 12. Then we attribute a cell to each corner.
Finally, for each cell where the number of corners is higher
than the desired value and for each corner in these cells
we compute a FAST score (the highest threshold for which
the pixel is still considered a corner) using SIMD optimized
code, and we use a partial sort to select the best (we either
keep the best or remove the worst depending on the smallest
amount of values to sort).

in order to select the best corners, we use the discretization
of the FAST score and count the occurrences for each score
vale. Then we add those occurrences in decreasing order of
score until the number of corners is above the desired value,
this method being faster than partial sort algorithms.

In Table II, we report the average corner detection time,
and the average total SLAM processing time for each frame
(detection, localization, mapping). We also provide the av-
erage number of potential inliers that are filtered by the
localization module with a significant computational cost,
and also the average number of corners that are validated as
inliers. Finally, we provide the mean reprojection error.

The benchmark shows that SuperFAST has a significant
positive impact on the SLAM performance; for a power
efficient architecture for which the Cortex-A9 is a typical ex-
ample, we improve SLAM performance in terms of precision
and in terms of speed, from 56 fps to 93 fps on average. The
result is mainly due to the selection of corners which favors
a higher proportion of inliers, as it can be also observed from
the experimental data.

We report for SFAST-B and FAST9-12B a similar ratio of
potential inliers to inliers. The marginally higher number of
inliers in FAST9-12B is mostly due to the significant frame-
rate loss which leaves more time to the mapping module
for adding key-frames - we observe on average a single



TABLE II: We present below a benchmark of different FAST based corner detection strategies used by a visual SLAM
application which is executed on an i5 and a Cortex-A9 processor for the indoor sequence. The algorithms considered are
FAST9 with a fixed τ = 18, FAST9 with a fixed τ = 12 and with bucketing, and SuperFAST with bucketing.

Architecture Algorithm Measurements (µ± 3σ)
type Det. time (ms) SLAM Time (ms) Potential Inliers Valid Inliers Repr. Error (px)

i5
FAST9-18 1.01 ± 0.57 2.69 ± 1.18 198.65 ± 180.13 82.60 ± 94.01 0.39 ± 0.33

FAST9-12B 3.85 ± 2.34 5.54 ± 1.88 150.05 ± 88.17 91.92 ± 69.41 0.34 ± 0.11
SFAST-B 0.86 ± 0.47 2.28 ± 0.54 147.78 ± 87.66 88.41 ± 61.45 0.34 ± 0.10

Cortex-A9
FAST9-18 4.86 ± 2.31 17.78 ± 10.96 205.33 ± 288.66 85.98 ± 72.13 0.43 ± 0.61

FAST9-12B 15.22 ± 9.56 23.57 ± 7.74 156.08 ± 86.19 95.37 ± 70.23 0.34 ± 0.11
SFAST-B 4.14 ± 1.18 10.72 ± 2.33 137.45 ± 82.04 85.35 ± 62.07 0.33 ± 0.11

frame latency before a key-frame is fully integrated to the
cartography instead of a 2-3 frame latency in the others cases.

Overall, in the context of an entire visual navigation
application, we achieve with SuperFAST the same level of
accuracy as with the most accurate alternative, but with a
much higher and more regular frame processing time.

F. Discussion

In view of the results presented in the current section, we
consider that the major contribution of this method is two-
fold. Firstly, the proposition and the validation of a corner
occurrence model allows us to estimate adaptively a detection
threshold based on temporal and on scale consistency, with
no extra computational cost for bucketing. The computational
gain compared to alternative corner selection strategies is
significant, especially for power-efficient systems.

Secondly, a major improvement in terms of computational
efficiency is observed if we take into account the whole archi-
tecture of a vision based navigation algorithm. SuperFAST
facilitates for a SLAM family application:
• a stabilized data input size, hence a balanced load

for the different processing modules (matching, outlier
rejection, odometry estimation, cartography update etc.)

• better adaptation and reactivity in heterogeneous envi-
ronments, with a more intuitive parametrization

• an effective solution for adapting the computational
burden to a specific architecture by setting the desired
number of detections at a certain level (less corners
meaning faster processing time)

• an indicator for the current visual saliency of the envi-
ronment, through the adaptive threshold that is selected

Finally, the strategy we propose should be particularly
adapted in the context of emerging high-definition cameras,
such as 4K video capture devices. The experiments above
allow us to highlight, for example in Figure 6a, the fact that
for higher resolutions the detection and computational time
instabilities are more marked, and this is precisely the context
in which SuperFAST contributes significantly.

V. CONCLUSION AND PERSPECTIVES

In this paper we proposed a solution for adaptive thresh-
olding for corner detection based on a corner occurrence
model. The model allows us to predict accurately a threshold
value based on previous observations performed on the time

and scale axis. The effectiveness of the model, as well as
that of our prediction mechanism, have been successfully
validated in indoor and outdoor environments typical for
robotic vision applications.

For future work, we envision to investigate further the
statistical process that allows the square root exponential
model to approach the corner occurrence distribution for the
FAST detection criterion. Ultimately, we hope to extend our
analysis for other widely used corner detection algorithms.
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