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In this paper, we present new theoretical and experimental results on the elliptical
instability in a liquid metal contained in a rotating deformable cylinder in the presence
of an imposed magnetic field. The imposed field, which is aligned with the rotating
axis, has a double interest. On the one hand, it permits an analysis of the inertial
waves excited by the elliptical instability by measuring their induced magnetic fields.
On the other hand, it permits the control of the instability by acting on the Joule
damping. In this paper, firstly an analytical calculation of the magnetic field induced
by the flow and its associated Joule damping is presented. Also, the linear and weakly
nonlinear theories of the elliptical instability are extended to include magnetic field
effects. Then, the description of the experiments starts by the presentation of the effect
of the imposed magnetic field strength. Close to the instability threshold, both super-
and subcritical bifurcations are identified. When the imposed field is decreased, we
observe a transition towards complex nonlinear evolutions that we describe with the
help of two-dimensional phase diagrams. In a second set of experiments, we vary the
eccentricity of the elliptic deformation over a large range in order to demonstrate that
far from the instability threshold, the mean inertial wave amplitude is uncorrelated to
the eccentricity. We show that, for a given eccentricity, this mean amplitude decreases
when the rotation rate increases. In a last series of experiments, we focus on the
description of the nonlinear evolution of an oscillatory eigenmode which is different
from the principal stationary mode.

Key words: magnetic fluids, vortex instability

1. Introduction
The instability of flows with elliptic streamlines, named the elliptical instability, is

recognized as a generic mechanism for the generation of small-scale turbulence in
vortex systems (see for example the review of Kerswell 2002). The linear instability
mechanism is understood as a parametric resonance of pairs of inertial waves. For
small eccentricities, asymptotic theory leads to linear growth rate formulas, which are
now available for many different elliptic vortices, in the presence of imposed magnetic
fields (Kerswell 1993; Lebovitz & Zweibel 2004; Mizerski & Bayer 2009), density
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stratification (Miyazaki 1993) or thermal gradients (Le Bars & Le Dizès 2006). These
theoretical results have been confirmed by experimental studies in both confined
(Malkus 1989) and open flows (Leweke & Williamson 1998). Also, it has been shown
that this instability can be important in the geophysical context of tidally deformed
bodies (Kerswell 1994; Kerswell & Malkus 1998). Weakly nonlinear theories have
been made for the flow in a cylinder (Waleffe 1989; Racz & Scott 2008) and for open
flows (Sipp 2000), but very few numerical results have been able to confirm these
theories as a much richer dynamics is usually obtained (Mason & Kerswell 1999;
Schaeffer & Le Dizès 2010). In this paper, we use experiments to clarify some aspects
of the nonlinear transition process.

A nice experimental set-up was invented by Malkus (1989) to study the elliptical
instability. A rotating cylinder of liquid is elliptically deformed by a pair of opposed
rollers so that the elliptic deformation is externally controlled. Theoretical analysis
benefits from the relative simplicity of the expressions for the inertial waves in
cylindrical geometry (Kelvin 1880). Early numerical results are also available in
Mason & Kerswell (1999), but the most detailed information is in fact proposed by
experimentalists. In a smaller but similar set-up to that of Malkus, Eloy, Le Gal &
Le Dizès (2003) realized experimental observations that display quite good agreement
with a weakly nonlinear model that describes the saturation of the elliptical instability.
Further from threshold, the experiments revealed a violent secondary instability that
leads to growth–collapse–relaminarization cycles. Note that similar inertial wave
breakdowns were also observed in the case of precessing flows (Manasseh 1992)
or when inertial waves are driven through boundary surface oscillations (McEwan
1970). Whereas the linear mechanism of the elliptical instability is now well known
and confirmed, its complex nonlinear evolution still remains poorly understood.
The current idea is that secondary instabilities such as triad resonances feed on
the dominant inertial wave, bringing new frequencies into the flow and leading to a
transition to chaos through the Ruelle–Takens transition scenario (Kerswell 2002). Up
to now, most of the current data on the nonlinear evolution of the elliptical instability
were produced by Kalliroscope visualization, a technique which is unfortunately
very imprecise when small-scale structures are present in the flow. Some quantitative
particle image velocimetry measurements have been performed by Eloy et al. (2003),
but they have to cope with the complexity of the experimental set-up. Laser Doppler
velocimetry measurements are successful in revealing long-term dynamics (Lacaze
et al. 2006), but are often too noisy to describe rather complex dynamics in great
detail. Ultrasound Doppler velocimetry achieves good accuracy in other experiments
(Stefani et al. 2006; Schmitt et al. 2008), but achieving a contact between the probe
and the rapidly rotating flow is experimentally not a simple task, in particular in
small set-ups.

In this study, we use a new experimental set-up, named IMAGINE (an abbreviation
for ‘Instabilité MAgnéto INErtielle’ in French) which was especially designed to study
the nonlinear evolution of the elliptical instability. It is similar to the classical Malkus
set-up, but it uses magnetic fields to detect the liquid metal (galinstan) motions under
the application of an homogeneous magnetic field aligned along the rotation axis.
Thus the inertial waves that are excited by the elliptical instability are accompanied
by induced magnetic fields, which are detected outside the cylinder by high-sensitivity
Hall probes. When the imposed field is small, this detection results in a quantitative
indirect measure of the fluid motions inside the cylinder. When the field is large, Joule
dissipation becomes important and adds a supplementary damping to the inertial
waves. Note that magnetic field detection was already successfully used to observe
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inertial waves excited by differential rotation in a large spherical Couette flow set-up
(Kelley et al. 2007). Also note that as geostrophic flows do not induce magnetic
fields, this technique permits a focus on inertial waves only. In previous works, a
study of the elliptical instability has already been performed in spherical geometry,
under weak and strong imposed fields (Lacaze et al. 2006; Herreman, Le Bars & Le
Gal 2009). Time series of induced magnetic fields, have provided detailed information
about the nonlinear evolution of the principle stationary mode (the spinover mode)
that compares well with a low-dimensional theoretical model.

Here, we perform a similar study in cylindrical geometry. Our purpose is to increase
our understanding of the transition towards the complex nonlinear states that have
been studied in different previous works (Malkus 1989; Mason & Kerswell 1999; Eloy
et al. 2003). We will produce and analyse data in the form of induced magnetic field
time series, and we will show that Joule damping can be used as a way to control the
complexity of the nonlinear state.

The article is organized as follows. We first describe the experimental set-up in
§ 2. Section 3 is then devoted to the theoretical analysis. After properly defining the
problem, we calculate the magnetic fields induced by inertial waves and the way they
are damped by the imposed field. We then use these results to add the magnetic field
damping to the linear stability theory. We finally discuss the nonlinear evolution in a
qualitative way, and highlight the role of detuning for the criticality of the elliptical
instability bifurcation. The experimental results are presented in § 4. Section 4 is split
in four subsections. Sections 4.1–4.3 focus on the dominant stationary mode of the
elliptical instability and analyse the effects of varying magnetic field strength, varying
eccentricity and varying rotation rate. Section 4.4 considers the nonlinear evolution
of another elliptical instability mode. Some conclusions are finally drawn in § 5.

2. The experimental set-up ‘IMAGINE’
Figure 1 presents a photograph and a schematic representation of our experimental

set-up. It is a modified version of Malkus’ set-up (Malkus 1989; Eloy et al. 2003)
specifically adapted to magnetic-field-detection purposes. All moving components
other than the liquid metal are cast from insulating materials. The working fluid
is galinstan, a gallium–indium–tin eutectic which is liquid at room temperature. Its
physical properties are ρ = 6440 kgm−3 for the density, ν = 0.93 × 10−6 m2 s−1 for its
kinematic viscosity and σe = 3.41 ± 0.5 × 106 Sm−1 for its electrical conductivity (D.
Charalampous, E. Dubois & J. Chevalet, private communication, 2009). The vacuum
magnetic permeability is denoted µ0.

The fluid is contained in a deformable cylindrical container (see label ‘1’ in figure 1)
with an inner radius R = 25 ± 0.5 mm. The PVC tubes of Eloy et al. (2003) are used
as elastic but resistant envelopes, surrounding a soft but impermeable thin silicone
inner cylinder of thickness 2 mm. The purpose of this inner envelope is to ensure a
good sealing of the whole system. The cylinder is closed with plastic top and bottom
lids. The height H of the cylinder can be adjusted within the range [120, 160] mm.
The cylinder rotates at an angular velocity Ω between 0 and 5 Hz, guided in a set of
ceramic bearings. The elliptic deformation is imposed by two opposed teflon rollers
(see ‘2’ in figure 1) mounted also on ceramic bearings. The eccentricity ε of the elliptic
deformation can be varied during the experiment in the range [0, 0.3]. The cylinder
is mounted between two water-cooled Helmholtz coils (see ‘3’ in figure 1) that are
fixed to two parallel soft-iron plates (see ‘4’ in figure 1) of thickness 20 mm. The high
relative magnetic permeability (µFe/µ0 � 700) of these plates increases the intensity
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Figure 1. Photograph and schematic representation of the IMAGINE set-up. (1) Elliptically
deformed rotating cylinder full of galinstan liquid metal. (2) Opposed rollers for elliptic
deformation. (3) Helmholtz coils. (4) Iron plates. Two Hall probes b1 and b2 are placed in the
equatorial plane of the cylinder and measure radial field components along the directions C
and S, respectively, ±45◦ from the short axis of the elliptical cross-section.

and the homogeneity of the imposed field, and shelters the experiment from outside
magnetic field noise. The distance between horizontal endplates of the galinstan
cylinder and the iron plates is 20–50 mm depending on the length of the cylinder.
The 160 mm inner diameter coils are powered by a stabilized DC supply. We can
impose the field intensity B0 in the interval [0, 0.12] T. The FEMM-freeware package
for magnetostatics was used to study the field-homogeneity, which is optimized in
the central part of the set-up. The ensemble is fixed to a heavy granite table, under
which a 600-W AC motor is positioned to drive the rotation axis of the cylinder. The
rotation speed is digitally controlled with an accuracy better than 1 %.
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The theoretical analysis that will be presented in § 3, provides an estimate of the
typical amplitude b/B0 of the field induced by the inertial waves which is of order
O(10−4). Consequently, an efficient detection of such small fields imposes severe
constraints on the magnetic field probes which should not be perturbed by the much
larger field imposed along the axis. In this study, we use a set of three Hall-effect
probes with a maximum sensitivity of 300 µT/mV (FW-Bel-Sypris – Model 7030). A
first probe measures the imposed magnetic field B0 along the axis. Two other probes
are placed in the equatorial plane of the cylinder. The signal denoted b1 records the
radial field component along the direction (C) (see top view of the sketch in figure 1),
−45◦ away from the short axis of the elliptical cross-section in the rotation sense.
The second identical probe b2 measures the radial field component in the direction
(S) at +45◦. These directions correspond to the principal directions of the strain field
induced by the rollers, as explained in § 3. Both probes are about 1 ± 0.5 mm away
from the external boundary of the rotating cylinder. This distance does not vary
significantly for different eccentricities, mainly because the probes are in the ±45◦

directions where the cross-section is close to that of the undeformed cylinder. The
misalignment of the probes does not exceed 5◦ for each probe. The homogeneity of
the imposed field cannot be guaranteed up to the required O(10−4) precision levels.
As a result the radial probes in the equatorial plane see a small stationary field. This
constant signal is easily subtracted before each experiment, by changing the offset of
the probes. The remaining signal is then amplified by a factor 100–200, and low-pass
filtered with a cutoff frequency fc between 4 and 20 Hz, before being recorded by
the data-acquisition unit. Numerical filtering is then preferred to reveal the very slow
dynamics of the signals.

3. Theoretical analysis
Elliptical instability in the Malkus’ (1989) set-up has previously received much

attention, especially in Waleffe (1989) hereafter referred to as W89, Mason & Kerswell
referred to as MK99 and Eloy et al. (2003) referred to as E03. After defining
the problem and the notation, we calculate the magnetic field induced by inertial
waves and their magnetic damping. Then we use this information to extend the
linear instability theory and finally discuss some qualitative aspects of the nonlinear
evolution of the instability.

3.1. Base state and perturbation problem

The liquid metal is confined in an elliptically deformed cylinder. The elliptical sidewall
of this fluid domain can be parametrized as

x2

1 + ε
+

y2

1 − ε
= R2, z ∈ [0, H ], (3.1)

in Cartesian coordinates (x, y, z). The two horizontal top and bottom plates that close
the cylinder are placed at z = 0 and z = H . The eccentricity is positive 0 < ε < 1,
so that the x-axis is the long axis of the ellipse while the y-axis is its short axis (as
shown in figure 1). If we spin up a fluid inside this deformed cylinder, we can realize
a flow with elliptical streamlines of same eccentricity as the boundary:

U0 = Ω

[
−

√
1 + ε

1 − ε
y x̂ +

√
1 − ε

1 + ε
x ŷ

]
(3.2a)

= Ω [ (−y x̂ + x ŷ) − ε(y x̂ + x ŷ) + O(ε2)]. (3.2b)
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Elliptical instability in liquid metals 135

We denote x̂, ŷ, ẑ the Cartesian unit vectors. For small ε, we see from (3.2b) that
the elliptical flow is composed of a dominant solid body rotation and an ε times
smaller strain field that stretches the direction (S) at angles −π/4, 3π/4 away from
the x -axis and compresses the direction (C) at angles +π/4, −3π/4 from the x -axis
(see figure 1). The homogeneous magnetic field B0 = B0 ẑ imposed along the rotation
axis, does not interact with this two-dimensional elliptic flow. Thus U0 and B0 define
an exact magnetohydrodynamic (MHD) base state.

From previous studies on the elliptical instability, we know that an elliptical flow
is often unstable. Pairs of inertial waves can mutually amplify each other through a
vorticity-stretching mechanism (see W89). Formally, the instability can be modelled
as a parametric resonance of inertial waves. Here we want to know how the imposed
field modifies the elliptical instability, and how we can follow the instability through
the induced magnetic fields that are measured outside the cylinder.

To keep track of the elliptical instability in the analysis, we introduce perturbation
fields u and b that add onto the base state. In the following, we will use non-
dimensional variables. Space, time and velocity fields will be scaled in units

[r] = R, [t] = Ω−1, [u] = [U0] = ΩR. (3.3)

We denote by h = H/R the aspect ratio of the cylinder. The scale of the imposed
field is of course [B0] = B0, but for the magnetic field perturbations b, we will use
a different scale that involves the small magnetic Reynolds number (based on the
rotation)

[b] = Rem B0, with Rem = σe µ0ΩR2 � 1. (3.4)

This scale is well adapted to describe magnetic field perturbations in the quasi-static
or resistive limit of MHD. In this limit, magnetic field diffusion is so strong, that
magnetic field advection and Alfvén waves can be neglected. This requires that both
Rem and the Lundquist number S = σe

√
µ0B0R/

√
ρ are small compared to unity,

which is the case in our set-up.
To cope with the elliptical deformation of the boundaries, we follow previous works

on the elliptical instability (Bayly 1986; Vladimirov & Vostretsov 1986; W89; MK99)
by introducing the non-orthogonal elliptico-polar system (s, φ, z). These coordinates
are related to the Cartesian coordinate system as

x = s
√

1 + ε cos φ, y = s
√

1 − ε sinφ. (3.5)

The associated (non-normalized) vectors are denoted

s̃ =
√

1 + ε cosφ x̂ +
√

1 − ε sinφ ŷ, (3.6a)

φ̃ = −
√

1 + ε sin φ x̂ +
√

1 − ε cos φ ŷ. (3.6b)

The elliptico-polar coordinate system maps the elliptical boundary (3.1) on the
coordinate surface s = 1, and the base flow on the simple flow U0 = sφ̃, which
explains why they are so well-adapted. Perturbation fields will be expanded as

u = us s̃ + uφφ̃ + uz ẑ, (3.7)

and similarly for b. The non-orthogonal transform introduces additional terms in the
equations through the spatial derivatives. However, the relations ∂φ s̃ = φ̃ and ∂φφ̃ = −s̃
still hold as if (s, φ, z) were ordinary cylindrical coordinates, and as a consequence
the relation

∇ · u =

(
∂s +

1

s

)
us +

1

s
∂φ uφ + ∂zuz = 0, (3.8)
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and Gauss’ law keep their simple form. Moreover, the nonlinear term (u · ∇)u stays
in its same simple form as in cylindrical coordinates (see MK99). The linearized
perturbation equations for u, b, p inside the cylinder are at leading order

(∂t + ∂φ)u + 2 ẑ × u + ∇p = ε E ∇p + E �u + Λ ∂z b, (3.9a)

�b + ∂zu = 0, (3.9b)

∇ · u = ∇ · b = 0. (3.9c)

The operators ∇ and � are the ordinary cylindrical gradient and Laplacian operators.
The pressure p in (3.9a) is a modified pressure which includes a −Λbz term that
comes from the Lorentz force. The Ekman number E and Elsasser number Λ which
are defined by

E =
ν

ΩR2
� 1, Λ =

σeB
2
0

ρ Ω
, (3.10)

measure the importance of viscous effects and of the Lorentz force, respectively. The
leading order term that captures the effect of the elliptical deformation, involves only
the pressure variable

E∇p =
1

2

[
ei2φ

(
∂sp +

i

s
∂φp

)
(s̃ + iφ̃) + e−i2φ

(
∂sp − i

s
∂φp

)
(s̃ − iφ̃)

]
. (3.11)

Higher-order contributions such as elliptico-viscous terms O(εE), the advective terms
Rem(∂t + ∂φ)b, and the terms that capture elliptical deformation of the magnetic field
are all neglected.

With the magnetic field probes placed outside the cylinder, we need to solve b also
outside the cylinder. In the isolating external region, the magnetic field perturbation
is properly described by a magnetic potential Φ which satisfies

�Φ = 0, b = ∇Φ. (3.12)

Elliptical deformations of the external field do not add leading order contributions,
and are neglected in what follows.

The proper boundary conditions for this problem are no-slip boundary conditions
for u, and continuity of b on the boundary surface. Imposing this magnetic boundary
condition for a cylinder surrounded by air is a difficult task. To make the analysis
possible, we will suppose idealized ferromagnetic (µ → ∞) boundaries at z = 0 and h,
both inside and outside the fluid domain. The field b is then normal to these plates.
On the elliptical surface we still impose field continuity.

High-permeability plates are present in the experimental set-up, but they are not
in direct contact with the fluid. The magnetic fields that will be calculated are thus
not exactly identical to the real induced fields in the set-up. However, we find good
approximations of the fields at the position of the probes. Since the exterior field-
potential Φ satisfies a Laplacian problem (3.12), its value entirely depends on the
potential at the boundary. Then we can see this boundary as a superposition of point
sources at positions rs , each of them having a Green’s function contribution that
decays as |rs − r0|−1 to the potential Φ(r0). From this, we understand that probes
positioned close to the boundary surface, are mainly influenced by nearby boundary
points, whatever the precise nature of far away boundary conditions might be. We
expect larger errors localized close to corner regions of the cylinder.
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3.2. Inertial waves, induced fields and magnetic damping

Now we solve this problem in the limit of small ε, E and Λ using a perturbation
approach. This starts with the linearized unperturbed problem: in (3.9) we neglect all
terms on the right-hand side (ε, E, Λ → 0). We use the boundary conditions

uz = 0, at z = 0, h, us = 0, at s = 1, (3.13a)

ẑ × b = 0, at z = 0, h, bint = bext , at s = 1. (3.13b)

The no-slip condition needs to be relaxed for non-viscous flows. This problem is best
solved using (+, −, z) components instead of elliptico-polar components. They are
related to each other by

u± = (us ± iuφ)/
√

2, b± = (bs ± ibφ)/
√

2. (3.14)

Writing down equations for ± parts of the fields, one notices that both the Coriolis
term and the Laplacian operator are diagonal, which simplifies the calculations.

In the limit of a negligible magnetic field strength (Λ → 0), it is clear that the
solutions for the perturbation flows u are the purely hydrodynamic inertial waves,
also known as Kelvin waves (Kelvin 1880)⎡⎢⎣u±

uz

p

⎤⎥⎦ = A

⎡⎢⎣ (2 ∓ λ)/
√

2 Jm±1(ks) cos(lz)

kλ/l Jm(ks) sin(lz)

ikλ2/l2 Jm(ks) cos(lz)

⎤⎥⎦ei(mφ+ωt), (3.15)

where Jm stands for ordinary Bessel functions, A= |A|eiχ is an arbitrary complex
amplitude, k ∈ �, m ∈ � and l ∈ � are the radial, azimuthal and vertical wavenumbers,
respectively, and ω is the fixed frame frequency. The parameter λ=m+ω is the rotating
frame frequency in the range λ ∈ [−2, 2]. Only waves with particular wavenumbers
can satisfy the boundary condition (3.13a). This constraint is captured in the dispersion
relation

λ2 =
4 l2

k2 + l2
, (2 + λ)Jm−1(k) + (2 − λ)Jm+1(k) = 0, l = nπ/h, (3.16)

where n ∈ � is the number of half vertical wavelengths in the flow.
We now calculate the magnetic field induced by such Kelvin waves, as the solution

of the Poisson problem (3.9b). The field inside the cylinder is composed of a forced
part and a homogeneous part b = b(f ) + b(h). The forced field b(f ) is a particular
solution that we find here as[

b
(f )
±

b (f )
z

]
=

A l

k2 + l2

[
− (2 ∓ λ)/

√
2 Jm±1(ks) sin(lz)

kλ/l Jm(ks) cos(lz)

]
ei(mφ+ωt). (3.17)

Interestingly, this field immediately respects the ideal boundary condition (3.13b),
which explains why this idealized condition is so well-adapted. (Remark that this
would not be the case for perfectly conducting plates with σe → 0, which require the
field to be tangential to the surface.) We further note that the factor A l (k2+ l2)−1 fixes
the amplitude of the induced fields, and that this factor decays for modes with smaller
scales (larger k and l ). The homogeneous solution b(h) of the Laplacian problem is
necessary to link inner and outer fields at s = 1. We find[

b
(h)
±

b (h)
z

]
=

A l

k2 + l2

⎡⎣ d± Im±1(ls) sin(lz)

1√
2

(d+ + d−) Im(ls) cos(lz)

⎤⎦ei(mφ+ωt). (3.18)
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Here d± are two arbitrary constants that will be fixed by the boundary conditions, and
Im is a modified Bessel function of the first kind. Outside the cylinder, the magnetic
field and its potential are given by⎡⎢⎣ Φ

b±

bz

⎤⎥⎦ = c
A l

k2 + l2

⎡⎢⎢⎢⎣
1

l
Km(ls) sin(lz)

− 1√
2

Km±1(ls) sin(lz)

Km(ls) cos(lz)

⎤⎥⎥⎥⎦ei(mφ+ωt). (3.19)

Here c is a third arbitrary constant and Km is a modified Bessel function of the
second kind. The three coefficients c and d± are uniquely determined by expressing
the three relations that follow from the field continuity at s = 1.

Up to this point, we have neglected the Lorentz force. The Elsasser number is not
necessarily small in the experiment, Λ =O(1) and so we might wonder how this force
modifies the inertial waves. To find an answer to this question, we solve (3.9) still
in the limit (ε, E → 0), but keeping the Lorentz-force term. This requires (3.9a) and
(3.9b) to be solve simultaneously, which seems a priori to render the problem more
complex. Surprisingly, it turns out that this is not the case. We find that the Lorentz
force does not modify the spatial structure of the waves: both u and b are given by
the previous formulas (3.15) to (3.19). The waves are, however, no longer neutral: the
Lorentz force introduces a damping that modifies the time-dependence of the waves
into

eiω̃t , with ω̃ = ω + iΛ
l2

k2 + l2
= ω + iΛ

λ2

4
. (3.20)

Unlike in the ideal MHD limit (Kerswell 1993), the frequency of the waves is not
modified by the magnetic field in the resistive limit of MHD, Re(ω̃) = ω. The only
effect of the imposed field is a magnetic damping that increases linearly with the
Elsasser number Λ. We see that this damping only depends on the ratio k/l of the
waves, or using the dispersion relation (3.16), only on the square of the rotating
frame frequency λ. From now on, we will only be concerned with the case Λ = O(ε),
where the elliptical instability can be strong enough to overcome the magnetic field
damping.

In the previous calculations, we have neglected the viscous boundary layers of
thickness O(E1/2). These layers do not add significant contributions to the induced
field, whenever Λ � 1 which it is the case of concern. We finally note that geostrophic
modes without any vertical structure, ∂zu = 0, do not induce magnetic fields and are
thus not damped by the imposed field.

3.3. Linear theory of the elliptical instability

We now model the effect of elliptical, viscous and Lorentz forces in a perturbative
way. Problems (3.9)–(3.12) are written in the short form

LX = εDX + EVX + ΛMX . (3.21)

Here, X = [u, p, b, Φ]T is a vector gathering together all fields of the problem. The
operator L contains the left-hand side of (3.9), the incompressibility relation and the
external problem (3.12). Operators D, V and M capture the elliptical, viscous and
Lorentz force perturbations, respectively, that can be inferred from the right-hand
side of (3.9).

Section 2 solved the unperturbed problem LX = 0. We denote the different solutions
for inertial waves and induced fields as Qj (r) eiωj t , where Qj (r) gathers together the
spatial structure of the fields and ωj the frequencies. The elliptical term (3.11) couples
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two inertial waves with wavenumbers and frequency (kj , mj , lj , ωj ) resonantly when

m1 + 2 = m2, l1 = l2, ω1 = ω2, k1 � k2. (3.22)

From the dispersion relation of the inertial waves (3.16), it is clear that these
conditions can only be satisfied by very particular pairs of waves. The constraint
on the radial wavenumbers k1 � k2 is less strong, but selects the ‘principal’ modes that
will always have significantly larger growth rates. These modes also have rotating
frame frequencies −λ1 � λ2 � 1. Exact values for the wavenumbers and frequencies of
the principal modes are reported in E03. We follow their notation (m1, m2, i) to refer
to different principal modes where the index i is an integer measuring the number of
radial oscillations of the mode. In reality, we need to account for the possibility of
imperfect or detuned resonances, ω1 � ω2. This is precisely measured by the so-called
frequency detuning

δ = ε δ′ =
(ω1 − ω2)

2
, (3.23)

which should not be much larger than ε. This frequency detuning can be related to
a geometrical detuning coming from the aspect ratio of the cylinder. Perfect resonant
modes require a very particular vertical wavenumber l1 = l2 = l∗, so that they can only
exist in cylinders with aspect ratios h∗ = nπ/l∗. Detuned resonances exist within a
range �h/h∗ ∼ ε around h∗. We now build an asymptotic ansatz out of a pair of
almost resonant waves

X =
(
A1 Q1 + A2 Q2

)
eiω̄t+εσ ′ t + ε Y + · · · , (3.24)

with Aj ∈ � two unknown amplitudes, ω̄ = (ω1 + ω2)/2 is the mean frequency and
σ = ε σ ′ is the leading order growth rate. We further assume that viscous and magnetic
perturbations are O(ε), so that we can rescale Ekman number and Elsasser number
as E = ε E′, Λ = ε Λ′. Injecting the ansatz (3.24) in (3.21), we find at first order in ε

LY + ((σ ′ − iδ′)A1 Q1 + (σ ′ + iδ′)A2 Q2) eiω̄t

= (D + E′ V + Λ′ M)(A1 Q1 + A2 Q2) eiω̄t . (3.25)

Magnetic, viscous and elliptical terms introduce secular forcings of the linear problem
L Y . To cope with these terms, we need to set a solvability condition, that will lead
us to the growth rate and the relation between A1 and A2. For this, we introduce a
scalar product

〈 Q1| Q2〉 =

∫
Vi

(u∗
1 · u2 + p∗

1 p2 + b∗
i,1 · bi,2)dV +

∫
Ve

Φ∗
1 Φ2 dV, (3.26)

and search for the adjoint modes. The adjoint operator LA is found by partial
integration 〈

QA|L Q
〉

=
〈
LA QA| Q

〉
+ BT, (3.27)

and the adjoint modes solve LA QA = 0, and satisfy boundary conditions that make
the boundary terms (BT) in (3.27) vanish. We find here that

uA = u, bA = 0, ΦA = 0. (3.28)

The hydrodynamic field is self-adjoint as in the pure hydrodynamical case (W89,
MK99 and E03), and the magnetic field part of the adjoint modes is zero. Perturbation
couplings cannot arise through the elliptical deformation of the induction equation
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in the resistive limit of MHD which further assures that the elliptical terms in
the magnetic field equation of (3.9b) are not relevant. The solvability condition is
expressed by 〈 QA∗

j |(3.25)〉, for j = 1, 2 and uses the fact that 〈 QA∗
j |L Y〉 =0. This

leads to the algebraic system of equations(
σ − iδ + dM

1 + dV
1

)
A1 = ε E12 A2, (3.29a)(

σ + iδ + dM
2 + dV

2

)
A2 = ε E21 A1. (3.29b)

All matrix elements are specified in the appendices. The elliptic elements E12 and
E21 are identical to the non-viscous values found in W89 and within O(ε) of
those calculated in E03. (These authors modelled the elliptical deformation through
boundary condition modifications, instead of using elliptico-polar coordinates.) We
denote by dV

j the viscous damping terms which capture both surface O(E1/2) and

volume damping E(k2
j + l2j ) that arises through the operator V. The magnetic terms

dM
j are produced by the Lorentz force term M. We find

dM
j = Λ

λ2
j

4
, (3.30)

so that asymptotic modelling of the Lorentz force gives nothing but the exact answer
(3.20). For the principal modes with −λ1 � λ2 � 1, the magnetic damping of both
modes is identical dM

1 = dM
2 = Λ/4 at leading order. For these dominant modes, the

final growth rate formula becomes

σ = −dV
1 + dV

2

2
+

√
ε2 E12 E21 −

(
δ + i

dV
1 − dV

2

2

)2

− Λ

4
. (3.31)

Compared to the purely hydrodynamical case, the only supplementary effect of the
imposed magnetic field is a uniform magnetic field damping. A similar formula was
found using a local instability analysis and for the principal stationary mode (spinover
mode) in spheres (Thess & Zikanov 2007; Herreman, Le Bars & Le Gal 2009).

In figure 2, we have plotted the growth rate σ as a function of h for ε = 0.1
and E = 5 × 10−4, for zero imposed field Λ = 0. This figure illustrates that different
modes can be selected by tuning the aspect ratio h of the cylinders in the experiment,
within O(ε) ranges of perfectly resonant aspect ratios h∗. Note that small viscous
detuning (Im(dV

j ) �= 0), modifies the position of the peak from its non-viscous value.
For the parameters of figure 2, the principal stationary mode (−1, 1, 1) produces
the tallest resonance horns centred around the aspect ratios h∗ = nπ/1.58 � 2 n. The
other most important modes are (�), (0, 2, 1), centred around h∗ = nπ/2.33 � 1.35 n,
(�), (1, 3, 1) around h∗ = nπ/3.04 � n and (�), (−1, 1, 2) around h∗ = nπ/3.29 � 0.95 n.
In the presence of an imposed magnetic field, the damping translates the diagram
of figure 2 downwards over a distance Λ/4 ε. A critical Elsasser number Λc exists,
beyond which all mode becomes linearly stable.

In the experiments, we will study configurations with aspect ratios around h � 6,
with ε � 0.1 and E � 10−4. We will concentrate mainly on the principal stationary
resonance (−1, 1, 1), which is always the most unstable mode according to theory.
It consists of the resonance of the inertial wave (k, m, l, ω) = (2.73, 1, 1.58, 0) with
amplitude A= |A|eiχ and its complex conjugate. This mode is perfectly resonant in a
cylinder with aspect ratio h∗ = 5.97. The linear system (3.29) reduces to(

σ + iδ +
Λ

4
+ dV

)
A = ε E1−1 A∗. (3.32)
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Figure 2. Growth rate of elliptic instability modes (m,m + 2, x) in a cylinder as a function of
the aspect ratio h, for ε = 0.1, E = 5 × 10−4. In the presence of a magnetic field, Joule damping
uniformly lowers the growth rate of all elliptically unstable couplings by an amount of −Λ/4.

All matrix elements are explicitly given in the appendices. Note that E1−1 =
e−iπ/2|E1−1|. We deduce the following relations for σ and the phase χ of the unstable
mode

σ = −Re(dV ) +

√
ε2 |E1−1|2 − [ δ + Im (dV ) ]2 − Λ

4
, (3.33)

χ = − arctan

√
1 + κ

1 − κ
with κ =

δ + Im(dV )

ε|E1−1| . (3.34)

The growth rate is maximal, when the frequency detuning δtot = δ + Im(dV ) vanishes.
We find Im(dV ) = 0.393 E1/2 so that δ needs to be negative to balance the viscous
detuning: perfect resonance conditions for viscous flows require slightly shorter
cylinders than predicted by the non-viscous theory. The phase at perfect resonance is
always χ = −π/4 or χ = 3π/4. Note that the magnetic field does not modify χ .

Vorticity and induced magnetic field lines of the principal stationary mode at perfect
resonance χ = −π/4, are plotted in the mid-plane of the cylinder z =3 in figure 3,
using the results of § 2. As can be observed, the vorticity is indeed aligned with the
axis of maximum stretching, as suggested by the physical mechanism. The magnetic
field is dipolar with axis along the compressed direction. The symmetrical unstable
mode with phase χ =3π/4, has the same picture with inverted arrows.

We have used this information to plan the experimental set-up. Positioning the
radial Hall probes b1 and b2 as in figures 1 and 3, we can expect from linear theory,
that the radial probe b1 along the direction (C) measures a maximal signal strength,
whereas the probe b2 placed in direction (S) measures nothing when the system is at
perfect resonance. Detuned resonances will be detected by the fact that b2 is non-zero.
To be more precise, we can combine both signals b1 and b2 to find a measure related
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Figure 3. Vorticity (a) and induced magnetic field lines (b) in the equatorial plane z = h/2,
for the principal stationary mode (−1, 1, 1) in a cylinder of aspect ratio h = 6. The circles on
top and bottom indicate the location of the rollers. For clarity, the radial Hall probes b1 and
b2 have been added to the picture.

to the phase of the principal stationary mode

arctan(b2/b1) = χexp + π/4 − 1 − sgn(b1)

2
π. (3.35)

Growth rates can be measured on any of the signals b1 and b2 or (b2
1 + b2

2)
1/2. When

the rotation sense is modified in the experiment, stretched and compressed axes, and
therefore the signals at probes b1 and b2 are inverted.

3.4. Nonlinear evolution of the elliptical instability

Whereas the linear theory of the elliptical instability has been confirmed by many
independent studies, the nonlinear evolution of the instability still remains poorly
understood. Most of our understanding results from weakly nonlinear models, first
introduced in W89. MK99 then performed a detailed analysis for the saturated state
of the principal stationary mode (−1, 1, 1). The most recent results are from E03,
who gave amplitude equations for the principal stationary mode and the nonlinearly
excited geostrophic flow. This model can be easily extended to study how the magnetic
field damping modifies the weakly nonlinear equilibrium. In the limit Λ = O(ε), the
only term to be added to the model of E03 is the magnetic damping −Λ/4 of the
mode (−1, 1, 1). Geostrophic modes are not affected by supplementary damping or
forcing terms. Equation (4.4a) of E03 for the amplitude a of the mode (−1, 1, 1) is
then

∂ta = (εσi cos 2ϕ − E1/2µ0 − Λ/4)a, (3.36)

and the other equations for the phase ϕ of the mode (−1, 1, 1) and for the amplitudes
a

(i)
0 , i = 1, 2, 3, 4 of the geostrophic modes, are

∂tϕ = δ + Da2 − ε σi sin 2φ +

4∑
i=1

ξ (i)a
(i)
0 , (3.37a)

∂ta
(i)
0 = 2ελ

(i)
1 a2 cos 2ϕ + E1/2λ

(i)
2 a2 − E1/2µ

(i)
1 a

(i)
0 . (3.37b)
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Figure 4. Weakly nonlinear dynamics of the principal stationary mode under an imposed
field for different values of the Elsasser number Λ and for ε = 0.07, E = 10−4, h � 8. Temporal
evolution of the amplitude a. (a) Supercritical behaviour for positive frequency detuning δ.
(b) Subcritical behaviour for negative frequency detuning δ.

The coefficients of (3.36) and (3.37a, b) were calculated by E03 for cylinders with
h � 8, and they are given in the appendices. We kept these values for the slightly
shorter cylinders used here, as they are not expected to be dramatically changed, but
also because we do not aim at full quantitative comparisons. The notations of E03
are translated into the notations used here, by the relation |A| = ka for the principal
resonance magnitude (k = 2.73). The phases are related by χ = −ϕ − π/4.

We are also interested in the effect of the detuning δ. This is the only parameter
that varies in the weakly nonlinear model when the aspect ratio of the cylinder is
slightly different from the resonant value h∗. We always have δ > 0 in a larger cylinder
h > h∗, and inversely always δ < 0 in shorter cylinders h < h∗.

In figure 4, we show some numerically calculated time-series for the magnitude a

for two values of δ, corresponding to a slightly shorter cylinder (δ = −0.03) and a
slightly longer cylinder (δ =0.03). In the simulations, the initial value of the amplitude
is fixed to 10−4 for the six variables of the model. As in the non-magnetic case, the
system is always found to saturate. The stronger the field gets, the slower the initial
exponential growth, and around Λ = 0.052, the system is linearly stable, whatever the
sign of δ. Saturation levels of the modes do, however, strongly depend on the sign of δ.
For δ = 0.03, we see that a gradual increase of Λ decreases the saturation amplitudes
to zero. For δ = −0.03, this is not the case: around Λ � 0.051, the saturation level
abruptly jumps to zero.

A closer investigation shows that the sign of the frequency detuning δ controls
the criticality of the elliptical instability bifurcation. This is more clearly visible in
figure 5, which shows bifurcation diagrams for the saturated mode magnitude a as a
function of the Elsasser number Λ for different δ. In the very strongly detuned case
(δ = −0.045), we observe that a stable upper branch continues to exist, even though
the system is now linearly stable for all imposed magnetic field strengths Λ. Also note
that the subcritical branch always disappears for Λ greater than the critical Elsasser
number at perfect resonance (δ = 0).

The dependence of criticality on detuning is a well-known phenomenon for
parametric instabilities that saturate through nonlinear phase-shifting. It was already
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Figure 5. Theoretical bifurcation diagrams for the principal stationary mode amplitude a as
a function of Elsasser number Λ for different values of the frequency detuning δ. Supercritical
behaviour for positive detuning δ (a) and subcritical behaviour for negative δ (b). Stable (solid
line) and unstable (dashed line) branches are indicated. Here, E = 10−4, ε = 0.07.

observed by Malkus (1989) in his original set-up, but it has been never mentioned
again since then. Close to the linear instability threshold, small deviations �h from
the perfectly resonant aspect ratio h∗ can lead to important changes in the amplitude
of the excited flows.

In the experiments performed below, we use magnetic field damping in the same
way as in figure 4. Having fixed ε, E and h, we perform successive experiments for
varying magnetic field strength. Increasing the magnetic field strength, we approach
the threshold, so that we can study the criticality of the bifurcation, and how this
depends on small variations of the aspect ratio h. Note that experimental uncertainties
such as misalignment errors will result in imperfect bifurcations. In supercritical cases
h > h∗, we expect that the sharp threshold will be smoothed out by the noise. In
subcritical cases h < h∗, finite-amplitude noise should be able to trigger the instability
even when the system is linearly stable.

It is further interesting to see how the weakly nonlinear dynamics for the
mode (−1, 1, 1) would reflect in the recorded signals of the radial magnetic field
components b1 and b2. The induced fields b1 and b2 are calculated with (3.19) at
(s, φ, z) = (1, ±π/4, 3). Both quantities are plotted together in the phase diagrams of
figure 6, calculated with (3.36) and (3.37) and ε = 0.07, Λ =0.02, E =10−4 and for
different values of δ. The trajectories leave the origin along a phase-angle arctan(b2/b1)
that is mainly controlled by the frequency detuning δ, as described in (3.35). After
this, they all spiral anticlockwise towards stable fixed points. The phase angle at
saturation is independent of the detuning δ in the present weakly nonlinear model.

In the experiments of E03, saturated states are no longer observed beyond
E = 2.5 × 10−4 for ε =0.1 and h � 8. Saturated secondary instabilities, competing
primary instability modes, but also growth-collapse-relaminarization cycles have been
reported. However, quantitative measurements with Kalliroscope, are no longer simple
to perform nor easy to interpret in these regimes. One of the objectives of this study is
to use another diagnostic, e.g. the magnetic field induction, to monitor the dynamics
of the flow and to analyse the transition from weakly nonlinear regimes to more
complex states. This is the subject of § 4.
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Figure 6. Phase diagrams obtained from the induced magnetic fields b1 and b2 for different
values of the frequency detuning δ. Other parameters are fixed to ε = 0.07, E = 10−4, Λ= 0.02.

4. Experimental results
The experimental study mainly considers cylinders with an aspect ratio h close to

6. A typical experimental run in which only the imposed field is varied is presented
in § 4.1. The analysis of the bifurcation is considered in § 4.2. Section 4.3 focuses on
the effects of variable eccentricity and rotation rate on the dynamics of mean and
fluctuating quantities when the system is far from threshold. Section 4.4 considers the
evolution of another instability mode than the mode (−1, 1, 1). In all the experiments,
the magnetic field is rescaled with [b] = B0 Rem, so that the induced field reflects the
amplitude of the perturbation flow.

4.1. Example of a magnetically controlled transition

Here, we fix the aspect ratio of the cylinder equal to h = 148/25 = 5.92. This case is
close to the perfect non-viscous resonance condition for which h∗ =5.97. Rotation rate
and eccentricity are also fixed such that ε = 0.15±0.01, Rem = 0.0218, E =1.58 × 10−4.
We calculate the frequency detuning as δ = −0.007 and δtot = −0.002 taking into
account the viscous detuning. We expect to be close to perfect resonance conditions.
The strength of the imposed magnetic field is changed such that Λ varies in the range
[0.20, 11.23] × 10−2.

Figure 7 shows recorded time-series for strong to moderate imposed fields. As
can be seen, for the strongest field (Λ = 0.112), the instability is suppressed. Below
this value, the instability is present. The growth rate of the instability as well as
the saturation level increase when the imposed field, that is Λ, decreases. When Λ

becomes too small (here Λ = 0.044), the saturation no longer takes place and a regular
limit cycle appears.
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Figure 7. Experimental time series of b1 for moderate-to-high Elsasser numbers Λ. Here,
h = 148/25, E = 1.58 × 10−4, ε = 0.15 and δ = −0.007.

In figure 8, we show time series for both b1 and b2 together with their respective
phase portraits for various Λ. For strong imposed fields (Λ = 0.063), we see how
saturation takes place along a spiral in the (b1, b2) plane. Trajectories leave the origin
downwards, as it would be the case for a supercritical bifurcation. At moderately
imposed field (Λ = 0.028), the spiral structure in the (b1, b2) plane is still present, but
the system does not saturate anymore and evolves to a slowly modulated limit cycle
instead. A radical change is observed for weaker imposed fields (Λ = 0.016). After
the initial growth along a ‘fixed’ direction in the phase plane, a sudden change of
direction is observed leading to a change of sign of both magnetic components. This
probably corresponds to a magnetic record of the collapse of the flow as it was seen
by Eloy et al. (2003). After this reversal, the magnetic fields remain in a domain
close to a fixed point and exhibits irregular oscillations. For very small imposed
magnetic field (Λ = 0.002), the oscillations become sufficiently large to display several
reversals/collapses. In the figure, we can see that when these reversals occur, the
induced magnetic fields almost vanish, such that a linear growth phase can often be
observed again.

Some quantitative results can also be obtained from the previous experimental
signals. In figure 9(a), we show the growth rates measured for the initial growths
observed in the different time series. Error bars are calculated from the deviations
from each exponential fit. These deviations can become large, especially at low Λ. A
linear fit of the different growth rates reveals a magnetic decay equal to −0.33Λ. Note
that this value is higher than the theoretical value −Λ/4. The experimental growth
rates are also typically smaller than the theoretical ones by a factor 2. This is not an
effect of the magnetic field as it was also observed in a non-magnetic system by Eloy
et al. (2003). We think that it could be associated with the non-homogeneity of the
elliptic forcing which is applied only on two-thirds of the cylinder length(see Le Bars,
Le Dizès & Le Gal 2007). No such discrepancy was observed in a spherical container
(Herreman et al. 2009).
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Figure 8. Experimental time series of the induced magnetic fields b1 and b2 together with the
corresponding phase diagrams for different values of the Elsasser number Λ. Here, h = 148/25,
E = 1.58 × 10−4 and ε = 0.15.
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Figure 9. Characteristics of the principal stationary mode as a function of the Elsasser
number. (a) Linear growth rate σ . A linear fit for Λ > 0.02 is also drawn with a grey line.
(b) Linear phase angle arctan(b2/b1)/π. (c) Mean value (�) and standard deviations (�) of
(b2

1 + b2
2)

1/2. (d ) Mean phase angle in the nonlinear regime.

In figure 9(b), the phase angle arctan(b2/b1) of the initial exponential phase of
growth is plotted. We can see that the imposed magnetic field does not change the
phase of the linearly unstable coupling in agreement with the theory. In figure 9(c),
we show mean values (�) and standard deviations (�) of (b2

1 + b2
2)

1/2. This quantity
can be seen as a measure of the mode magnitude a. Both mean and fluctuating parts
of (b2

1 + b2
2)

1/2 gradually decrease as Λ increases. Close to the highest Λ, the mean
amplitude falls down along a pitchfork. The figure is again close to what we would
find for a supercritical bifurcation. Figure 9(d ) shows the mean phase angle (�) and
its standard deviations (bars) as a function of the Elsasser number Λ. As expected
for a supercritical case, the observed phase angle at saturation, aligns better with the
linearly predicted angle as the instability threshold is approached.

Other experiments have been performed and similar transitions in the time-series
have generally been observed as Λ is varied. However, in some runs we have observed
time series that exhibit intermittent growth–collapse cycles, which seem to be more
organized than usual and perhaps controlled by a chaotic low-dimensional attractor.
Figure 10 presents a typical example where such intermittent reversals can be observed.
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Figure 10. Observation of growth–decay cycles with chaotic reversals. Time series of b1 in a
cylinder of aspect ratio h = 147/25 for ε =0.156, E = 1.18 × 10−4 and Λ= 4.9 × 10−3.

4.2. Criticality and frequency detuning

In § 4.2, we focus further on the bifurcation and want to analyse the effect of the
frequency detuning on the nature of the bifurcation. The experiments of § 4.1 suggested
that elliptical instability in the cylinder h = 148/25 is supercritical. A further decrease
of the aspect ratio should bring the system closer to a perfect resonance condition
and to subcritical configurations.

We keep the same parameters ε =0.15 ± 0.01, E = 1.58 × 10−4 as before and set
the Elsasser number to Λ =0.0282. Experiments are performed with two shorter
cylinders: h = 145/25 where we find δ = −0.025 and δtot = −0.020 and h = 142/25,
with δ = −0.044 and δtot = −0.039. The dynamics of the induced magnetic fields for
the three different cylinders are compared in figure 11. We can see that the behaviour is
similar for the three cases: it forms a spiral which converges towards a small amplitude
limit cycle. However, the linear phase angle arctan(b2/b1) strongly varies from one
case to the other. It is negative for the largest cylinder h = 148/25, as expected for a
supercritical set-up, it is close to zero (b2 � 0) for h = 145/25, and becomes positive for
h = 142/25. This last case corresponds to a subcritical bifurcation. This is confirmed
experimentally as in fact we needed to add a finite-amplitude perturbation, a short
pulse of eccentricity (+0.03), to initiate the growth of the linearly stable mode.

In figure 12, we display other measures that show subcritical behaviour. The
cylinder has an aspect ratio h = 145/25 and ε =0.15 ± 0.1, E =1.18 × 10−4 and
different Elsasser numbers Λ in the range [0.0042, 0.1524] have been used. For these
values, we have δ = −0.025 and δtot = −0.021.

In figure 12, only the signal from probe b1 is plotted for seven values of Λ. The
gradual decrease of the exponential growth with increasing Λ is again apparent, but
we can also see that amplitudes at saturation make a sudden jump to a value close
to zero in a short interval [0.0951, 0.1054] of Λ. The time series for Λ = 0.0951, is
clearly composed of two different phases showing that the instability growth is no
longer purely exponential. For low Λ we found regular and irregular cycles as before,
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Figure 11. Phase portraits for the magnetic fields b1 and b2 for different aspect ratios
h =148/25, 145/25, 142/25, respectively, corresponding to frequency detunings δ = −0.007,
−0.025 and −0.044. All the other parameters are fixed: ε = 0.15, E = 1.58 × 10−4 and
Λ= 0.0239.
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Figure 12. Experimental time series of b1 for moderate-to-high Elsasser numbers Λ. Here,
h = 145/25, E = 1.18 × 10−4, ε = 0.15 and δ = −0.025
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Figure 13. Variation of the growth rate (a) and saturation amplitude (b) of b1 as a function of
the Elsasser number Λ for h = 145/25, E = 1.18 × 10−4 and ε = 0.156 as a function of Elsasser
number Λ. In (b), both the mean saturation amplitudes (�) and typical oscillation amplitudes
(bars) are indicated.

but no reversal. However, the polarity of the signal b1 can be reversed between
two different runs. The experiments have been repeated several times to test the
robustness of the phenomena. Both low- and high-amplitude states have been found
in the time series for Λ = 0.0516 and Λ = 0.0674. Such co-existing states are typical
of imperfect subcritical bifurcations. For smaller values of Λ (Λ < 0.0516), we always
observed high-amplitude solutions whereas the low-amplitude solutions were observed
for larger values of Λ (Λ > 0.0674).

Quantitative information on the dynamics for the case considered in figure 12 can
also be found in figure 13. Figure 13(a) shows linear growth rate measurements
(�). Triangles (�) are growth rates that were tentatively calculated for lower
branch solutions. The two squares at Λ = 0.0951 correspond to the two distinct, but
exponential parts of the growth. A linear fit that uses only the first six points reveals
a magnetic damping coefficient equal to −0.27Λ, which is close to the theoretical
value −Λ/4. However, growth rates do not go to zero in the same smooth way as
in the previous supercritical case. For a subcritical case in the presence of noise, this
is, however, not surprising. In figure 13(b), we show the mean (�) and the standard
deviations (bars) of the signals from the probe b1. Mean values do not vary much
at low Elsasser number on both branches, but the sudden jump to the lower branch
is clearly visible. Compared to the previous study for h = 148/25, we did not find a
smooth decrease of the saturation amplitudes here. High saturation amplitudes are
reached in the immediate vicinity of the linear instability threshold, as often expected
in subcritical bifurcations.

4.3. Effect of the eccentricity and of the Ekman number on the wave amplitude

We have seen in § 4.2 that large amplitudes can be reached even close to threshold. In
§ 4.3, we want to analyse the dependence of this amplitude with respect to ε and E.
In particular, we want to determine how saturation amplitudes scale on average with
ε as we increase the distance from threshold. For this purpose, we have performed
a series of experiments for different ε, in the same cylinder as before (h = 145/25),
for E = 1.58 × 10−4 and small value of the Elsasser number (Λ = 0.0057). The time
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Figure 14. (a) Linear growth rate σ and (b) mean saturation amplitudes (�) and
typical oscillation amplitudes (bars) as a function of the eccentricity ε. Here, h =145/25,
E =1.18 × 10−4 and Λ= 0.0057. In (a), the dashed line represents a linear fit of the first six
non-zero growth rates.

series obtained for this case (not shown here) are qualitatively similar to those shown
above. In figure 14(a), the growth rate measured during the linear growth phase for
different ε is plotted. We can see that the growth rate varies linearly with respect to
ε as expected from the linear theory. However, a fit of the data gives a slope equal
to 0.167 whereas the linear analysis predicts 0.531. This quantitative disagreement
was already mentioned above and is probably due to an overestimation of the elliptic
deformation in the experiment. In figure 14(b), the mean saturation amplitude of b1

together with the standard deviation is plotted. As observed, there is a jump to a large
value of the saturation amplitude as soon as the flow becomes unstable (ε � 0.1).
Moreover, this value does not seem to depend on ε. This suggests that the amplitude
of the excited flow could be unrelated to ε. It is interesting to remark that similar
behaviours were observed in the numerical simulations of Mason & Kerswell (2002) in
the precessing plane fluid layer: kinetic energy of the weakly and strongly precessing
branches is seemingly unrelated to the amplitude of the precessional perturbation in
regimes far from the linear instability threshold.

If ε would not be the scaling parameter, we may wonder what controls the
mean amplitudes of inertial waves far from threshold. To answer this question, we
have performed another series of experiments with fixed imposed magnetic field
B = 110 × 10−4 T, and fixed eccentricity ε = 0.15 ± 0.1 for varying rotation rates
Ω in the range [0.5, 2.5] × 2π rad s−1. For these rotation rates, the associated Ekman
number E and magnetic Reynolds number Rem vary in the intervals [0.95, 4.73] × 10−4

and [0.007, 0.036], respectively. The Elsasser number Λ is small and lies in the interval
[0.0041, 0.0201]. At low rotation rates, the time series are relatively smooth and close
to the modulated limit cycles we have already described in figure 8(b). As the rotation
rate increases, the signals become more irregular and start to display spikes and
reversals as it was already observed in figure 8(g,h). Each experimental run was
repeated several times. The imposed rotation direction was also reversed between
different runs. This change of rotation exchanges the stretched and compressed axes,
and therefore also the b1 and b2 signals. However, this exchange is not visible if we
use (b2

1 +b2
2)

1/2 to describe the instability amplitude. In figure 15, we display the mean
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Figure 15. (a) Mean value and (b) fluctuation to mean ratio of (b2
1 + b2

2)
1/2 for increased

rotation speed, measured by 1/E. Here, ε = 0.15 and h = 145/25. �, positive rotation speed;
�, negative rotation speed.

values of (b2
1 + b2

2)
1/2 (figure 15a) and the ratio of the standard deviation to the mean

value (figure 15b) as a function of 1/E. The direction of rotation of the set-up is also
indicated for each measure. As observed in this figure, there is a large variance for
the different experimental runs, but no clear difference between the two directions of
rotation. We observe a global tendency for the mean amplitudes to decrease as the
rotation speed increases. Standard deviations of the fluctuations increase gradually
to reach values which are comparable to the mean amplitudes. This means that the
growth collapse cycles reach larger and larger amplitudes. Therefore, even though the
system is further from the linear instability threshold, the elliptically excited inertial
wave cannot grow to the amplitude level that a weakly nonlinear theory would predict.
We believe that secondary instabilities (Kerswell 1999; Eloy et al. 2003; Lagrange
et al. 2008) come into play and diminish the amplitude of the stationary mode as
E decreases. This regime could also be accompanied by an increased of the level of
turbulence, but this was difficult to infer from our magnetic field measurements.

4.4. Oscillatory modes

In § 4.4, we consider the nonlinear dynamics of another mode than the mode (−1, 1, 1).
No data are currently reported in the literature for the nonlinear evolution of such
modes. By tuning the aspect ratio to h = 153/25 or even to higher values, the mode
(−1, 1, 1) loses its predominance, and the resonant coupling (1, 3, 1) sets in. This
elliptical instability mode is composed of Kelvin waves of azimuthal wavenumbers
m = 1 and m =3, and has a frequency close to twice the angular velocity of the
cylinder. In figures 16(a)–16(c), we show time series of b1. Eccentricity was fixed to
ε = 0.11, and the rotation speed is doubled between each figure. Two signals are
plotted in each figure corresponding to the instantaneous signal and its average value
over 4 rotation periods. As can be seen, the instantaneous signal varies on a short
time scale. The averaged signal reveals the long time-scale evolution. In figure 16(a)
corresponding to the lowest rotation speed, we see rapid oscillations with an amplitude
envelope that globally saturates. There is no clear evolution of the averaged signal.
Doubling the rotation speed, we find the cycles which are presented in figure 16(b).
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Figure 16. Time series (grey line) of b1 and signal averaged over four rotation periods (black
line) for h = 153/25 and ε = 0.156. (a) E = 4.73 × 10−4 and Λ= 4.03 × 10−2 (b) E = 2.36 × 10−4

and Λ= 2.38 × 10−2, (c) E = 1.18 × 10−4 and Λ= 1.01 × 10−2.

The oscillation no longer saturates, but grows and abruptly disappears. The averaged
signal still remains around zero. The frequency spectrum of this signal is plotted in
figure 17, and exhibits a dominant peak at ω � 2 in agreement with what we expect for
the resonance (1, 3, 1). Further doubling the rotation speed, we get figure 16(c). We
still observe the rapid oscillating behaviour, but the signal has now a non-zero mean
part that can acquire large amplitudes. Such slowly evolving signals are necessarily
produced by flows that are stationary in the fixed frame, and besides the stationary
modes (−1, 1, i), there are not many other candidates of inertial waves that could be
excited by elliptical instability. In fact, at h = 153/25, we are not far away from the
resonant peak of the principal mode (−1, 1, 1), and we think that this mode competes
with the oscillatory signals of the (1, 3, 1) mode. Note that in between different cycles,
the mean part of the signal can reverse in an intermittent way, just like in figure
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Figure 17. Frequency spectrum of the time series of figure 16(b). The frequency ω � 2
clearly corresponds to the dominant peak.

10. It is also interesting to see that the nonlinear evolution of the envelopes behaves
qualitatively similarly to what we observed for the principal stationary mode (see
figure 8).

5. Conclusion
This study demonstrates that a magnetic field can be used to measure and control a

liquid metal flow. We have presented our experimental set-up, called IMAGINE, and
we have developed theoretical arguments that allow the interpretation of magnetic
field measurements as flow data. Both long and short time-scale evolutions are
accessible, and high-quality data can be obtained.

Moreover, for the principal stationary mode (−1, 1, 1) of the elliptical instability,
we have shown that Joule damping can be used to control the transition to complex
nonlinear dynamics which is described for the first time through experimental phase-
portraits. In most of the experimental runs, the magnetically controlled transition
scenario, starts with saturated states at high imposed field. Decreasing the field,
limit cycles appear. These cycles are first regular and then irregular. Hydrodynamical
reversals have been observed when the flow amplitude passes in the vicinity of the
saddle point located at the origin.

We have also described the possibility of subcritical bifurcation for elliptical
instability in finite fluid domains. This kind of subcritical behaviour is generic of
parametric instabilities and is controlled by the sign of the frequency detuning.
Close to the linear instability threshold, small detuning differences can result in very
significant amplitude differences.

We have also observed that the eccentricity ε is not the appropriate quantity to
estimate flow amplitudes far from threshold, at least not in the parameter regimes
that were studied here. As a consequence, scaling arguments often used in geophysical
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situations where the tidally generated flow is estimated either as O(ε) when instability
is not considered or as O(ε1/2) in the presence of instability have to be applied with
caution. We have seen that O(1) flow can be generated by O(ε) elliptic deformation.

This work was funded by a PhD scholarship of the Ministère de la Recherche
Française, and by the French National Agency for Research (ANR) under grant
ANR-07BLAN-0182 (Project IMAGINE). The authors are grateful to H. Bouchiat
who kindly provided the Helmholtz coils.

Appendix A. Matrix elements for the linear theory
The elliptic matrix elements E12 and E21 are identical to the non-viscous values

found by Waleffe (1989), since inertial waves are unmodified. They can be written as
E12 = e12/n1 and E21 = e21/n2, with

e12 = +
i

2
(2 − λ1)

(
4 − λ2

2

)
I, (A 1)

e21 = − i

2
(2 + λ2)

(
4 − λ2

1

)
I, (A 2)

n1 =
2

k1

(2 + λ1)Jm(k1)Jm−1(k1) + 4
(
J 2

m(k1) − Jm+1(k1)Jm−1(k1)
)
, (A 3)

n2 =
2

k2

(2 + λ2)Jm+2(k2)Jm+1(k2) + 4
(
J 2

m+2(k2) − Jm+3(k2)Jm+1(k2)
)
, (A 4)

and

I =
1

k2
2 − k2

1

(k1Jm(k1)Jm+1(k2) − k2Jm+1(k1)Jm(k2)), k1 �= k2,

= 1
2
(Jm(k1)

2 − Jm+1(k1)Jm−1(k1)), k1 = k2.

⎫⎪⎬⎪⎭ (A 5)

The viscous corrections dV
j in (3.29) contain a surface contribution and the volume

damping due to the diffusive operator V. Again, these terms are not different from
previously derived expressions. Using Kudlick’s estimate for the surface damping
(Kudlick 1964), the viscous term is written down explicitly as

dV = E1/2 4 − λ2

4
√

2
(
m2 + l2 − mλ/2

)[
(1 + i)λ1/2(m2 + l2)

+
(1 + i)

h

(2 − λ)√
2 + λ

(
m2 + l2 − 2mλ

2 − λ

)
+

(1 − i)

h

(2 + λ)√
2 − λ

(
m2 + l2 − 2mλ

2 + λ

)]
+ E(k2 + l2). (A 6)

The principal stationary mode (−1, 1, 1) is perfectly resonant in a cylinder with
aspect ratio h∗ = 5.9694 with n= 3 vertical wavelengths in its vertical structure. It
is composed of a mode with wavenumbers (k, m, l, ω) = (2.7346, 1, 1.5788, 0) and its
complex conjugate. The elliptical matrix element is E1,−1 = −0.5312i. The viscous
damping dV = (0.8962 + 0.3928i) E1/2 + 9.9709 E.

Appendix B. Matrix elements for the weakly nonlinear model
The parameters of the nonlinear model (Eloy et al. 2003), used in (3.36) and (3.37)

are repeated here for practical reasons. The inviscid growth rate is σi = 0.5312. The
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j K (j ) ξ (j ) λ
(j )
1 λ

(j )
1

1 3.83 −0.223 −18.47 43.5
2 7.01 −0.153 −3.33 9.36
3 10.2 0.056 0.76 −2.64
4 13.3 −0.033 −0.33 1.45

Table 1. Coefficients of the weakly nonlinear model of Eloy et al. (2003), for the weakly
nonlinear evolution of the principal stationary mode (−1, 1, 1) in a cylinder with aspect ratio
h = 8. See also (3.36) and (3.37).

nonlinear coefficient is D = 2.015. The damping coefficients are µ0 = 0.801+9.97E1/2,
µ

(j )
1 = 0.125 + K (j ) E1/2. The parameters K (j ), ξ (j ), λ(j )

1 , λ(j )
1 are given in table 1, for

the first four geostrophic modes j = 1, . . . , 4. The fast decreasing behaviour of λj

1, λ
j

2

and ξ j justifies the use of no more than four geostrophic modes.
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