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Stokes drift dynamos
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Fluid particles can have a mean motion in time, even when the Eulerian mean
flow disappears everywhere in space. In the present article, we demonstrate that this
phenomenon, known as the Stokes drift, plays an essential role in the problem of
magnetic field generation by fluctuation flows (kinematic dynamo) at high Rm. At
leading order, the dynamo is generated by the Stokes drift that acts as if it were
a mean flow. This result is derived from a mean-field dynamo theory in terms of
time averages, which reveals how classical expressions for alpha and beta tensors
actually recombine into a single Stokes drift contribution. In a test case, we find
fluctuation flows that have a G. O. Roberts flow as Stokes drift and this allows
to confront our model to direct integration of the induction equation. We find an
excellent quantitative agreement between the prediction of our model and the results
of our simulations. We finally apply our Stokes drift model to prove that a broad
class of inertial waves in rapidly rotating flows cannot drive a dynamo.
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1. Introduction
Dynamo theory has been developed over the last century to understand the origin

of planetary and stellar magnetic fields. Some flows in electrically conducting fluid
are capable of generating and sustaining a magnetic field without any external
electromotive forces: we call these flows ‘dynamos’. In the last two decades, numerical
simulations have demonstrated that convectively driven turbulent flows are dynamos
in many geometries (Glatzmaier & Roberts 1995; Busse 2002; Christensen 2008).

Before such simulations were possible, most of our understanding came from
analytical calculations, such as those performed in the mean-field dynamo theory
(Moffatt 1978; Krause & Rädler 1980). The idea of mean-field dynamo theory is that
small-scale rapid magnetic fields fluctuations interact with velocity field fluctuations
to promote the growth of a large-scale mean magnetic field. This analysis leads to the
well-known alpha, beta or even higher order mean-field effects. For a recent review,
see Brandenburg (2009).

Mean-field dynamo theories have been successful to describe dynamos in the
diffusive (low-conductivity) limit. The best example of this success is the Karlsruhe
dynamo (Stieglitz & Muller 2001). In this experiment, the growing magnetic fields
have dominant large-scale structures which compare well with those calculated in
a mean-field dynamo theory (Rädler et al. 2002). Yet, in most stars or planets,
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magnetic field advection strongly dominates over diffusion (high-conductivity limit).
As large-scale magnetic fields are indeed observed in stellar or planetary magnetic
fields, mean-field dynamo theories (Braginsky 1964; Moffatt 1978; Krause & Rädler
1980) have been proposed to model dynamos in this regime. Nevertheless, the validity
of these formulae has always been under some scrutiny. Moreover, until a few years
ago there were no critical tests that confronted this formalism to direct integrations of
the induction equation. Recent years have witnessed such tests (Courvoisier, Hughes
& Tobias 2006; Schrinner et al. 2007; Sur, Brandenburg & Subramanian 2008; Rädler
& Brandenburg 2009) and each of them results in minor or even serious doubts about
the validity of the mean-field theory in the high-conductivity limit: its improvement
seems to be in order.

In our view, one basic feature of mean-field theory will always predestine its success:
the choice of the average. We feel that a suitable average should at least capture
the dominant part of the growing magnetic fields. When the chosen average is not
motivated by actual features of the growing dynamos, mean-field formulae do not
perform well (Courvoisier et al. 2006; Sur et al. 2008; Rädler & Brandenburg 2009).
On the contrary, when an average reflects a dominant feature of the mean field, the
mean-field formalism attains some success, e.g. axisymmetry worked quite well in
Schrinner et al. (2007). This can be explained by the fact that mean-field dynamo
calculations are rarely possible beyond the second order: few space scales next to
the ‘mean’ scale are involved in the captured mechanism and this will not always be
sufficient.

The problems related to unadapted spatial averages have motivated us to have a
look back into mean-field dynamo theory without the use of spatial averaging. In the
present article we reconsider magnetic-field generation by fluctuation flows with short
correlation times in the high-conductivity limit. We find that mean-field dynamos can
indeed be correctly captured in this limit if the ‘mean’ is defined as a time average
and not as a spatial average. Incidentally, we also find that this leads to an appealing
physical mechanism that is operational for a broad class of flows: at leading order,
dynamo action by rapid fluctuation flows is controlled by the associated Stokes drift
that acts on the mean field as if it were a mean flow. To the best of our knowledge,
the Stokes drift (Stokes 1847) has never been considered in the dynamo context and
we give here a brief feeling of how it comes into play. The Stokes drift captures
the leading-order Lagrangian mean flow, i.e. the mean particle displacement induced
by a fluctuation flow. In the zero-magnetic diffusivity limit, magnetic field lines are
rigidly attached to fluid particles (Moffatt 1978). As these particles move on average
through the Stokes drift, it is natural that time-averaged magnetic fields deform under
the action of this drift. We demonstrate this idea rigorously in the frozen flux limit
in § 2.1. Moreover, we also show how this leading-order role of the Stokes drift can
be ‘distilled’ from a time-averaged Eulerian mean-field dynamo theory in the high-
conductivity limit. This is demonstrated in §§ 2.2–2.3. We will explicitly show the link
between our idea and the alpha and beta tensors, which have a longer history in
mean-field dynamo theory (Moffatt 1978; Krause & Rädler 1980).

Serious testing is in order for any mean-field model that claims to capture dynamo
action and such test is performed in § 3. We find fluctuation flows that have a
G. O. Roberts flow (Roberts 1972) as Stokes drift. We compare our model to direct
integrations of the induction equation. The fact that we do find Roberts-like dynamos
and excellent quantitative agreement confirms the validity of our model.

We finally apply our model to the possible generation of magnetic field by inertial
wave flows in rapidly rotating flows. Such waves are geophysically relevant as they
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might be driven by precessional, librational or tidal deformations of celestial bodies
(Malkus 1968; Aldridge & Toomre 1969; Kerswell 2002). Precessional dynamos have
now been observed in several independent works (Tilgner 2005; Wu & Roberts 2008,
2009). Could inertial waves play a role in these dynamos? Up to now, this question
has only been studied by Moffatt (1975) using a spatially averaged mean-field theory.
Inertial waves actually ideally fit in our model. In § 4, we apply the Stokes drift model
to study whether simple inertial waves in infinite space, plane fluid layers, cylinders,
spheres and spheroids may drive kinematic dynamos. The final section concludes and
discusses some perspectives.

2. Theoretical analysis
We consider the problem of magnetic field generation by rapid fluctuation flows in
electrically conducting fluids. We note this flow U(x, t) and the magnetic diffusivity
of the fluid η. The problem is scaled in units

[U] = U, [x] = R, [t] = T , (2.1)

where U and R are typical velocity and space scales, respectively. The time scale T

is typically a period (for periodical flows) or a correlation time (for random flows).
By ‘fluctuation’ flow, we mean that the flow has a disappearing time average at any
place in space,

U(x, t) = 0, ∀x, ∀t. (2.2)

The explicit definitions of these time averages depend on the flow and will be specified
later. By ‘rapid’ we mean that the fluctuation flow varies on a time scale T which
is very short compared to the advective time scale R/U and the diffusive time scale
R2η,

T � R

U
� R2

η
. (2.3)

In terms of dimensionless numbers, the above constraints imply

S =
UT

R
� 1, Q =

ηT

R2
� 1, Rm =

UR

η
=

S

Q
� 1. (2.4)

In the case of random flows S is a Strouhal number. The hypothesis S � 1 is then
a short correlation time assumption. Rm is a magnetic Reynolds number. Only two
of these numbers are independent. We now consider the action of the flow on the
magnetic field b(x, t) by writing the following induction equation:

∂t b = S ∇ × (U × b) + Q �b, ∇ · b = 0, (2.5)

where we use units (2.1). It is unusual to write this equation with its explicit dependence
on two parameters rather than only Rm, but this is well funded for rapidly varying
flows.

One advantage of the use of this rapid time scale in the induction equation is that
(2.5) immediately displays a quite important feature of magnetic fields that may be
generated by such ‘rapid fluctuation flows’. It expresses clearly that magnetic fields
cannot vary strongly on time scales much faster than the turnover time R/U of the
flow, which is a well-known fact for even fast dynamos (Childress & Gilbert 1995).
In a more formal way, we can imagine to write out asymptotical expansions for the
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field b in terms of the small parameter S

b(x, t) = b(0)(x, t) + S b(1)(x, t) + O(S2). (2.6)

Injecting these expansions in the induction equation, we find at zeroth order that

∂t b
(0)(x, t) = 0 ⇒ b(0) = b(0)(x). (2.7)

The dominant O(1) part of the magnetic field may not vary on the short time scale
of the flow. Consequently, it may only be a ‘mean’ field (constant on the short time
scale). Time-dependent magnetic field ‘fluctuations’ can first appear at order O(S).
This implies that fluctuation dynamos, in the sense of magnetic fields that strongly
vary on the short time scale T , are excluded in the asymptotical limit (S � 1, Q � 1).

The previous argument justifies a mean-field theory based on time averages, but this
is however not transposable to an approach based on spatial averages. Nevertheless,
the mean-field dynamo theory for general averages is quite well-established (Moffatt
1978; Krause & Rädler 1980) and known as the high-conductivity limit short
correlation time approximation. As discussed in the Introduction, serious doubts
currently exist about the validity of these mean-field approaches (Courvoisier et al.
2006; Rädler & Brandenburg 2009). We therefore reconsider the problem of mean-
field dynamo action in the short correlation time limit using time averages only.

2.1. Stokes drift and frozen flux limit

It is instructive to consider the behaviour of time-averaged magnetic fields in the ideal
magnetohydrodynamical or frozen flux limit, where magnetic diffusion is neglected,

Q, Rm−1 → 0. (2.8)

The vocabulary ‘frozen flux’ finds its origin in the fact that magnetic field lines are
rigidly attached to fluid particles or ‘frozen’ in the fluid. This can be translated in terms
of the formal Cauchy solution that involves Lagrangian variables and coordinates.
To express this solution, we consider particle trajectories x(a, t) that solve

∂t x(a, t) = S U
(

x(a, t), t
)
, x(a, 0) = a. (2.9)

In integral form, we have

x(a, t) = a + S

∫ t

0

U(x(a, t ′), t ′) dt ′, (2.10)

where we use units (2.1). The Lagrangian velocity and magnetic fields are defined as

UL(a, t) = U
(

x(a, t), t
)
, bL(a, t) = b(x(a, t), t). (2.11)

If we now have some initial magnetic field b0(a), the Cauchy solution gives the
magnetic field at any time (see, for example, Molchanov, Ruzmaikin & Sokolov
(1985)) in terms of the trajectories only

bL(a, t) = b0(a) · ∇a x(a, t). (2.12)

Here, ∇a is the del-operator that acts on initial positions a. In practice, this formula
is rarely useful, simply because particle trajectories are quite hard to determine. Let
us look at the behaviour of time-averaged fields. We start from the previous formal
solution and differentiate both sides over time:

∂t b
L(a, t) = S b0(a) · ∇a UL(a, t). (2.13)
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This is just the induction equation (2.5) in Lagrangian form, with an initial condition
that has been specified and of course Q =0. We average this frozen flux solution over
time using an operation

f (s) =

∫ s+1

s

f (t) dt (2.14)

and suppose for now a periodical flow with unitary period, so that the flow is indeed
a fluctuation flow. Applying this average or more precisely ‘smoothing procedure’ on
(2.13), we get

∂t b
L(a, t) = S b0(a) · ∇a UL(a, t). (2.15)

The mean evolution of the magnetic field along Lagrangian particle trajectories is
entirely controlled by the Lagrangian mean flow. In the present case of fluctuation
flows, the Lagrangian mean flow is actually nothing else but the Stokes drift (Stokes
1847). We now obtain a practical leading-order formula for this drift. Whenever
S � 1, fluid particles cannot drift too far apart within one averaging time

||x(a, t) − x(a, s)|| � 1, ∀t ∈ [s, s + 1]. (2.16)

We can then use a Taylor expansion for the Lagrangian mean flow UL(a, t) around
a fixed position x(a, s) at all times t ∈ [s, s + 1]

U(x(a, t), t) = U(x(a, s), t)︸ ︷︷ ︸
=0

+ (x(a, t) − x(a, s)) · ∇xU(x(a, s), t)︸ ︷︷ ︸
Stokes drift

+ · · · (2.17)

The first term disappears because it is the Eulerian mean flow at fixed position x(a, s)
(see (2.2)). The second term is the Stokes drift. Inspecting the formula, we understand
that it is a net difference of velocity along particle trajectories that induces the mean
particle transport captured in the Stokes drift. We substitute

x(a, t) − x(a, s) = S

∫ t

s

U(x(a, t ′), t ′) dt ′ (2.18)

and use yet another Taylor expansion as in (2.17) to rewrite the Lagrangian flow in
this integrandum. This leads to the leading-order formula for the Lagrangian mean
flow or Stokes drift:

UL(a, t) = S V st (x(a, s), s) + O(S2). (2.19)

Here and further, we note V st as the rescaled Stokes drift given by the following
formula:

V st (x, s) =

(∫ t

s

U(x, t ′
)
dt ′

)
· ∇U(x, t). (2.20)

This formula has an Eulerian character, but in (2.19) we do find a Lagrangian variable.
Substituting this result back in the averaged evolution equation, we have

∂t b
L(a, s) = S2 b0(a) · ∇a

(
V L

st (a, s) + O(S)
)
. (2.21)

At leading order, the mean evolution of the magnetic field along Lagrangian particle
trajectories is controlled by the Stokes drift. We now go one step further by using

∂t b
L(a, t) = ∂s bL(a, t)(s), (2.22)

which is exact for the average (2.14). This allows to write an evolution equation for
the time ‘smoothed’ magnetic field. A similar Taylor expansion for the Lagrangian
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mean magnetic field around position x(a, s) leads to

b(x(a, t), t) = b(x(a, s), t) + (x(a, t) − x(a, s)) · ∇x b
(

x(a, s), t) + · · ·
= b(x(a, s), s) + O(S). (2.23)

We decide to keep the leading-order first term only that defines a smoothed magnetic
field b in Lagrangian form. Substituting this expression in the evolution equation, we
find

∂s( b(x(a, s), s) + O(S)) = S2 b0(a) · ∇a(V st

(
x(a, s), s) + O(S)). (2.24)

The S2-prefactor of the right-hand side can be absorbed in a new slow time scale
τ = S2 s. The previous equation then finally tells us that when magnetic diffusivity is
neglected: at leading order, the time-averaged magnetic field evolves as if it is frozen
into the Stokes drift V st associated with the fluctuation flow U . Dynamo action is
formally excluded in this frozen flux limit, but still this result is a first argument in
favour of our claim formulated in the Introduction.

2.2. Eulerian mean-field dynamo theory: simple wave-like flow

We now show that the leading-order role of Stokes drift can be ‘distilled’ from
a time-averaged Eulerian mean-field dynamo theory in the low diffusivity, second
order correlation approximation (SOCA) limit. This approach will also show
the explicit link between our idea and the alpha and beta tensors that have
a longer history in mean-field dynamo theory (Moffatt 1978; Krause & Rädler
1980). We first present Eulerian mean-field dynamo theory for the specific case
of a simple wave-like incompressible flow which is the easiest to model

U(x, t) = u(x) eit + c.c., ∇ · u = 0, (2.25)

where c.c. stands for complex conjugated. The 2π-periodic flow is written in non-
dimensional form T = ω−1, with ω being the dimensional rotation frequency and R

being a wavelength. In this example we can use a time average

f =
1

2π

∫ 2π

0

f dt. (2.26)

The time-averaged Eulerian flow disappears everywhere in space U(x, t)= 0 so that
is a fluctuation flow.

2.2.1. Classical mean-field theory

We propose magnetic field solutions of the form

b = [ b(x) + b′(x, t)] eσ t , (2.27)

where

||b|| = O(1), ||b′|| = O(S). (2.28)

Note this is consistent with (2.7). Formula (2.27) explicitly states that exponentially
growing solutions have both mean and fluctuating parts: this is motivated by the

linearity of the induction problem (2.5). We set b′ = 0 by definition. We now split (2.5)
in mean and fluctuating parts using the time-average equation (2.26),

σ b = S ∇ × (U × b′) + Q �b, (2.29a)

∂t b
′ + σ b′ = S ∇ × (U × b) + Q �b′ + S ∇ ×

[
U × b′ − (U × b′)

]
. (2.29b)
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If we start from a magnetic field with a dominant mean part b = O(1), the fluctuation
field will be forced by the term S ∇ × (U × b) = O(S), so that it indeed is of smaller
magnitude. If we then substitute this b′ back in the mean-field equation (2.29), the

term S ∇ × (U × b′) = O(S2). Balancing all terms in the mean-field equation, we have
a scaling argument for the growth rate and the parameter Q

σ = O(S2), Q = O(S2). (2.30)

Most often it will be necessary that Q � S2 to have growing magnetic fields. As a
consequence of these scalings, a lot of terms can be safely neglected at lowest order
in the fluctuation equation

σ b′ = O(S3), Q�b′ = O(S3), S ∇ × [U × b′ − (U × b′)] = O(S2). (2.31)

Since we do not suppose space scale separation between b′ and b, the diffusive
term Q�b′ may indeed be neglected (spatial averages have trouble in controlling the
magnitude of this term). The leading-order fluctuation problem reduces to

∂t b
′ = S ∇ × [(u eit + c.c.) × b] + O(S2). (2.32)

These reductions allow us to calculate the fluctuation field as a function of the general
mean field. We time-integrate equation (2.32) and get

b′ = b′(x, t0) + S[−i(b · ∇u − u · ∇ b) eit + c.c.] + O(S2). (2.33)

The second step is to substitute this expression back into the mean-field equation to
get a closed equation for the mean field alone. The mean electromotive force (emf) ζ

is here found as

ζ i = (S U × b′)i = αil bl + βilk ∂l bk, (2.34)

with

αil(x) = 2S2 Im (εijk u∗
j ∂l uk), (2.35a)

βilk(x) = −2S2 Im (εijk u∗
j ul). (2.35b)

Here Im stands for imaginary part and the partial derivative ∂l ≡ ∂/∂xl . The initial
field is time-independent and with U =0, it does not contribute to the mean emf.

Up to now, we followed a rather classic path for the derivation of the mean-field
tensors. Since we did not spatially average, the alpha and beta tensors are spatially
dependent second- and third-rank tensors. Then, what did we really gain? Indeed, to
solve the mean-field problem,

σ b = ∇ × ζ (x) + Q �b, (2.36)

is nearly as hard as to solve the initial dynamo problem (2.5). This is why spatial
averaging together with the use of symmetry arguments (Moffatt 1978; Krause &
Rädler 1980) has been so popular in mean-field dynamo theory: complicated alpha
and beta tensors reduce to a small number of mean-field coefficients. However, we
will now show that after some manipulation the mean-field problem (2.36) can take
an insightful form.

2.2.2. Exact reductions

We first write out the alpha tensor using (i) the fact that summed indices can be
renamed, (ii) the properties of the Levi-Civita tensor and (iii) the properties of the
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imaginary part operator:

αil = S2 Im (εijk u∗
j ∂l uk + εikj u∗

k ∂l uj )

= S2 Im (εijk u∗
j ∂l uk + εijk uk ∂l u

∗
j )

= S2∂l[Im (εijk u∗
j uk)]. (2.37)

This means that we may rewrite the alpha contribution to the mean emf as

α b = (b · ∇) ξ , ξ = S2 Im ( u∗ × u). (2.38)

In the β-tensor, many terms disappear immediately: (i) terms βilk are zero when
i = k due to the properties of the Levi-Civita tensor, (ii) terms βilk with all different
indices, i �= l �= k, are also zero since the imaginary part of a norm is always zero,
Im(| ul |2) = 0 for l = x, y, z. In the remaining terms, velocity field variables are always
combined as components of the field ξ . We noticed that they can further be reduced
in an interesting way. As an example, we show this in detail for the x -part of the emf
related to the β-term:

βxlk ∂l bk = −ξx ( ∂y by + ∂z bz) + ξy ∂x by + ξz ∂x bz

= ξx ∂x bx + ξy ∂x by + ξz ∂x bz

= ∂x (ξ · b) − (bx ∂x ξx + by ∂x ξy + bz ∂x ξz). (2.39)

We used Gauss’ law (∇ · b = 0) and elementary differentiation rules. Note that only
partial derivatives ∂x appear in the final formula. Similar simplifications occur in the
y and z components of the emf related to the β-term. We then get an expression as
(2.39) but with the ∂x replaced by ∂y or ∂z, respectively. Summing up both alpha and
beta parts and recombining the terms, we can actually rewrite the emf in a much
simpler form,

ζ =
(
∇ × ξ

)
× b + ∇

(
ξ · b

)
. (2.40)

The second term is a pure gradient that contributes to the mean emf, but not to the
mean-field generation: taking the curl of the emf in (2.36), the contribution of this
gradient disappears identically. Only the first term will survive. More precisely, we
find

∇ × ξ = 2 S2 Im (u · ∇u∗). (2.41)

This term acts on the mean magnetic field as if it were a mean flow. Let us now
calculate the Stokes drift associated with the wave-like flow under study. Using a
formula similar to (2.20) with an average (2.26), we get

V st =
1

2π

∫ 2π

0

[∫ t

0

(u eit + u∗ e−it ) dt ′
]

· ∇(u eit + u∗ e−it ) dt

=
1

2π

∫ 2π

0

(−i u ( eit − 1) + i u∗ (e−it − 1)) · ∇(u eit + u∗ e−it ) dt

= 2 Im (u · ∇u∗). (2.42)

We identify the first term as the Stokes drift contribution

∇ × ξ = S2 V st . (2.43)

Finally, by rescaling time

τ = S2 t, στ =
σ

S2
, (2.44)
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we get the mean-field ‘induction’ equation

στ b = ∇ × (V st × b) + R−1 �b, R =
S2

Q
=

U U
ω

η
. (2.45)

This result confirms our claim of § 2.1: at leading order, the action of wave-like
fluctuation flows on a mean magnetic field is controlled by the associated Stokes drift
which acts as a mean flow. Since we do not average over space, the Stokes drift V st

may indeed be a dynamo. Also note how the new magnetic Reynolds number R is
the single remaining parameter in the problem. This implies that for fixed flows but
varying S and Q, the rescaled growth rate is a function of R only: στ = f (R). Also
note how the relevant space scale in R is no longer R but the gyration radius U/ω

of fluid particles.

2.3. Eulerian mean-field dynamo theory: extensions

We extend the previous result to periodical and random incompressible flows.
Technical details on the simplifications in the random flow case are gathered in
Appendix A. All formulae can also be applied to compressible flows, as explained
in Appendix B. The effect of a small mean flow can also be modelled easily, see
Appendix C.

2.3.1. Periodical flows

The single wave case is immediately extended to general periodical flows

U(x, t) = S

J∑
j=1

(uj (x) eij t + c.c.). (2.46)

If each wave has its own typical magnitude and wavelength, it is necessary that
S = max(Sj ) � 1, with Sj = Uj/ωjRj to meet the conditions under which the model
can be applied (see (2.4)). Each frequency component adds a contribution weighted
by j−1 to a total Stokes drift:

V st = 2

J∑
j=1

Im(uj · ∇u∗
j )/j. (2.47)

As in the single wave case, the mean magnetic field satisfies an induction equation
(2.45) in which only the Stokes drift controls the leading-order magnetic field
evolution.

2.3.2. Random flows

We consider a random fluctuation flow that is a realisation of a stochastic process.
We assume an ergodic and stationary process: time averages are equivalent to
ensemble averages and are time-independent. The following correlation tensors and
spectra are supposed to be known:

Rij (x, ∆) = Ui(x, t + ∆) Uj (x, t) =

∫ +∞

−∞
Φij (x, ω) eiω∆ dω, (2.48a)

T k
ij (x, ∆) = Ui(x, t + ∆) ∂k Uj (x, t) =

∫ +∞

−∞
Ψ k

ij (x, ω) eiω∆ dω. (2.48b)

Here, we use the correlation time as our typical time scale T . Namely, both Rij and
T k

ij are quickly decaying functions with ∆.
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We first perform the same operations, as in the classical analysis for the SOCA
high-conductivity limit, for random flows with short correlation times (Krause &
Rädler 1980). The mean emf has the same structure as before (2.34), with

αil = S2

∫ +∞

0

εijk T l
jk(x, ∆) d∆, (2.49a)

βilk = −S2

∫ +∞

0

εijk Rjl(x, ∆) d∆. (2.49b)

See Appendix A for the details of the derivation. The S2-prefactor is absent in a
classical formula (Krause & Rädler 1980), but this is merely a consequence of our
use of the short correlation time as a time scale in the induction equation.

We transform these formulae (see Appendix A) into a simplified mean emf of the
form

ζ = (∇ × ξ ) × b + ∇(ξ · b) + αRb + βR∇b, (2.50)

with

ξi = S2

∫ +∞

0

Im

(
εikj Φjk(x, ω)

ω

)
dω (2.51)

and

αR
il = S2 π εijk Ψ l

jk(x, 0), (2.52a)

βR
ilk = −S2 π εijk Φjl(x, 0). (2.52b)

The mean magnetic field satisfies

στ b = ∇ × (V st × b) + ∇ × (α̃b + β̃ ∇b) + R−1 �b, (2.53)

with

(V st )i =

∫ +∞

0

2 Im

(
Ψ

j
ji(x, ω)

ω

)
dω, (2.54)

and α̃ = αR/S2 and β̃ = βR/S2. The Stokes drift acts as a mean flow on the mean
magnetic field, but supplementary terms related to the zero-frequency spectra do
arise. In the magnetic Reynolds number R = U 2T/η, the typical distance over which
particles move UT , appears as typical length scale. Since R is the only remaining
parameter, we also have στ = f (R) as before. Whenever the zero-frequency spectra
disappear,

Φjl(x, 0) = 0, Ψ l
jk(x, 0) = 0, ∀x ⇒ α̃ = 0, β̃ = 0, (2.55)

the evolution of the mean magnetic field is then uniquely controlled by the Stokes
drift. This case will be tested in what follows. If on the contrary the spectrum is real

Im(Φjk(x, ω)) = 0, ∀(x, ω) ⇒ ξ = 0, V st = 0, (2.56)

then only the zero-frequency spectra can affect the mean magnetic field. This case
will not be tested hereafter. Note that zero-frequency terms did not appear in the
Lagrangian argument of § 2.1. This part of the spectrum actually allows fluid particles
to spread out over unbounded distances (Moffatt 1978) so that hypothesis (2.16)
needs to be modified.
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2.4. Further discussion

2.4.1. Is the Stokes drift a ‘magnetic pumping term’?

Mean-field terms that act as flows on the mean magnetic field, so-called ‘magnetic
pumping’ terms, often arise in classical mean-field dynamo theory. They derive from
the antisymmetric part of the alpha tensor αa = ( α − αT )/2. Interestingly, we find (no
zero-frequency spectrum case) that

αa b =
S2

2
V st × b. (2.57)

Only half of the Stokes drift term finds its origin in the antisymmetric part of the
alpha tensor. The second half follows from the combination of the symmetric part of
the alpha tensor αs = ( α + αT )/2 and the beta terms:

αs b + β∇ b =
S2

2
V st × b + ∇(ξ · b). (2.58)

It is also here that the gradient term is produced. One may not interpret the
Stokes drift as a classical magnetic pumping term that derives from the alpha tensor
alone.

2.4.2. Scales and non-dimensional numbers

The result στ = f (R) that the rescaled rate growth is a function of R = S2/Q

only, for fixed flows but arbitrary S and Q, is a mere consequence of the used
approximations (short correlation time and low diffusivity limit). Still this is very
rarely spelled out by most of the mean models in this limit. For this reason, it is
instructive to show explicitly how this translates if other (more commonly used) scales
are used to scale time in the induction equation:

correlation time scale: [t] = T → σ = S2 f (R),

advective time scale: [t] =
R

U
→ σ ′ = Sf (R),

diffusive time scale: [t] =
R2

η
→ σ ′′ = Rf (R).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.59)

We also note that the magnetic Reynolds number R = S2/Q = S Rm can range in
large intervals, even when both S and Q are very small and Rm is very high. For
the consistency of the analysis (namely, for the ordering of the terms in (2.30)), it is
necessary that S2 >Q or R > 1 (alternatively, Rm >S−1).

2.4.3. Quick link with classical mean-field result

Through the analysis, we found alpha and beta tensors which are strictly the same
as those found by previous authors (Krause & Rädler 1980) modulo our use of the
rapid correlation time T time scale. Clearly, upon the same assumptions (isotropy
and large-scale average) we will find the same result, but where do these terms hide
in the present formalism? We notice that it is precisely the isotropic part (one third
part of the trace) of α̃ which links alpha to helicity:

αclass =
1

3
α̃ii =

1

3
π εijk Ψ i

jk(x, 0) = −1

3

∫ +∞

0

U(x, t + ∆) · (∇ × U(x, t)) d∆. (2.60)

Through supplementary averaging over space, we get the classical result which relates
the alpha effect to helicity. In a similar way one can isolate a local isotropic turbulent
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diffusivity π Φjj (x, 0)/3 from the tensor β̃ . The Stokes drift terms disappears upon
supplementary spatial 〈 · 〉 averaging as 〈∇ × ξ〉 = 0. In our model, it is exactly the α̃

and β̃ terms that contain the classical results of mean-field dynamo theory in the
high-conductivity limit short correlation time approximation.

2.4.4. Delta-correlated flows

The particular case of delta-correlated flows has attracted quite some attention in
dynamo theory (Moffatt 1978; Krause & Rädler 1980; Molchanov et al. 1985), as it
allows calculations of alpha and beta tensors. In that case, the correlation time scale
can no longer be used to non-dimensionalise the induction equation (T = 0) and the
infinite root mean square (r.m.s.) velocity precludes its use as a typical velocity scale
(U → ∞). However, we can realise a delta-correlated flow as a proper limit of random
flows with finite T and U .

As discussed in the previous section our result can be rearranged in diffusive
units [t] = R2/η to find the third equation of (2.59). In explicit form, we have
σ ′′ = (U 2T/η) f (U 2T/η). Provided that the delta-correlated flow appears as a limit
in which an effective diffusivity scale ηδ exists,

lim
U−1,T →0

U 2T = ηδ, (2.61)

we can apply our model. However, since delta-correlated flows have a real spectrum
Fω(δ(∆)) = 1, the Stokes drift terms will always vanish for them (see (2.54)). Only the

contributions of α̃ and β̃ are captured in delta-correlated models.

3. Test case: the G. O. Roberts Stokes drift dynamo
The previous sections have documented our claim about the role of the Stokes drift.

For a large variety of fluctuation flows, we can reduce the complexity of the kinematic
dynamo problem to that of solving another induction equation with the stationary
Stokes drift flow. In this section, we confront our model directly to the induction
equation. The idea of our test is to compare growth rates and spatial structures of
the magnetic fields found by solving:

(i) the original induction equation (2.5) with a fluctuation flow U;
(ii) the mean-field ‘induction equation’ (2.45) with associated Stokes drift V st .

Our theory predicts that both should yield results that are quantitatively similar up
to order O(S2). Ideally, we wish to test our results on a flow which has a Stokes drift
that acts as a dynamo. We will hence design our flow such that its associated Stokes
drift will be a well-studied dynamo flow.

3.1. Fluctuation flows with a G. O. Roberts-like Stokes drift

The fluctuation flow we use for our tests is defined as

U(x, y, t) = (∂yΛ x̂ − ∂xΛ ŷ + Λ ẑ) f (t) + c.c., (3.1)

with {
ρ2 = 1 + cos(x + y) + C, C � 0

χ = − cos(x − y)
, Λ = ρ(x, y) eiχ(x,y), (3.2)
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and

single wave: f (t) = eit , (3.3a)

periodical: f (t) =

50∑
j=1

Aj−p eiφj eij t , (3.3b)

random: f (t) =

∫ +∞

0

A
ωp

1 + ω2p
eiφ(ω) eiωt dω. (3.3c)

It will be studied in a periodical fluid domain x, y ∈ (0, 2π). The exponent p > 0 in
both random and periodical cases allows to modify the frequency content of f (t) in a
simple way. The phase noises φj and φ(ω) are uniformly distributed U (0, 2π) random
phases. The parameter A is a normalisation factor that sets the r.m.s. value of f (t) to

unity |f |2 = 1. All the previous fluctuation flows have their Stokes drift in the form
of a G. O. Roberts flow:

V st = F
(
∂yΓ x̂ − ∂xΓ ŷ + 2Γ ẑ

)
, (3.4)

with

Γ = (∂xρ
2)(∂yχ) − (∂yρ

2)(∂xχ) = − cos 2x + cos 2y (3.5)

and

single wave: F = 1, (3.6a)

periodical: F = A2

50∑
j=1

j−(1+2p) � 1, (3.6b)

random: F = A2

∫ +∞

0

1

ω

(
ωp

1 + ω2p

)2

dω. (3.6c)

Exactly two periodicity cells of the Roberts flow fit in the computational box x, y ∈
(0, 2π). The Stokes drift does not depend on the value of C nor the realization
of the phase noises φj and φ(ω). We always have α̃ = β̃ = 0 for positive p in the
case of random flows. With a Roberts-like Stokes drift, we really know what to
expect form our model: a well-known dynamo that operates in large spans of the
magnetic Reynolds number, here R, see, for example Roberts (1972), Soward (1987)
and Plunian and Rädler (2002) for published values for the growth rates and spatial
structures of the dynamo.

Let us have a look at some characteristics of the fluctuation flow before performing
the test. In figure 1, we show the spatial profile of the ‘stream function’ Λ(x, y) in the
plane using a grey-scale code. Notice how the flow is strongly modified by varying
from C = 0 to C = 5. Also note the significant increase in the magnitude of the flow
for C = 5.

In figure 2 we show the G. O. Roberts stream function Γ (x, y) together with
some Lagrangian particle paths projected in the x–y plane. These trajectories
were numerically integrated from (2.9) for the simple wave case with f (t) = eit

and S = 0.1. The particles combine quick oscillations with a mean drift that
closely follows the G. O. Roberts streamlines, as expected from the Stokes drift
formula.
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Figure 1. Visualisation of the real part of Λ(x, y) = ρ(x, y) eiχ (x,y) defined by (3.2) for
different values of the constant C. (a) C = 0, (b) C =5.
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Figure 2. The Lagrangian particle trajectories for wave-like flows (3.1)–(3.2), with f (t) = eit

follow the Roberts flow streamlines (3.5) on average. The star denotes the initial particle
position. S = 0.1, (a) C = 0, (b) C = 5.

Figure 3 displays a similar figure but using three different periodical signals, with
different exponents p = 1, 1/2, 1/3. With decreasing p, a particle drifts less far in the
same amount of time, but it always closely follows the G. O. Roberts streamlines. This
illustrates the formula for F : the magnitude of the Stokes drift decreases together
with the exponent p for similarly normalised flows.

3.2. Numerical method for the dynamo problem

We used a pseudo-spectral solver that time steps the kinematic dynamo problems
with (i) the fluctuation flow and (ii) the Stokes drift independently. For the G. O.
Roberts flow, we also programmed a purely spectral solver that allowed us to test
the pseudo-spectral code. Magnetic field solutions are decomposed on a Fourier
basis,

b =

N/2∑
kx=−N/2+1

N/2∑
ky=−N/2+1

(
b̃x(k) , b̃y(k) , b̃z(k)

)
ei(kxx+kyy) eikzz. (3.7)
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Figure 3. The Lagrangian particle trajectories over 200 periods of a general periodic flow
(3.3b) with different exponents p. Fluid particles drift along the Roberts flow streamlines over
distances that decrease together with the exponent p.

Since all flows are z-independent, modes with different vertical structure are
decoupled: kz is a vertical wavenumber that can be fixed a priori in both problems
(i) and (ii). We solve the x and y projections of the induction equation, in which
only bx and by appear. With these fields and Gauss’ law, we can reconstruct bz a
posteriori. We use a semi-implicit time-stepper, where the diffusive part is treated
using the backward Euler scheme. The interaction with the flow is modelled with
a second-order explicit Adams–Bashforth scheme. The code is dealiased using the
2/3-rule.

Each time, the most unstable mode that is generated from the initial state
(bx, by) = (1, −i) × 10−3N−2 is followed. Growth rates σ are derived from exponential
fits of the square root of the magnetic energy in the case (i) of fluctuation flows.
They are then rescaled on the slow τ -time scale, στ = σ/S2. In the second case (ii) we
solve the mean induction equation with the G. O. Roberts-like Stokes drift. These
theoretical growth rates are noted as σth = F σGO(RF ). The values σGO(R) correspond
to the case with F = 1 and are through some rescaling (of space), identical to the
growth rates reported in the literature (Roberts 1972; Soward 1987; Plunian & Rädler
2002).

Our theory requires small parameters S and Q and it is necessary to test the
resolution that is needed to obtain results that are precise enough. In a small
convergence test for the parameters S = 0.1, Q =10−3 and kz =1, we measured the
growth rates στ = 0.6307 for N =32, στ = 0.6614 for N = 64, στ =0.6576 for N =128
and στ =0.6572 for N = 256. The growth rate στ is converged up to the third digit
for N =128. This resolution will be sufficient in the following calculations.

3.3. Results

3.3.1. Single wave flows

We start the test with the single wave case and look for eigenmodes with vertical
wavenumber kz =1. The fluctuation flows have C =0 and 5. We first varied S ∈
[0.04, 0.14] and fixed Q =10−3.
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Figure 4. (a) Temporal growth of energy E =
∫∫

(b2
x + b2

y) dx dy for different values of S for

C = 0. (b) The fluctuation to mean ratio of E1/2 as a function of S for different C. Q =10−3,
kz = 1, f (t) = eit .

In figure 4(a) we plotted typical time series for the energy measure E =
∫∫

(b2
x +

b2
y) dx dy. An exponential growth is clearly established after some short transient.

We only see small fluctuations in the time series. Rapidly varying magnetic fields are
indeed much smaller in magnitude than the slowly varying part. This is more precisely
measured in figure 4(b). The part of the magnetic field that fluctuates is typically over
100 times lower than the stationary mean component, which validates the assumption
(2.28) of the mean-field modelling.

The growth rate σ is measured for all different S through linear fitting of
1/2 log E ∼ σ t . In figure 5(a), we compare the rescaled growth rate στ = σ/S2 to
the theoretical growth rates σth = σGO(R) (continuous line) as a function of the new
magnetic Reynolds number R = S2/Q. The agreement is very good, independent of
the choices of C = 0 or C = 5.

For larger S, the error increases, most probably because we are leaving the interval
S � 1. This is better specified in figure 5(b), which plots the absolute error on the
growth rate �σ = σ −S2σth. Apparently this error scales as �σ ∼ S6 for large S, which
suggests that our second-order mean-field model (in S) is correct up to sixth-order
corrections for the flow under study. The plot also reveals some error for the lower
S regime that was not visible in figure 5(a). These cases correspond to low R � 1,
outside the non-diffusive regime of our theory.

The comparison between theory and numerical results is further continued in
table 1, which shows some numerical values of the growth rates and the relative error
Er = |σth − στ |/σth. There is an excellent agreement everywhere.

Let us now look at the spatial structure of the eigenmodes. In figure 6, we
plotted the spatial structure of the mean magnetic energy |b|2 of the unstable mode
for the G. O. Roberts flow and from direct integrations with the wave-like flow
in the cases C = 0 and C =5. The fields of the Roberts dynamo are very similar to
those of the C = 0 case which confirms that the Stokes drift really plays a crucial
role.

The difference is more important for the case C = 5. Only half of the strong field
zones is present and field lines prefer to elongate along the (1, 1)-direction in the
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S R σth C στ Er (%) C στ Er (%)

0.04 1.6 0.162 0 0.168 3.7 5 0.174 7.4
0.05 2.5 0.459 – 0.460 0.2 – 0.464 1.1
0.06 3.6 0.603 – 0.603 0.0 – 0.605 0.3
0.07 4.9 0.667 – 0.668 0.2 – 0.670 0.4
0.08 6.4 0.685 – 0.689 0.6 – 0.694 1.3
0.09 8.1 0.676 – 0.682 0.9 – 0.693 2.5
0.10 10 0.648 – 0.658 1.5 – 0.679 4.8

Table 1. Growth rate measurements and comparison with theoretical estimates for f (t) = eit ,
with C = 0, 5 and Q = 10−3. The mean-field theory is often accurate up to a few per cent in
the relative measure ∆= |σth − στ |/σth.
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Figure 5. (a) Comparison of growth rate measures στ for different C = 0, 5 to theoretical
values as a function of magnetic Reynolds number R. (b) Absolute growth rate difference
�σ = σ − S2σth as a function of S. Q = 10−3, kz = 1, f (t) = eit .
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Figure 6. Comparison of mean magnetic energy |b|2 of the dynamos excited by (a) the
theoretical Roberts flow U, (b) the fluctuation flow U with C = 0, (c) the fluctuation flow U
with C = 5. Parameters are fixed as Q = 10−3, kz = 1, S = 0.1, R = 10 and f (t) = eit .

x–y plane. This is mainly due to the chosen normalisation. Since flow speeds are
significantly higher for the case C =5, than in the case C = 0 (see figure 1), we leave
the asymptotic regime of small S more early in the case C = 5 than with C = 0.
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Figure 7. (a) Comparison of realizations of multifrequency signals f (t) over one period
according to (3.3b), for different exponents p and for different phase-noise realizations φj . (b)

Zoom on temporal growth of energy E =
∫∫

(b2
x + b2

y) dx dy for exponent p =1/2 using signals
a and b for f (t).

3.3.2. Periodical flows

We now perform some tests with periodical signals f (t) using different exponents
p = 3, 2, 1, 1/2, 1/3. For each value of p, we compare two different signals, referred
to as a and b, that have been constructed using different realizations of the random
phase noise φj .

Figure 7(a) shows the effect of the exponent p =2, 1/2 on the signals Re(f ) used
in the calculations below. For high p, only low frequencies are relevant and the signal
is mostly sinusoidal. For low p, the signal requires a noisy character. Also note how
signals a and b are clearly different.

We now fix the parameters to S = 0.1, Q =10−3, kz = 1, C = 0 and solve the kinematic
dynamo problem (i) with the periodical fluctuation flow. An example of the growth
of the magnetic energy is shown in figure 7(b). Within one period, fluctuations clearly
depend on the precise realization of the function f (t), but the mean growth over
longer times is clearly independent of the realization of the phase noise, as predicted
by the theory.

The growth rates are measured as before. In table 2, we compare the rescaled
growth rates στ to the theoretical growth rates σth = F σGO(RF ). Here σGO(R). The
relative error ∆ does not exceed a few per cent so that we can say that there is an
excellent agreement.

3.3.3. Random fluctuation flows

We now test random functions f (t). Let us first add some practical notes about
the procedure that was used to construct such signals. Given the time step of the
kinematic dynamo problem and the total integration period, we find the total number
of time steps. This also defines the total number of random phases φ(ω) ∈ U (0, 2π).
The phase factors exp(iφ(ω)) are then multiplied with the specified spectrum and
the signal f (t) is finally obtained by an inverse Fourier transform. We study spectra
with exponents p = 3, 2, 1, 1/2, 1/3 and for each value of p, we compare two different
realisations referred to as a and b.
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Periodic p F σth στ Er (%)

a 3 0.991 0.644 0.653 1.5
b – – – 0.653 1.5
a 2 0.958 0.627 0.636 1.4
b – – – 0.636 1.4
a 1 0.740 0.504 0.507 0.5
b – – – 0.506 0.3
a 1/2 0.361 0.218 0.218 0.0
b – – – 0.217 0.5
a 1/3 0.233 0.098 0.100 1.9
b – – – 0.100 1.9

Random p F σth στ Er (%)

a 3 0.954 0.626 0.641 2.4
b – – – 0.649 3.7
a 2 0.900 0.598 0.600 0.3
b – – – 0.583 2.5
a 1 0.653 0.447 0.428 4.3
b – – – 0.439 1.8
a 1/2 0.326 0.186 0.183 1.6
b – – – 0.197 5.9
a 1/3 0.234 0.099 0.102 3.0
b – – – 0.093 6.1

Table 2. Growth rate measurements and comparison with theoretical estimates for different
periodic and random realizations of f (t). Relative errors Er = |στ − σth|/σth always stay small.
Different realizations of the signals a and b find very similar growth rates.
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Figure 8. Characteristics of the random signals f (t). (a) The power spectra are broadband
and peak at ω = 1. (b) The resulting signal is correlated over short times, illustrated here by
the real part of auto-correlation function Re[f ∗(t) f (t − ∆)].

In figure 8 we plot some features of the signals f (t) for various exponents
p = 2, 1, 1/2. Figure 8(a) shows the power spectra related to f (t) for different p,
clearly broadband for small p, but always peaked around ω = 1 by construction. In
figure 8(b), we show the real part of the auto-correlation function Re[f ∗(t) f (t − ∆)].
The signal is auto-correlated over short times, often smaller than the period 2π of the
dominant wave in the spectrum.

In figure 9, we show time series for the growth of the magnetic energy. There is a
clear signature of the slow exponential growth on the τ -time scale, that is independent
of the realizations a or b of the phase noises. On short time scales, the signal fluctuates
rather strongly compared to the previous case of periodical flows.

The slow growth rate στ can be measured as before, but this measure is now subject
to errors which were not present in the previous cases. Depending on the window over
which the fit is performed, the growth rate στ may vary over 5 %–10 %. This only

reflects the fact that one cannot define a finite T̃ that results in a perfect averaging
process (see (A 1)) for random flows. Here we fitted over almost the entire time span.
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Figure 9. Temporal growth of energy E =
∫∫

(b2
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y) dx dy using two different realizations
(a and b) of random signals f (t) with exponents p = 1/2 and 1/3.

In table 2 we compare στ to the theoretical estimates σth = F σGO(RF ) . There is a
very good agreement for all studied signals and the quantitative value of the growth
rate is mostly independent of the realization of the phase noise.

3.4. Conclusion of test

Using our fluctuation flows U , we indeed found G. O. Roberts-like dynamos. We
measured an excellent quantitative agreement between (i) the direct computations
and (ii) our Stokes drift model. This confirms the validity of our calculations and
statements. As long as we stay close to the asymptotic limit S � 1, Q � 1 and R > 1,
we have an operational mean-field dynamo theory based on the short correlation
time-approximation in the low diffusivity limit.

4. Application: simple inertial wave dynamos
Inertial waves arise in rapidly rotating flows due to the presence of the Coriolis

force. They are excited in precessionally driven flows (Tilgner 2005), tidal instabilities
(Kerswell 2002; Lacaze et al. 2006) and librational instabilities (Noir et al. 2009).
Since the pioneering work of Moffatt (1975) who studied mean-field generation by
random superpositions of inertial waves using a spatially averaged mean-field theory,
much has been speculated about magnetic field generation by such flows. Numerical
simulations of precessionally driven flows are starting to yield some answers (Tilgner
2005; Wu & Roberts 2008, 2009).

Inertial waves are always three-dimensional flows, so it is not excluded that even a
single wave might drive a dynamo. For the time being, no numerical study has tested
whether a single inertial wave can drive a kinematic dynamo. Wu & Roberts (2008)
do suggest in their article that a single resonant pair of inertial waves has difficulties
in driving a dynamo in a plane fluid layer.

Another typical feature of inertial waves is that they oscillate on very quick time
scales (rotation period). This makes the present Stokes drift model perfectly adapted
to study whether such inertial waves may drive a dynamo. We recall basic properties
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and give the necessary information on the spatial structures that will allow us to
apply the Stokes drift model.

4.1. Basic properties of inertial waves

We consider a fluid rotating around the vertical z-axis at uniform rotation speed Ω

and consider perturbation flows of this base state. We take R and U as typical space
scale (container size) and amplitude of these perturbations and ν as the kinematic
viscosity of the fluid, we require that Rossby and Ekman numbers stay sufficiently
small

Ro =
U

ΩR
� 1, E =

ν

ΩR2
� 1. (4.1)

In this double limit, we can find inertial waves of the form

U(x, t) = u(r) eiωt + c.c. (4.2)

as solutions of the linear non-viscous perturbation problem (rotating frame)

iωu + 2Ω ẑ × u + ∇p = 0, ∇ · u = 0. (4.3)

A general property of such waves (Greenspan 1968) is that frequencies can only range
in the interval ω ∈ [−2, 2]Ω . Slow waves with ω � Ω , will be mostly z-independent
through the Taylor-Proudmann theorem and asymptote towards quasi-geostrophic
Rossby waves. Whenever the flow is bounded, we need to solve (4.3) with a non-
viscous boundary condition

u · n = 0|δV (4.4)

on the boundary surface with normal n. Smooth analytical solutions to these equations
have only been found in particular fluid domains. We consider these cases and list
some information on the spatial structure of these solutions that will be necessary to
calculate the Stokes drift associated with these waves.

(a) Infinite space: in unbounded fluid domains, we can find plane wave solutions.
Without loss of generality, we can assume a single wave to be independent of the
y-coordinate. The spatial profiles that solve (4.3) are then defined as

u =
1

2
√

2

(
ω x̂ + 2 i ŷ − kω

l
ẑ
)

ei(kx+lz), (4.5)

with k and l being, respective, horizontal and vertical wavenumbers and ω = ± 2 l/√
k2 + l2. The numerical prefactor assures the normalisation |u|2 = 1 everywhere in

space.
(b) Plane fluid layer: the fluid is vertically constrained by a pair of impermeable

horizontal plates, separated by a distance H that serves as length scale, [x] = H . The
simplest solution that fits the boundary condition is a superposition of an upward-
and downward-propagating plane wave of the previous case with l = nπ, n ∈ �0.
More precisely, we have

u =
1

2

(
ω cos lz x̂ + 2 i cos lz ŷ − i

kω

l
sin lz ẑ

)
eikx, (4.6)

with wavenumbers and frequencies k, l, ω defined as in the previous case. This profile

is normalised so that
∫ 1

0
|u|2dz = 1.

(c) Cylinders, spheres and spheroids: when the waves are confined in cylindrical
and spherical domains, solutions are best expressed using cylindrical coordinates
(r, φ, z). For the purpose of the present study, we only need to remember that the
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waves have the structure

u = [U (r, z) r̂ + i V (r, z) φ̂ + W (r, z) ẑ] eimφ, (4.7)

with U, V, W being real functions and m ∈ � is the azimuthal wavenumber. The
confinement discretises the solutions and inertial wave dispersion relations are known
since a long time (Kelvin 1880; Bryan 1889) in cylinders and spheres. In spheroidal
geometry, one uses spheroidal coordinates (µ, φ, ν), but we still have

u = [U (µ, ν)µ̂ + i V (µ, ν)φ̂ + W (µ, ν)ν̂] eimφ. (4.8)

Explicit formulae and dispersion relations have been revealed by Zhang, Liao &
Earnshaw (2004) through a distinct amount of analytical work.

4.2. Simple inertial wave dynamos?

The kinematic dynamo problem is defined in (2.5) with dimensionless numbers S and
Q that may be written as

S =
U

ΩR

Ω

ω
= Ro

Ω

ω
, Q =

η

ΩR2

Ω

ω
= Em

Ω

ω
. (4.9)

Since both magnetic Rossby number Ro � 1 and the magnetic Ekman number Em � 1
are generally small in a geophysical context, we can satisfy the demands of the Stokes
drift model when

max(Ro, Em) � ω

Ω
, Rm =

Ro

Em

� 1. (4.10)

This is quite a weak constraint and many inertial wave flows ideally fit in our model.
We now calculate the Stokes drift V st associated with simple inertial wave flows in
the different fluid domains considered above:

(a) Infinite space: V st = 0.

(b) Plane fluid layer: V st = −
(

k λ2

2

)
cos (2lz) x̂.

(c) Cylinders and spheres: V st = −2[ ∂z (V W ) − ∂r (UW )]φ̂.

In spheroidal geometry we replace r, z by µ, ν in the last formula. The Stokes drift
is absent, a one-dimensional flow or a pure circulation. If we now use these Stokes
drifts in the mean-field induction equation (2.45), we find that dynamo is excluded by
familiar antidynamo theorems (Bullard & Gellman 1954; Backus 1958) or (Moffatt
1978, § 6.7). Our model predicts that simple inertial waves cannot drive dynamos at
leading-order.

5. Conclusion
In the present paper, we demonstrated the prominent role of the Stokes drift in

dynamos driven by rapid fluctuation flows. The Stokes drift acts as a mean flow on
the mean magnetic field.

We illustrated our idea in the frozen flux limit through a Lagrangian approach.
We then derived an Eulerian mean-field dynamo theory which confirmed our findings
and extended it to the low diffusivity regime. In particular, we showed how the effect
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of Stokes drift can be deduced from the classical alpha and beta tensors in the SOCA
low diffusivity limit for flows with short correlation times.

We tested our result on a series of well-chosen two-dimensional fluctuation flows
that have a G. O. Roberts-like Stokes drift. The fact that Roberts-like dynamos were
indeed excited and the excellent quantitative agreement between direct simulations
and our model confirmed the validity of our ideas.

We finally applied our model to the question of whether single inertial waves can
drive a dynamo. We computed the Stokes drift associated with these flows in the
various fluid domains for which analytical profiles for the waves were available. We
found that within the quite broad domain of application of our theory (4.10), these
flows can never act as a dynamo at leading order.

It will be interesting to apply the present formalism to other types of flows in
the geo-dynamo context. For example, can the Stokes drift associated with thermal
Rossby waves drive a planetary-like dynamo?

We thank CNES for supporting this work through a postdoctoral research grant.
We thank H. Latter, M. Schrinner, F. Petrelis and S. Fauve for interesting discussions
about this work. We thank the three referees for their remarks which led us to
considerably improve the structure, scope and readability of the paper.

Appendix A. Mean-field analysis for random flows: details
The mean-field calculation starts with deriving the classical expressions for alpha

and beta tensors. Using the ansatz (2.27) and an average

f = lim
T̃ →+∞

1

T̃

∫ T̃ /2

−T̃ /2

f (t ′) dt ′, (A 1)

we repeat the operations (2.29)–(2.32). The fluctuation field that solves (2.32) is now
found as

b′ = b′(x, t0) + S

∫ t

t0

∇ × [U(x, t ′) × b(x)] dt ′. (A 2)

This solution is used to calculate the mean emf ζ = SU × b′ that takes the form (2.34)
with (2.49) for alpha and beta tensors. To get to these expressions, one needs to
use initial times t0 = −∞, change the integration variable into t ′ = t − ∆ and use the
property of stationarity.

To find the simplifications, we first use (2.48) in (2.49) and split the spectra in real
and imaginary parts,

αil = S2

∫ +∞

−∞
dω

∫ +∞

0

εijk

[
Re

(
Ψ l

jk(x, ω)
)

+ i Im
(
Ψ l

jk(x, ω)
)]

eiω∆ d∆, (A 3)

and similarly for the beta tensor. We then perform the integration over ∆ for real
and imaginary parts separately, referring to them with a suffix (R) and (I).

Writing out the definition of the real part operator, we recognise the time integration
as the Fourier definition of a delta distribution Fω (1) = 2πδ(ω). Integration over ω

leads to the expressions for αR
il and βR

ilk presented in the text. Indeed, owing to the
reality of the flow

Φ∗
ij (x, ω) = Φij (x, −ω), Ψ k ∗

ij (x, ω) = Ψ k
ij (x, −ω) (A 4)

and both Φij (x, 0) and Ψ k
ij (x, 0) are real numbers.
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The imaginary part of alpha is simplified using the following property:

εijk

[
T l

jk(x, ∆) − T l
jk(x, −∆)

]
= εijk ∂l Rjk(x, ∆), (A 5)

which relies solely on stationarity. Equation (A 5) translates to the spectra as

εijk

[
Ψ l

jk(x, ω) − Ψ l
jk(x, −ω)

]
= 2i εijk Im

(
Ψ l

jk(x, ω)
)

= εijk ∂l Φij (x, ω). (A 6)

We recognise this expression in the integrandum of the αI
il part. The time integral over

∆ is the Fourier transform of the Heaviside function, Fω (1−H (∆)) = −1/i ω+π δ(ω).
With εijk Φjk(x, 0) = 0 for real flows, one then finds

αI
il = ∂l

[
S2

∫ +∞

0

Im

(
εikj Φjk(x, ω)

ω

)
dω

]
= ∂l ξi . (A 7)

The αI-term has the exact same structure as in the single wave case and defines the
ξ -field. The βI-term is calculated using the same Fourier transform

βI
ilk = S2

∫ +∞

0

2 Im

(
εijk Φjl(x, ω)

ω

)
dω. (A 8)

The components of this tensor with all different indices, i �= l �= k, disappear because
the imaginary part of the autocorrelation spectra identically disappears for real flows,

Im(Φii(x, ω)) = 0, i = 1, 2, 3. (A 9)

Exceptionally, the double index i does not represent a sum in this formula.
Components with i = k disappear because of the Levi-Civita tensor. The remaining
components take the same form as in the single wave case (see (2.39)) and αI and βI

terms similarly recombine to the Stokes drift. The total mean emf finally takes the
form (2.50) with supplementary terms from the zero-frequency spectra.

Appendix B. Compressible flows
It is possible to account for the effects of compressibility ∇ · U �= 0. We illustrate this

here in the simple wave case. The first time where we meet the effects of compressibility
is in the evaluation of b′

b′ = b′(x, t0) + S
[

− i
(
b · ∇u − u · ∇b − b (∇ · u)

)
eit + c.c.

]
. (B 1)

The fluctuation field receives a supplementary term that involves the divergence of
the spatial profiles u of the waves. If we calculate the emf ζ , we find alpha and beta
tensors as before (see (2.35)) and a supplementary contribution that has the structure
of a ‘pumping’ term

ζi = αil bl + βilk ∂l bk +
(
U × b

)
i
, (B 2)

with

U = −2 S2 Im
[
u∗(∇ · u)

]
. (B 3)

After the same simplifications as specified in the text, the emf takes the form

ζ =
(
∇ × ξ + U

)
× b + ∇

(
ξ · b

)
, (B 4)

with ξ still defined as before (see (2.38)). Again the only mean-field effect seems to
be that of a total flow that initially seems to be different from the Stokes drift in the
compressible case. However, looking in more detail we find

(∇ × ξ + U)i = 2 S2 Im
[
∂j ( u∗

i uj ) − u∗
i ∂j uj

]
= 2 Im

(
uj ∂j u∗

i

)
= (V st )i , (B 5)
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which is identical to the previous expression in the incompressible case. All final
formulae for the mean-field evolution (2.45) and (2.53) for incompressible flows can
also be used for compressible flows.

Appendix C. Small mean flow

Flows that have a small mean part U = U = S2Ũ = O(S2) can be included without
any problem in the model as such small mean flow cannot modify the fluctuation
field at order O(S). It however needs to be considered in the mean-field equation. We
replace (2.45) and (2.53) by

στ b = ∇ × [(Ũ + V st ) × b ] + R−1 �b + · · · (C 1)

to take this mean flow into account. It will be necessary to consider this small extension
whenever one wishes to discuss kinematic dynamo action by forced hydrodynamical
waves. Next to the Stokes drift, the ‘streaming’-flow induced by nonlinear interactions
of pairs of waves can have the same magnitude as the Stokes drift term O(S2). See,
for example, Falkovich (2009) for a recent discussion on this issue in the context of
mixing by gravity waves.
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Rädler, K.-H. & Brandenburg, A. 2009 Mean-field effects in the galloway-proctor flow. Mon. Not.
R. Astron. Soc. 393 (1), 113–125.
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