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The effects of an imposed magnetic field on the development of the elliptical instability in a rotating
spheroid filled with a conducting fluid are considered. Theoretical and experimental studies of the
spin-over mode, as well as a more general short-wavelength Lagrangian approach, demonstrate that
the linear growth rate of the instability and the square amplitude of the induced magnetic field fall
down linearly with the square of the imposed magnetic field. Application of the results to the
Galilean moon Io confirms the fundamental role played by the elliptical instability at the planetary
scale. © 2009 American Institute of Physics. �DOI: 10.1063/1.3119102�

I. INTRODUCTION

The elliptical instability is a generic instability of rotat-
ing flows with elliptical streamlines. It has, for instance, been
observed in wakes,1,2 in elliptically deformed containers,3–6

and more generally in the transition to turbulence of strained
vortices.7 Since its discovery in the mid-1970s, it has
received considerable attention, theoretically, experimentally,
and numerically �see, for instance, the review by Kerswell8�.

Flows with elliptical streamlines arise as a superposition
of rotation and a small strain field, and the instability mecha-
nism has been identified as a parametric resonance of pair-
wise inertial waves coupled by this strain.9,10 In the geophys-
ical context of liquid planetary cores,11–13 the strain comes
from the tidal deformations due to gravitational interaction
between neighboring celestial bodies. The elliptical instabil-
ity �also called tidal instability in this context�, as well as
the closely related precessional instability, may leave traces
in the gravitational and magnetic fields of planets,13,14 and
may even provide alternative sources to power the
geodynamo.11,15 Even if the hydrodynamics of the elliptical
instability is today well known, its planetary consequences
are still controversial and necessitate a full understanding of
the magnetohydrodynamics �MHD� of the elliptical instabil-
ity, which remains a mostly open question �e.g., Ref. 16�.
Understanding the MHD of the elliptical instability is also
important in metallurgic applications, especially regarding its
role in the transition from two to three-dimensional MHD
turbulence.17

In the present paper, we consider an elliptically de-
formed rotating sphere filled with a conducting fluid �Fig. 1�
and we study both theoretically and experimentally the ef-
fects of an imposed magnetic field parallel to the rotation
axis on the development of the elliptical instability. This situ-
ation is reminiscent of planetary configurations where a tid-
ally deformed moon with a liquid iron core rotates in the
magnetic field of its planet, as, for instance, the Galilean
moon Io in the vicinity of Jupiter. Our purpose is to answer

the two following questions. How is the elliptical instability
damped by the magnetic field? And what is the amplitude of
the magnetic field induced by the elliptical instability?

This article, which completes and extends the previous
works of Lacaze et al.16 and Thess and Zikanov,17 is orga-
nized as follows. We first focus on the so-called spin-over
mode, which corresponds to the simplest mode of the ellip-
tical instability in spheroids, excited at the smallest values of
the Reynolds number above threshold in the absence of shear
rotation. We derive a nonlinear and viscous model of its de-
velopment under an imposed magnetic field valid for low
values of the magnetic Reynolds number, based on the hy-
drodynamical model of Lacaze et al.5 and including the mag-
netic damping term determined by Thess and Zikanov.17

These results are validated experimentally using an extended
version of the setup of Lacaze et al.,16 with stronger imposed
magnetic fields. These results are then extended to the large
magnetic Reynolds number, large Reynolds number limit rel-
evant to planetary applications, using a short-wavelength La-
grangian theory.18 An analytical expression of the growth
rate of the elliptical instability is determined and results are
finally applied to the case of Io, highlighting the importance
of the elliptical instability at the planetary scale.

II. SETUP AND STATE OF THE ART

We consider the experimental system sketched in Fig. 1.
A spherical cavity with radius R, molded in a deformable
silicone block, is filled with a liquid metal, with permeability
�, conductivity �e, kinematic viscosity �, and density �. It is
set in rotation at a constant angular velocity �0=�0ẑ around
the vertical z-axis, and a homogenous magnetic field
B0=B0ẑ is externally imposed along the same axis with a
pair of Helmholtz coils. Following the original idea of
Malkus,3 a pair of fixed and opposed rollers compresses the
transverse section of the deformable container, giving it an
elliptical cross section with long axis R�1+� along x and
short axis R�1−� along y, � being the eccentricity of the
elliptical deformation. Previous experimental studies �e.g.,
Ref. 5� have demonstrated that the flow in the volume effec-a�Electronic mail: lebars@irphe.univ-mrs.fr.
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tively exhibits elliptical streamlines due to the boundary de-
formation and approaches the theoretical elliptical base flow

Ub = �− �0�1 + �

1 − �
y,�0�1 − �

1 + �
x,0� . �1�

Together with a homogeneous magnetic field along the axis,
this flow defines an exact base state of the MHD equations
on which perturbations may grow due to the elliptical
instability. In our experiments, the magnetic Reynolds
number Rm=�0R2 /�, where � is the magnetic field diffusion
�= ��e��−1, is small �Rm=O�10−2�� and magnetic field diffu-
sion is always dominant over magnetic field advection. In
this limit, the scales

�r� = R, �t� = �0
−1, �u� = �0R ,

�2�
�p� = ���0R�2, �b� = Rm B0,

respectively, for space, time, velocity, pressure, and magnetic
field, are well adapted to nondimensionalize the perturbation
problem. In addition to Rm, the relevant nondimensional pa-
rameters are the Ekman number E=� /�0 R2, which mea-
sures the importance of diffusive effects over inertial terms,
and the Elsasser number �=�eB0

2 /��, measuring the ratio of
Lorentz force effects over the inertial forces. In our experi-
ments, E=O�10−4� and �	O�1� typically.

The hydrodynamic stability of elliptical flow in sphe-
roids was previously studied in Ref. 5, which formalizes an
asymptotic theory in terms of inertial wave coupling. In the
limit ���, Rm→0, this theory can be extended to include
the magnetic field effect perturbatively. We will not go as far,
as the combination of the results of Refs. 5, 16, and 17,
allows us to describe the linear and nonlinear dynamics of
the dominant spin-over mode, which is the only mode acces-
sible to purely hydrodynamical experiments using the
present device in a spherical geometry with a fixed strain

field.19 The spin-over mode is mainly a solid body rotation
around an inclined axis, whose horizontal projection �H is
aligned with the axis stretched by the strain field, at polar
angle in the vicinity of −45° in the �x ,y� plane �see Fig. 1�.
A low-dimensional model was derived in Ref. 5 in close
agreement with the experiments, which describes the nonlin-
ear evolution of the spin-over mode as a solid body rotation.
Even though E is small in the experiment, viscosity plays an
essential role. Indeed, it postpones the elliptical instability to
a critical eccentricity and allows the nonlinear dynamical
system to have stable nontrivial fixed points.

Stays the question whether the spin-over mode remains
the most unstable mode in presence of a magnetic field,
which seems hard to answer without a more complex global
analysis of the elliptical instability. In Ref. 17 �see also Sec.
V�, the local growth rates of elliptical instability in an un-
bounded domain were calculated using Flocquet theory. For
the limit of small � we are interested in, asymptotic argu-
ments as in Ref. 10 imply a growth rate linear in � and a
magnetic damping 
M =��2 /4, where � is the wave fre-
quency in the rotating frame. Since all elliptically interesting
waves have �	1,5,19 local theory indicates that the magnetic
field damping acts similarly on all couplings, no matter what
their spatial structure is. Since in our device the spin-over
mode is always the most unstable mode in the hydrodynami-
cal experiments, we expect that it remains the case when a
magnetic field is imposed.

Thess and Zikanov17 also extended the nonlinear, invis-
cid model of the spin-over dynamics to include the magnetic
field effects in the low Rm limit. They found that the mag-
netic field introduces a Joule damping, which only operates
on the rotations with axis transverse to the imposed magnetic
field, identically to the Joule damping of solid conductors
rotating in a strong magnetic field, commonly used in mag-
netic brakes. In our experimental setup, both viscous and
magnetic field effects are important. The eccentricity is small
�	0.1, which means that � is at most of order O�10−1� in
the experiments where we observe the instability. The impor-
tant consequence is that the magnetic field in this case is
always too small to change the viscous boundary layer into a
Hartmann layer, so that there is no need for a more complex
boundary layer analysis. This also implies that the viscous
terms in the nonlinear system of Ref. 5 may be used here.
Finally, there will be no significant contributions to the ex-
ternal and internal magnetic fields due to the boundary layer,
which would make the field deviate from the field induced
by the nonviscous spin-over mode, calculated in Ref. 16.

Notice that all these suppositions will be confirmed
a posteriori by the good agreement between the following
theory and our experimental results.

III. ANALYTICAL STUDY OF THE SPIN-OVER MODE

Combining the results of Refs. 5 and 17, the nonlinear
evolution of the spin-over mode can be modeled in the labo-
ratory frame of reference as a solid body rotation with angu-
lar velocity �= ��1�t� ,�2�t� ,�3�t��, which evolves accord-
ing to the nonlinear system

FIG. 1. �Color online� Sketch of the setup, side and top-view �see also
Lacaze et al. �Ref. 16��. A liquid metal in a deformable spheroidal cavity
rotates at �0. A strong magnetic field B0 is imposed along the rotation axis.
Fixed rollers induce an elliptical deformation of the streamlines. Also shown
here is the horizontal projection of the spin-over mode, corresponding to a
transverse solid body rotation �H in the stretched direction �dashed arrow�,
which tilts the rotation axis of the fluid to �. In the limit of low magnetic
Reynolds number, �H induces a dipolar magnetic field br��H, which is
measured by a Hall probe.
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�̇1 = −
�

2 − �
�1 + �3��2 − �
so + �/4��1, �3�

�̇2 = −
�

2 + �
�1 + �3��1 − �
so + �/4��2, �4�

�̇3 = ��1�2 − 
3�3 + �nl��1
2 + �2

2� . �5�

On the right hand sides, we first recognize the destabilizing
terms from the nonviscous system. The damping of the spin-
over mode is controlled by the linear viscous boundary layer
terms with 
so=2.62�E in the horizontal directions and

3=2.85�E around the vertical axis. Supplementary nonlin-
ear terms arise in Eq. �5� through the boundary layer, with
�nl=1.42�E. All these coefficients are explicitly detailed in
Lacaze et al.5 and find their origin in the classical analysis of
Greenspan.20 The magnetic field only adds a linear term cor-
responding to the Joule damping � /4 in the directions per-
pendicular to the imposed field. The terms due to the viscous
frequency detuning are left out from the model as in Ref. 5,
since they only introduce negligible differences in the limit
of small Ekman numbers we are interested in.

Linearizing the system around the trivial fixed point 0,
we calculate the linear growth rate of the spin-over mode

� =
�

�4 − �2
− 2.62�E − �/4. �6�

In agreement with Ref. 17, the magnetic damping lowers the
growth rate of the spin-over mode linearly with �, and the
system becomes stable above a critical Elsasser number

�c = 4� �

�4 − �2
− 2.62�E� . �7�

Some time series for the horizontal projection of the spin-
over mode amplitude, �H=��1

2+�2
2, found by numerical

integration of the nonlinear system �3�–�5�, are shown in Fig.
2�a�. After an exponential growth, the flow always goes to-
ward a stable nonzero fixed point which is a stable focus.
Before saturation the spin-over mode horizontal amplitude
displays a small overshoot which originates from the spiral
trajectory around this focus. For increasing magnetic field
amplitudes, both the linear growth rate and the saturation
amplitude decrease. The nonzero fixed points of Eq. �3� can
be calculated explicitly. The square of the spin-over mode
amplitude at saturation reads

�H
2 = 4


3

�

�

� − 4�nl/�4 − �2
. �8�

Note that � only appears in this formula through the growth
rate. According to Ref. 16, the field induced by the nonvis-
cous spin-over mode at low Rm is a dipole with axis trans-
verse to the imposed field, in quadrature with the rotation
axis of the spin-over mode. On the dipole axis outside the
spheroid, the field is purely radial and decays as

br =

�H

35

1

r3 . �9�

Combining Eqs. �8� and �9�, we expect a linear decrease in
the square of the induced field amplitude with � at fixed �
and E. The polar angle in the �x ,y� plane of the saturated
spin-over axis is determined by

�̄so = 
 arctan��2

�1
� = 
 arctan�−�2 − �

2 + �
� , �10�

so that the vorticity of the saturated spin-over mode is not
exactly aligned with the direction of maximum stretching at
�45° of the long axis of the spheroid �e.g., �̄so=−42.1° for
�=0.10�.

Lacaze et al.5 tested experimentally the purely hydrody-
namical version of this theory and found good agreement for

FIG. 2. �Color online� �a� Theoretical nonlinear temporal evolution of the horizontal projection of the spin-over mode amplitude �H= ��1
2+�2�1/2, for various

values of the Elsasser number �. Ekman number and eccentricity are fixed, E=8.53�10−5, �=0.10. Calculations started from the initial state �1=10−3,
�2=−10−3, and �3=0, which is the linearly unstable spin-over mode with small amplitude. The arrow on the right side indicates the saturation level of the
slowly growing spin-over mode horizontal amplitude at �=0.095. The critical Elsasser number is �c=0.103 for this parameter set. �b� Typical recorded
magnetic field signals for varying Elsasser number. Ekman number and eccentricity are fixed E=8.53�10−5, �=0.10
0.005. The experiments agree with the
theoretical profiles of �a�.
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both linear and nonlinear stages. However, the nonlinear
overshoot was not observed and the authors noticed that the
experimental saturation amplitudes of the spin-over mode
agree better with the maximum theoretical amplitudes at-
tained during the overshoot than with the theoretical satura-
tion amplitudes. We now extend these experimental results
by taking the magnetic field into account.

IV. EXPERIMENTS

Our experimental setup is an extension of the one pre-
sented in Ref. 16 �see Figs. 1 and 3�. The experimental
parameters are R=22.75 mm �0� �0,10�� rad s−1 and
�=0.10. The imposed field B0 ranges between 0 and 0.13 T
�up to 100 times larger than in the previous setup16�. It is
realized with a set of water-cooled copper Helmholtz coils,
powered by a stabilized DC supply. The liquid metal we use
is Galinstan, a gallium indium tin eutectic liquid at room
temperature, with �=6440 kg m−3, �=9.5�10−5 m2 s−1,
�e=2.9�106 S m−1, and �=�0=4��10−7 T A−1 m. Ac-
cording to Ref. 16, the field induced by the nonviscous spin-
over mode at low Rm is a dipole with axis transverse to the
imposed field, in quadrature with the rotation axis of the
spin-over mode. It is measured in the experiment by a radial
Hall probe mounted in the equatorial plane of the spheroid,
facing the compressed direction at a polar angle of 45°. The
probe is 26.5
0.5 mm away from the center of the sphere.
The hall probe and the Gauss meter have a maximum sensi-
bility of s=300 �T /mV. Since the induced fields are of or-
der O�10−4B0�, the probes are used at the limit of their sen-
sibility. This implies careful positioning, thorough
prefiltering, and amplification of the recorded signals. In
practice, the electric signal produced by the Hall probe is put
to zero before each experimental run. The recorded signals
are prefiltered with a low-pass filter at fc=2 Hz, and ampli-
fied by a factor of 50. The signals are transferred to the
data-acquisition unit on the laboratory computer.

Figure 2�b� shows the experimentally recorded radial
components of the induced magnetic fields for different �.
The shapes and relative positions of the experimental records
compare well with the theoretical profiles of Fig. 2�a�, with
an exponential growth �see also Fig. 4� and a slight over-
shoot preceding a saturation at a constant level. As expected,
there is a gradual decrease in growth rates and saturation

amplitudes with �. Notice again that the amplitude over-
shoot was not observed in the purely hydrodynamical experi-
ments �see Ref. 5�. At �=0.121 and higher, we continue to
observe a nonzero induced magnetic field, but it becomes
increasingly difficult to determine a true exponential growth.
These fields probably come in our experimental setup from
misalignment between the axis of rotation of the sphere, the
axis of the rollers inducing the elliptical deformation, and the
axis of the imposed field.

The signals also give us quantitative information on the
growth rates and saturation amplitudes. As shown in Fig. 5,
the growth rate decreases as � /4, following the analytical
result given by Eq. �6�. Also shown are the theoretical
dashed curves for �=0.095 and �=0.105 representing the
uncertainty in �. As can be observed, the experimental data
are in complete agreement with the theory within this 5%
error range, without any adjustment parameter. Figure 6

FIG. 3. �Color online� Picture of the experimental setup. Large water-cooled
Helmholtz coils provide a homogeneous magnetic field up to B0=0.13 T.
Induced fields are measured with a radial Hall probe.
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FIG. 4. �Color online� Logarithm of the induced magnetic field signal �full
line� at E=8.53�10−5, �=0.100
0.005, and �=0.01. The slope of the
linear fit �dashed line� provides the initial linear growth rate.
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FIG. 5. Linear growth rates � as a function of Elsasser number �.
E=8.5�10−5, �=0.100
0.005. The experimental measurements ��� are in
good agreement with the theoretical values for �=0.10 �soft line�. Also
shown are the theoretical �dashed� curves for �=0.095 and �=0.105, repre-
senting the uncertainty in �; note, however, that there is no adjusting param-
eter in the comparison between theory and experiment. Growth was no
longer exponential beyond ��0.121.
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shows that the square of the induced field br
2 behaves as the

growth rate, in close agreement with the theory �see formulas
�8� and �9��. Figure 6 also provides an experimental measure-
ment of the critical Elsasser number �c	0.096, close to the
theoretical value �c=0.103.

Using Eq. �9�, we systematically translate the magnetic
field measurements to spin-over-mode amplitude and show
in Fig. 7 the variations of the ratio �1 of experimental satu-
ration amplitudes to theoretical saturation amplitudes. The
ratio �1 significantly decreases with the Elsasser number,
where we expected a constant value close to 1. This discrep-
ancy between theoretical and experimental saturation values
was already observed in the absence of magnetic field in Ref.
5. Several explanations can be provided. From a theoretical
point of view, all nonlinear viscous corrections as well as

possible secondary instabilities are not included in our model
but may become important, especially far from the linear
instability threshold. Moreover from an experimental point
of view, one can notice that measurements at a fixed �45°
angle only take into account a fraction of the spin-over am-
plitude when �̄so�−45°, this effect being also more impor-
tant far from the linear instability threshold.

Lacaze et al.5 also remarked that the ratio �2 of experi-
mental saturation amplitudes to the maximal theoretical am-
plitudes attained during the overshoot remains constant over
a rather large range of Ekman number. As shown in Fig. 7,
this remains valid over a large �-interval. We expect that this
behavior is not a coincidence, but that it could be revealed by
a more sophisticated model, beyond the scope of this paper.
However, and contrary to the hydrodynamical experiments
by Ref. 5 where �2�1, theoretical predictions always under-
estimate the experimental measurements by a factor of 1.42
in our case. Possible explanations are error in the positioning
of the probe �the field decreases rapidly in r−3�, but most
probably uncertainties in the value of the electrical conduc-
tivity �e of Galinstan �values in literature typically range
between 2.3 and 3.5�106 S m−1�. Note also that the ellipti-
cal deformation of the spheroid as well as the misalignment
between the spin-over axis and the axis of maximum strain
are not taken into account in Eq. �9�.

V. FROM LABORATORY MODELS
TO GEOPHYSICAL APPLICATIONS

Magnetic induction by inertial waves is of particular in-
terest in geo- and astrophysical applications. For instance,
Kerswell and Malkus13 suggested that Io’s magnetic field is
induced from Jupiter’s magnetic field by tidally driven iner-
tial wave resonance, without dynamo action. However, our
previous results derived in the limit of dominant magnetic
diffusion �i.e., low Rm� and for the laminar spin-over mode
�i.e., at rather large E� cannot apply directly to planetary
configurations, corresponding to the limit of small E, large
Rm and probably large wavenumbers. As can be seen in the
visualizations of Fig. 8, the flow can then become increas-
ingly complex, especially at small scale, and an extension of
our analysis is necessary. Fortunately, a more general expres-
sion of the growth rate of the tidal instability, independent of
the geometry of the flow, can be derived using the so-called
local approach. Our goal here is not to give the exact expres-
sion of the growth rate of the various modes explicitly ex-
cited in a given planet but to determine an analytical expres-
sion able to describe the power dependence of the growth
rate on all dimensionless numbers and to determine an order
of magnitude of the various prefactors.

The local approach is based on the inviscid short–
wavelength Lagrangian theory developed in Refs. 9 and 21,
then generalized in Refs. 18 and 22. There, perturbations are
assumed to be sufficiently localized in order to be advected
along flow trajectories and are searched as local plane waves
of the form
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0
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x 10
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FIG. 6. Square of the measured saturation amplitudes of the magnetic field
as a function of Elsasser number �. E=8.5�10−5, �=0.10. Experimental
measurements ��� and linear fit �dashed line�. The saturation amplitudes are
in agreement with the weakly nonlinear scaling, predicting a linear depen-
dence on �.
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FIG. 7. Ratios of the experimentally observed saturation amplitude, to the
theoretical saturation amplitudes �1 ��� and to the maximum amplitude
attained during the overshoot �2 �+�, as a function of the Elsasser number �.
E=8.5�10−5, �=0.10.
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�u,p� = �u�t�,p�t��eik�t�·x, �11�

where k�t� is the time-dependent wave vector and x the po-
sition vector. This method has been applied to the elliptical
instability by Le Dizès.23 Here, we extend his results by tak-
ing into account the induction equation and the Lorentz force
in the limit of small Elsasser number �e.g., �	O���� in the
presence of an imposed vertical magnetic field B0, looking
for a perturbed magnetic field under the same wave form

b = b�t�eik�t�·x. �12�

Details of the analysis are given in the Appendix. Notice that
in the following, we do not consider the limit of small mag-
netic Reynolds number anymore; hence, the magnetic field is
made dimensionless using the amplitude of the imposed field
B0 rather than Rm B0 as in Secs. I–IV. MHD equations are
solved analytically using a perturbative expansion in eccen-
tricity �, supposing that the Lorentz force is of order �. In
this context, equations for fluid motions at order 0 are similar
to the purely hydrodynamical case. Through the Lorentz
force, the magnetic field induces a correction in the fluid
equation at order 1, hence a correction in the growth rate of
the instability.

Using the two-dimensional �2D� base flow Ub given by
Eq. �1�, which corresponds to a stationary tidal deformation,
we find a non viscous growth rate

�nv =
9

16
� −

k4�

4�Rm
2 + k4�

, �13�

where k is a constant equal to the norm of the wave vector
k�t� at leading order in � �see Eq. �A14� in Appendix�. The
viscous damping rate resulting from the boundary layer can
be estimated following Ref. 5, and induces a supplementary
correction of the order O�E1/2�. Notice that in the limit of
small magnetic Reynolds number, one immediately finds the
linear Joule damping −� /4 determined in Sec. III. The
present result generalizes the validity of this scaling to all

possible excited modes of the elliptical instability. Note also
that the numerical factor before � is different from Eq. �6�,
but remains of the same order of magnitude in the relevant
limit of small �.

The previous result can still not be directly applied to the
case of Io, where the elliptical deformation is not stationary.
Indeed, as explained for instance in Ref. 13, Io is almost
synchronized in its revolution around Jupiter, but orbital
resonances with Europa and Ganymede force it to follow a
slightly elliptical orbit of eccentricity 0.004. As a result, the
tidal bulge raised by Jupiter, of magnitude ��6�10−3, does
not rotate exactly at the same velocity as Io’s spin, but oscil-
lates back and forth across Io’s body with a typical angular
velocity 1−� cos�t�, where ��0.008 is twice the eccentric-
ity of Io’s orbit and where time is made dimensionless using
Io’s spin velocity. In this case, the base flow in Io’s core at
first order in �� reads �see Appendix�

Ub = �− y + �� cos�t��sin�2t�x − cos�2t�y�,x − �� cos�t�

��cos�2t�x + sin�2t�y�,0� �14�

and the growth rate of the elliptic instability reads

� =
17

64
�����2 −

576

289

�2Rm
2k4

�Rm
2 + 4k4�2 −

3

4

k4�

Rm
2 + 4k4 . �15�

Formula �15� is closely related to Eq. �13�, where the eccen-
tricity � in the case of a stationary tidal deformation has been
replaced by the product of the tidal bulge times the ampli-
tude of the perturbation ��. In particular, at small Rm, we
once again end up at first order with a Joule damping linear
in �. As mentioned before, surface viscous effects induce a
correction to this formula of order O�E1/2� that could be
explicitly determined. This is not done here, since the inter-
est of formula �15� is to determine the relevant power
law dependence on all dimensionless parameters �i.e.,
� , Rm , � , E� as well as the order of magnitude of the vari-
ous prefactors. In the following, we use for illustration the
explicit values shown in Eq. �15� as well as the viscous cor-
rection 8.8E1/2 determined in Ref. 13 for the first excited
resonance in Io’s configuration, but all our conclusions re-
main valid using prefactors of the same order of magnitude.

Formula �15� allows us to compute the order of
magnitude of the growth rate of the elliptical instability in
Io’s core. We take as typical values an imposed magnetic
field by Jupiter B0=1850 nT, and for Io’s core R=900 km,
2� /�0=1.77 days, and �=10−6 m2 s−1, �e=4�105 S m−1,
�=12 000 kg m−3, consistent with a Fe/Fe–S composition.
Then, Rm=1.7�107, E=3.0�10−14, �=2.8�10−6, and Eq.
�15� implies that none of the elliptical modes is significantly
affected by Joule damping. The typical growth rate of the
tidal instability in Io is about 0.014 years−1, suggesting rapid
large-scale variations in its core flows. Supposing that the
spin-over mode still has an important component in Io’s core
�see Fig. 8 and Appendix�, its saturation amplitude would be
about �H=0.096 �0 according to Eq. �8�. The correspond-
ing induced magnetic field would be a dipole aligned with
the spin-over axis and of typical amplitude
br�sin�0.096�B0=178 nT, as derived from Ref. 16 in the
relevant limit of large magnetic Reynolds number. We expect

ε=0.03 ε=0.04

ε=0.05 ε=0.06

FIG. 8. �Color online� Kalliroscope visualization of the elliptical instability
for a fixed Ekman number E=10−5 and increasing values of � �purely hy-
drodynamical experiment�. As suggested by Eq. �6�, the relevant parameter
to describe the dynamics of the elliptical instability is �=E1/2 /�. Decreasing
� from 0.11 to 0.053, the flow becomes more and more complex, especially
at small scale, but the spin-over mode remains present at large scale as
visualized by the inclined rotation axis of the flow. The same behavior is
expected to remain valid at the planetary scale, for instance, in Io’s core
where ��0.0036.
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this field to fluctuate on rapid times ranging between the
rotation period of 1.77 days and the typical time given by the
growth rate of the instability of 72 years. The question then
remains whether this field is measurable outside the core.
Taking as in the Earth a typical mantle conductivity of
0.1–1 S m−1 and considering the short period signal of 1.77
days, we find a skin length of 200–600 km. In the Earth,
this low value compared to the typical depth of the mantle
means that signals coming from the elliptical instability will
be totally filtered. This will not be the case in Io. Hence,
continuous field measurements of the ambient field in the
vicinity of Io would allow to discriminate between its inter-
nal and atmospheric origins, an issue raised since the first
punctual measurements provided by the Galileo mission
�e.g., Ref. 24�.

VI. CONCLUSION

In this paper, we have studied the effects of an imposed
magnetic field on the elliptical instability in spheroids. By
combining theoretical elements of previous works,16,17 we
have extended the nonlinear system governing the dynamics
of the spin-over mode to include simultaneously the mag-
netic and viscous damping. We have shown theoretically and
confirmed experimentally that the linear growth rate of the
instability as well as the square amplitude of the induced
magnetic dipole fall down linearly with the Elsasser number
�i.e., with the square of the imposed magnetic field�, with
good agreement regarding predicted and measured prefac-
tors. These conclusions have then been extended to all pos-
sible resonances of the elliptical instability using a short-
wavelength Lagrangian approach. Applied to the specific
case of Io in the magnetic field of Jupiter, we conclude that
despite the viscous and Joule damping, a tidal instability is
more than probable in the Jovian moon’s core and induces in
the core a relatively important field of about 10% of the
ambient value. In addition to the magnetospheric interactions
with Jupiter,25 we thus conclude from purely magnetohydro-
dynamical considerations that the elliptical instability pro-
vides a significant and nonstationary contribution to the mag-
netic field measured in the vicinity of Io, as first suggested
by Ref. 13. Continuous measurements in Io’s vicinity should
allow to discriminate between internal and external magnetic
signatures.
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APPENDIX: WKB ANALYSIS OF IO’S
TIDAL INSTABILITY

The now classical application of the short-wavelength
“WKB” theory to inviscid fluids was developed in Refs. 9
and 21, generalized in Refs. 18 and 22, and summarized for
the elliptical instability in Ref. 23. It consists in looking for a
perturbed solution of the full equations of motion under the

form of a plane wave along the streamlines of the base flow.
In our case, we thus look for a perturbed solution of the
nondimensional system

� · u = 0, �A1�

�tu + �u · ��u = − �p +
�

Rm
�� � b� � b , �A2�

� · b = 0, �A3�

�tb + �u · ��b = �b · ��u +
1

Rm
�2b , �A4�

under the form

u = Ub + u�t�eik�t�·x, �A5�

p = Pb + p�t�eik�t�·x, �A6�

b = B0 + b�t�eik�t�·x, �A7�

along the streamlines of the base flow described by

dx

dt
= Ub, �A8�

where Ub stands for the 2D base flow, Pb for the correspond-
ing pressure field, B0= �0,0 ,1� for the �nondimensional� im-
posed vertical magnetic field and x for the position vector.
The linearized MHD equations then write

k · u = 0, �A9�

dtu + iu�dtk · x� + i�Ub · k�u + �u · ��Ub

= − ikp +
�

Rm
�ik � b� � B0, �A10�

k · b = 0, �A11�

dtb + ib�dtk · x� + i�Ub · k�b

= �b · ��Ub + i�B0 · k�u −
k2

Rm
b . �A12�

The velocity and induction equations can be decoupled in
space and time to give an equation for the wave vector only

dtk · x + Ub · k = 0. �A13�

Linearized equations are then solved analytically using a per-
turbative expansion in the small parameter �i.e., the eccen-
tricity in our case�, supposing that the Elsasser number is of
order 1 in �. In this context, equations for fluid motions at
order 0 in � are similar to the purely hydrodynamical equa-
tions, and the Lorentz force only induces a correction at or-
der 1 in �. Technically, the easiest way to solve the MHD
equations in our case is to use the vertical velocity uz and the
vertical vorticity Wz=�xuy −�yux= i�kxuy −kyux� of the per-
turbed field as unknowns, as well as the vertical component
bz of the perturbed magnetic field and the corresponding
magnetic vertical vorticity Cz= i�kxby −kybx�. The resolution
is then straightforward.
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The study of the 2D base flow Ub given by Eq. �1�,
which corresponds to a stationary tidal deformation, closely
follows the results already presented by Le Dizès.23 From
Eq. �A13�, one immediately finds the wave vector

k�t� = k� sin�a�
�A

cos��t�,sin�a��A sin��t�,cos�a�� , �A14�

where k is a constant, A=��1+�� / �1−�� is the ellipticity,
�=�1−�2, and a is the angle between the flow rotation axis
and the wave vector. Equations for fluid motions at order 0 in
� give the expression of u at order 0 in � with a temporal
frequency f

f = 
 2 cos�a� , �A15�

whereas the linearized induction equation immediately gives
the expression of b at order 0 in �. According to Ref. 23, an
elliptical instability is possible if the forcing terms due to the
elliptical deformation oscillate at the same frequency as the
inertial wave, which means in our case f =1. Then, at order 1
in �, inertial waves resonate implying an exponential growth
rate of the elliptical instability23

�nv =
9

16
� −

k4�

4�Rm
2 + k4�

. �A16�

This result is not directly applicable to the case of Io, where
the elliptical deformation is not stationary. Indeed, Io is al-
most synchronized with Jupiter. It means that, in an isolated
Jupiter-Io system, Io’s spinning and orbital periods would be
exactly equal: Io would always present the same face to
Jupiter, and the tidal bulge would rotate at exactly the same
frequency as Io along a circular orbit. However, well-known
orbital resonances with the other Galilean satellites maintain
a 0.004 eccentricity in Io’s orbit. The equality of orbital and
spinning velocities is only true on average: in reality the
orbital angular velocity—hence the tidal bulge angular
velocity—varies periodically with the orbital radius around
this mean. Focusing on the first harmonic of this oscillation,
the orbital angular velocity in the absolute frame of reference
writes 1−� cos�t�, where ��0.008 is twice the eccentricity
of Io’s orbit and where time is made dimensionless using Io’s
�constant� spin velocity. As demonstrated by Kerswell and
Malkus,13 the fluid’s laminar response in Io’s core driven by
this tidally distorted mantle motion corresponds in the bulge
frame to the simple elliptical flow

Ub
B.F. = �− �1 + ��� cos�t�Y,�1 − ��� cos�t�X,0� , �A17�

which is an exact nonlinear solution to the incompressible
Navier–Stokes equations of motion for any finite viscosity in
the spheroid of equation X2 / �1+��+Y2 / �1−��+Z2=1. A
simple change of frame then gives the base flow in the ab-
solute frame of reference at first order in �

Ub = �− y + �� cos�t��sin�2t�x − cos�2t�y�,x − �� cos�t�

��cos�2t�x + sin�2t�y�,0� . �A18�

For a given initial position �R ,0�, streamlines are described
by

x�t� = R cos�t� +
��R

2
�1 − cos�2t�� , �A19�

y�t� = R sin�t� −
��R

2
sin�2t� , �A20�

�note that the results of the WKB theory do not depend on
the chosen initial position along a closed trajectory�. The
solution to the wave vector equation along this streamline
then writes

k�t� = k�sin�a�cos�t + �� + ��/2

��cos�2t − �� − cos����,sin�a�sin�t + ��

+ ��/2�sin�2t − �� + sin����,cos�a�� , �A21�

where k, a, and � are constant. At order zero in ��, the
system can be reduced to a single equation for uz

d2uz
0

dt2 + 4 cos2�a�uz
0 = 0, �A22�

whose solution writes

uz�t� = c1eift + c2e−ift, �A23�

where c1 ,c2 are constant and f is the frequency determined
as a function of the wave vector, i.e., f =2 cos�a�. At order 1
in ��, we allow a long term variation of the solution at order
zero, i.e.,

uz�t� = �c1eift + c2e−ift�e���t, �A24�

where � is the growth rate of the instability. The system then
reduces to the same type of equation as Eq. �A22�, with a
forcing term directly coming from the first order terms in the
base flow. According to Eq. �A18�, terms of type
cos�t�sin�2t� and cos�t�cos�2t� arise here, and the equation at
order 1 schematically reads

d2uz
1

dt2 + 4 cos2�a�uz
1 = F�eit/2,e−it/2,e3it/2,e−3it/2� . �A25�

Solvability conditions then imply



0

2�/f

F�eit/2,e−it/2,e3it/2,e−3it/2�eift = 0, �A26�



0

−2�/f

F�eit/2,e−it/2,e3it/2,e−3it/2�e−ift = 0, �A27�

which validate the whole asymptotic approach by ensuring
that forcing terms are not secular. This system with unknown
c1 ,c2 admits a non trivial solution if and only if f =1 /2 or
f =3 /2, in which case the growth rate � is determined by the
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nullity of the determinant. It is then maximized over all val-
ues of wave vector phase �. The maximum is obtained for
f =1 /2 and �=� /4 and writes

� =
17

64
�����2 −

576

289

�2Rm
2k4

�Rm
2 + 4k4�2 −

3

4

k4�

Rm
2 + 4k4 .

�A28�

Note that the resonance condition f =1 /2 corresponds to the
resonance condition for the closely related precession insta-
bility, where the spin-over mode is also known to be
excited.11 This validates the evaluation of the spin-over in-
duction performed at the end of Sec. V.
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