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We consider rotating flows in non-axisymmetric enclosures that are driven by libration,
i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity,
this model is relevant to various contexts, from industrial containers (with small
oscillations of the rotation rate) to fluid layers of terrestrial planets (with length-
of-day variations). Assuming a multipolar n-fold boundary deformation, we first
obtain the two-dimensional basic flow. We then perform a short-wavelength local
stability analysis of the basic flow, showing that an instability may occur in three
dimensions. We christen it the libration-driven multipolar instability (LDMI). The
growth rates of the LDMI are computed by a Floquet analysis in a systematic way,
and compared to analytical expressions obtained by perturbation methods. We then
focus on the simplest geometry allowing the LDMI, a librating deformed cylinder.
To take into account viscous and confinement effects, we perform a global stability
analysis, which shows that the LDMI results from a parametric resonance of inertial
modes. Performing numerical simulations of this librating cylinder, we confirm that the
basic flow is indeed established and report the first numerical evidence of the LDMI.
Numerical results, in excellent agreement with the stability results, are used to explore
the nonlinear regime of the instability (amplitude and viscous dissipation of the driven
flow). We finally provide an example of LDMI in a deformed spherical container to
show that the instability mechanism is generic. Our results show that the previously
studied libration-driven elliptical instability simply corresponds to the particular case
n = 2 of a wider class of instabilities. Summarizing, this work shows that any
oscillating non-axisymmetric container in rotation may excite intermittent, space-filling
LDMI flows, and this instability should thus be easy to observe experimentally.
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1. Introduction
It is basic planetary and astrophysical knowledge that celestial objects are rapidly

rotating and orbit around each other. This combination of rapid rotation and mutual
gravitational interaction forces these objects to synchronize, get phase-locked, precess,
librate and be tidally deformed. Since the pioneering work of Poincaré (1910), there
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has been interest in modelling how the liquid parts of such rotating objects can
respond to this precession, libration and tidal deformations. In this work, we combine
both effects of longitudinal libration and deformations by considering the ideal case of
a deformed rotating rigid container that undergoes a periodic modulation of its rotation
rate. The simplicity of this ideal model makes it relevant to various contexts, from
industrial rotating fluid containers to planetary fluid layers. To understand the specific
details of this study, we give below a short review on previous relevant studies on both
ingredients, i.e. librations and deformed containers.

1.1. Libration-driven flows
Librations can be decomposed in two classes: longitudinal and latitudinal libration. In
the first case, the rotation speed of the object oscillates around some mean value, but
the planet continues to rotate about the same axis. The case of latitudinal libration
is more complex, as it is the figure axes of the object that oscillate about some
mean direction. In most cases, persistent librations are due to gravitational coupling
between an astrophysical body and its main gravitational partner around which it
orbits (Comstock & Bills 2003), but they can also be due to exchange of angular
momentum between the solid mantle of a planet and its atmosphere, as on Titan. On
the Earth, the change in polar ice sheets, between ice and non-ice ages, modifies
the inertia tensor of the Earth, which leads to oscillations of the mantle rotation
rate (see e.g. Miyagoshi & Hamano (2013), where the consequences on the Earth’s
magnetic field are discussed). Note that these oscillations are called length-of-day
(LOD) variations, rather than libration, for non-synchronized planets like the Earth.
Finally, strong enough meteorite impacts may be responsible for the occurrence of
transient decaying libration movements (Wieczorek & Le Feuvre 2009; Le Bars et al.
2011). The analysis of the librations of a planet allows one to define constraints on
its internal structure (e.g. Margot et al. (2007) explain Mercury’s longitudinal libration
by the presence of a liquid core). The main problem of these models is that they
presuppose that the fluid rotates without being disturbed by the libration of the solid
shell, except in a thin viscous boundary layer, the Ekman layer, at the solid–liquid
interface. This is not a valid approximation in many cases, and the non-rigid response
of the fluid in the liquid layer of the planet has thus to be characterized.

Because of the astrophysical applications of libration-driven flows, a number of
studies have been devoted to librating axisymmetric containers in order to investigate
the role of the viscous coupling. It has been shown that longitudinal libration in
axisymmetric containers can drive inertial waves in the bulk of the fluid as well as
boundary-layer centrifugal instabilities in the form of Taylor–Görtler rolls (Aldridge
1967, 1975; Aldridge & Toomre 1969; Tilgner 1999; Noir et al. 2009; Calkins
et al. 2010; Sauret et al. 2012). In addition, laboratory and numerical studies have
corroborated the analytically predicted generation of a mainly retrograde axisymmetric
and stationary zonal flow in the bulk, based upon nonlinear interactions within the
Ekman boundary layers (Wang 1970; Busse 2010a,b; Calkins et al. 2010; Noir et al.
2010, 2012; Sauret et al. 2010, 2012; Sauret & Le Dizès 2013).

Although it is practicable to isolate the effect of viscous coupling, the spherical
approximation of the core–mantle or ice shell–subsurface ocean boundaries is not fully
accurate from a planetary point of view and is very restrictive from a fluid dynamics
standpoint. Indeed, owing to the rotation of the planet and the gravitational interactions
with companion bodies, the general shape of the core–mantle boundary can differ
significantly from that of a sphere. In this article, we precisely study the impact of the
combination of libration and boundary deformations.
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1.2. Elliptical and multipolar instabilities
The effect of boundary deformations on rotating flows has been carefully studied
in the case of tidal deformations. It is recognized that tides generate flows in the
mantle that may dissipate enough energy to lead to a synchronization. Since Malkus’
experiments (Malkus 1989), research into the impact of tides on liquid planetary
interiors has been ongoing and it has been quite actively studied in recent years.
Most previous studies consider the case of an elliptically deformed container, with a
constant, non-zero differential rotation between the fluid and the elliptical distortion.
In a geophysical context, this corresponds to a non-synchronized body with a constant
spin rate Ω0, subject to dynamical tides rotating at the constant orbital rotation rate
Ωorb (i.e. the axes of the core–mantle boundary (CMB) elliptical deformation rotates
at Ωorb). In this case, the elliptical streamlines of the two-dimensional (2D) basic flow
can be destabilized into a fully three-dimensional (3D) flow by an elliptical instability,
the so-called tidally driven elliptical instability (TDEI) (see e.g. Kerswell 2002).

Generally speaking, an elliptical instability can be seen as an inherent local
instability due to the non-zero strain of elliptical streamlines (Bayly 1986; Waleffe
1990), or as a parametric resonance between two free inertial waves (respectively,
modes) of a rotating unbounded (respectively, bounded) fluid and an elliptical strain,
which is not an inertial wave or mode (Moore & Saffman 1975; Tsai & Widnall
1976). Such a resonance mechanism, confirmed by numerous works in elliptically
deformed cylinders (e.g. Eloy, Le Gal & Le Dizès 2000, 2003; Eloy & Le Dizès
2001; Guimbard et al. 2010; Lavorel & Le Bars 2010) and ellipsoids (Lacaze, Le
Gal & Le Dizès 2004, 2005; Le Bars, Le Dizès & Le Gal 2007; Le Bars et al.
2010; Cébron et al. 2010a; Cébron, Le Bars & Meunier 2010b; Cébron, Maubert
& Le Bars 2010c), is not limited to elliptical deformation but also operates for a
general n-fold deformation (Le Dizès & Eloy 1999). The elliptical instability is thus a
particular case of a wider class of instability, the multipolar instability, which can also
be seen as an inherent local instability of the multipolar streamlines (Le Dizès & Eloy
1999; Le Dizès 2000), or as a parametric resonance between two free inertial waves
(respectively, modes) of the rotating unbounded (respectively, bounded) fluid and an
n-fold strain (Eloy & Le Dizès 2001; Eloy et al. 2003).

1.3. Libration-driven multipolar instabilities (LDMI)
According to Le Dizès (2000), who considers the case of a constant non-zero
differential rotation between the fluid and the multipolar distortion, the multipolar
instability vanishes in the case of synchronous rotation (Ω0 = Ωorb). However, in the
very particular case of elliptical deformation, Cébron et al. (2012a,c) have recently
numerically and experimentally confirmed that oscillations around this synchronous
state are sufficient to excite elliptical instability, the so-called libration-driven elliptical
instability (LDEI), as previously suggested by previous local stability studies of
unbounded inviscid flows (Kerswell & Malkus 1998; Herreman, Le Bars & Le Gal
2009; Cébron et al. 2012b). The results obtained by Wu & Roberts (2013) in
a spheroid are in agreement with these studies: by considering a particular class
of perturbations that satisfy the non-penetration boundary conditions and volume
conservation, they show that an instability is possible, and they confirm this result
with simulations. This could be of fundamental importance in planetary liquid cores
and subsurface oceans of synchronized bodies, where librations are generically present
(e.g. Le Bars et al. 2011; Noir et al. 2012).

In this work, we aim to show that this result holds for a general multipolar
deformation, which leads us to consider the LDEI as a particular case of a wider
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FIGURE 1. (Colour online) (a) Sketch of the studied set-up. A deformed cylinder is put on a
turntable that rotates at the dimensionless rotation speed γ (t)= 1− ε cosωt. The combination
of libration and deformation drives a 2D basic flow, which can be destabilized into 3D flows
through the LDMI. (b) Different frames of reference are used: the librating frame (x, y, θ ;
no superscript) attached to the turntable, the inertial (or laboratory) frame (xI, yI, θ I) and the
frame rotating at constant speed 1 (xR, yR, θR).

class of instabilities, the LDMI. To do so, this work is organized as follows. In
§ 2, we define the problem and the considered basic flow. Then, in § 3 we perform
various theoretical stability analyses of the basic flow: considering unbounded inviscid
flows, we first generalize previous local analysis to an arbitrary multipolar flow (§ 3.1),
and then we take into account viscosity and confinement effects in a cylinder by
developing the first eigenmodes global stability analysis of libration-driven flows
(§ 3.2). In § 4, we finally compare our theoretical predictions with 3D nonlinear
viscous simulations and explore the nonlinear regime using a home-made massively
parallel finite-volume code.

2. Problem definition
2.1. Dimensionless equations

In this article, we consider a fluid contained in a librating and deformed rigid cylinder
as sketched in figure 1(a). In dimensional form, the librating frame of reference
(x, y, z) rotates at variable speed Ω0γ (t)ez with respect to the inertial frame of
reference (superscript I; see figure 1b), where Ω0 is the time-averaged rotation rate.
Using 1/Ω0 as the time scale, we write the dimensionless rotation speed γ (t) as (see
figure 1)

γ (t)= d
dt
(t −1ϕ sinωt)= 1− ε cosωt, (2.1)

and call ω the libration frequency, 1ϕ the libration angle and ε = ω1ϕ the libration
amplitude. The fluid container is immobile in the librating frame (which rotates at
γ (t)). It takes the form of a deformed cylinder limited by two horizontal boundaries at
z= 0, z= h, and a lateral wall located at, in cylindrical coordinates (r, θ, z),

ζ(r, θ)= C + 1
2 = 0, (2.2)
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where

C =−r2

2
+ p

rn

n
cos nθ (2.3)

defines a multipolar deformation (e.g. Le Dizès & Eloy 1999). Note that, in the limit
of small deformations p� 1, an explicit solution of ζ(r, θ)= 0, i.e. of the lateral wall
location, is given by

r = 1+ p

n
cos nθ + O(p2). (2.4)

The coordinates r, z and the container height h are scaled in units of R, the radius
of the undeformed cylindrical container. We will denote by p the amplitude of the
multipolar deformation. The integer n sets the type (or order) of the multipolar
deformation of the boundary: n = 2 for elliptical deformation, n = 3 for tripolar
deformation, n ∈ N for a general n-fold deformation.

Considering a Newtonian incompressible fluid with constant and homogeneous
material properties, the combination of libration and deformation induces flows
governed by the Navier–Stokes and mass conservation equations. Using 1/Ω0 as
the time scale and Ω0R for the velocity scale, these equations can be written in the
librating frame of reference as

∂u
∂t
+ (u ·∇)u=−∇Π + E∇2u− 2γ ez × u− dγ

dt
ez × x, (2.5)

∇ ·u= 0, (2.6)

where E = ν/(Ω0R2) is the Ekman number, with ν the fluid kinematic viscosity, u
the velocity of the fluid in the librating frame and Π the reduced pressure taking the
centrifugal force into account. On the lateral boundary, we consider no-slip boundary
conditions, i.e. u(ζ = 0)= 0, and the top and bottom are periodic boundaries, i.e.

u|z=0 = u|z=h and
∂u
∂z

∣∣∣∣
z=0

= ∂u
∂z

∣∣∣∣
z=h

. (2.7)

We thus allow for a mean axial flow to exist.

2.2. Two-dimensional inviscid basic flow
In the inviscid limit E = 0, one can find a 2D basic flow u = U that exactly satisfies
the previous equations (2.5) and (2.6):

U =∇ × (Ψ ez), Ψ = C(r, θ) ε cosωt =
(
−r2

2
+ p

rn

n
cos nθ

)
ε cosωt. (2.8)

Taking the axial component of the curl of (2.5), the equation for axial vorticity reduces
to

d(∇2Ψ )

dt
= 2

dγ
dt
, (2.9)

which is exactly satisfied. We also see that the basic flow is always parallel to that
boundary, so that the inviscid boundary condition U · en = 0|ζ=0 is also satisfied (where
en is the outward boundary normal unit vector). Moreover, owing to the separation of
the space and time variables in the streamfunction (2.8) of our 2D basic flow, each
fluid particle, as seen from the librating frame, oscillates back and forth along a part
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FIGURE 2. (Colour online) Pathlines of the multipolar flow (2.8) for a libration angle
1ϕ = 2, a deformation p = 0.45, with initial positions given by θ(t=0) = 0 and an
initial radius from r(t=0) = 0.1 to r(t=0) = 1.3 with steps of 0.2. (a) For n = 3. Here,
(C, β3) varies between (C, β3) = (−0.0049, 0.0768), reached for r(t=0) = 0.1, and (C, β3) =
(−0.5155, 0.7914), reached for r(t=0) = 0.8. (b) For n = 4. Here, (C, β4) varies between
(C, β4) = (−0.005, 0.009), reached for r(t=0) = 0.1, and (C, β4) = (−0.2739, 0.9426),
reached for r(t=0) = 0.8.

of a streamline C = const. Thus, any streamline C = const. does not change with time,
and the pathlines of any particle located on this streamline at t = 0 are thus part of this
streamline. This behaviour is illustrated in figure 2, which shows several pathlines in
the librating frame, for n = 3, 4. The particles follow a track C = const. and join their
initial position after completing a periodic cycle. Following Le Dizès & Eloy (1999),
we introduce the parameter

βn = p

(
2n|C|
n− 2

)n/2−1

, (2.10)

which measures the local asymmetry of the streamlines (and pathlines) and varies in
βn ∈ [0; 1]. For n = 2, the flow is a uniform elliptical flow and all the pathlines have
the same β2 = p that can be identified with the ellipticity (β2 = |1− Υ 2|/(1+ Υ 2) with
Υ the axes ratio). For n > 3, βn varies with C and the flow is thus not uniform. As
βn is increased, the streamlines become more and more angular, exhibiting n singular
points (corners) for βn = 1. For βn > 1, the streamlines of an unbounded flow are no
longer closed, and our analysis will thus be restricted to the range βn ∈ [0; 1]. Note
that the maximum value pmax for p, reached when βn = 1 on the boundary streamline
ζ(r, θ) = 0, i.e. C = −1/2, decreases with n, tending towards an asymptotic constant
value pmax = e−1 when n becomes infinite (with e= exp 1).

2.3. Libration as seen from other frames

The librating frame is best adapted for numerical simulations, since the boundary has
a fixed shape, but the local stability theory will be formulated in the inertial frame
(superscript I) to avoid any inertial fictitious force, and the global theory in the frame
rotating at constant speed Ω0ez (superscript R). The different reference frames are
illustrated in figure 1(b). We can relate the azimuthal angles θ, θ I, θR in the three
frames by

θ I = θR + t = θ + t −1ϕ sinωt. (2.11)
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Parameter Name Range for the
simulations

ω Libration frequency 2–4.5
ε Libration amplitude 0.8–1.5
γ (t)ez = [1−ε cosωt]ez Rotation vector —
p Multipolar deformation amplitude 0.2–0.5
n Multipolar deformation order 3
h Height of the cylinder 2
E = ν/(Ω0R2) Ekman number 10−4–1.5× 10−3

C Streamfunction spatial dependence —

βn = p

(
2n|C|
n− 2

)n/2−1

Local pathline/streamline
deformation

0–
√

3/2

TABLE 1. Dimensionless control parameters involved in the problem definition.

Flows in the different frames are related as

uI = u(r, θ I − t +1ϕ sinωt, z, t)+ (1− ε cosωt) ez × xI, (2.12a)

uR = u(r, θR +1ϕ sinωt, z, t)− ε cosωt ez × xR. (2.12b)

It is instructive to see that the basic flow takes a particularly simple, potential form in
the rotating frame of reference,

UR =∇
[
−εprn

n
cosωt sin n(θR +1ϕ sinωt)

]
. (2.13)

This clearly shows that the boundary deformations

ζ R(r, θR, t)= 1
2
− r2

2
+ p

rn

n
cos n(θR +1ϕ sinωt)= 0 (2.14)

induce an O(εp) potential flow, stretching some directions, but compressing others.
The transverse stretching allows the basic flow to destabilize inertial modes with a
horizontal vorticity aligned with the stretched axis, exactly as in the case of elliptical
instability (Waleffe 1990). The specifics of the librational forcing are related to the
broader frequency content of the boundary deformation and basic flow. This can be
seen by expanding the functions appearing in rotating frame expressions of the basic
flow and the boundary deformation:

cosωt cos n(θ +1ϕ sinωt)= einθ f (t)+ c.c., (2.15)

cos n(θ +1ϕ sinωt)= einθg(t)+ c.c., (2.16)

where c.c. is as usual the complex conjuguate, and

f (t)= 1
4

∑
j∈Z
[Jj−1(n1ϕ)+ Jj+1(n1ϕ)] eijωt, (2.17)

g(t)= 1
2

∑
j∈Z

Jj(n1ϕ) eijωt, (2.18)

with Jj denoting Bessel functions of the first kind (see formulae (9.1.42) and (9.1.45)
in Abramowitz & Stegun (1964)). For finite angles 1ϕ, librational forcing involves
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Unbounded Inviscid Short-wavelength Small forcing
(E = 0) (ϑ � 1) (εp� 1)

Problem definition: § 2 — — — —
Local analysis: § 3.1 3 3 3 —
Local analytical analysis: § 3.1.3 3 3 3 3
Global analysis: § 3.2 — — — 3
Simulations: § 4 — — — —

TABLE 2. Assumptions used in the different sections of this work.

more than one frequency. Any of these various frequency components will be able to
couple different inertial modes, and this is the basic feature of LDMI in comparison
with previous studies (Le Dizès & Eloy 1999; Le Bars et al. 2007).

We denote by fj and (f †)j the coefficient in front of the exp(ijωt) component of
f (t) and its complex conjugate f †(t), and similarly for gj and (g†)j. In the limit of
small libration angles 1ϕ → 0, there is one dominant frequency in the boundary
deformation, as J0(0) = 1 and Jj(0) = 0 for j 6= 0: we have f (t)→ (cosωt)/2 and
g(t)→ 1/2, but as 1ϕ→ 0, the libration amplitude ε→ 0 for a fixed ω.

3. Linear stability analysis
In this section, we are concerned with the linear instability of the flow (2.8). We

will perturb the basic flow U with a small 3D flow u and search to identify the
conditions under which u can grow in time. In a local stability analysis, this problem
is reduced to a stability study of each basic flow particle trajectory separately. This
leads to general formulae that are broadly applicable. In a global analysis, we analyse
the system (fluid plus container) as a whole. This leads to precise information on the
kind of modes that can be destabilized in a particular fluid domain. Comparing the
two approaches will lead to useful insights here. Our purpose is to perform a rigorous
study on LDMI that completes previous work on multipolar instability (Le Dizès &
Eloy 1999; Eloy & Le Dizès 2001; Eloy et al. 2003) and LDEI (Kerswell & Malkus
1998; Herreman et al. 2009; Cébron et al. 2012a,b,c).

3.1. Local stability analysis: unbounded flows
In this section, we investigate the inviscid stability of the pathlines of the basic flow
U in a fluid domain assumed to be unbounded (see table 2). To do so, we consider a
perturbed solution of the equations of motion under the form of localized plane waves
along the pathlines of the basic flow, and we assume that the characteristic wavelength
ϑ of the plane waves is very small (short-wavelength hypothesis).

3.1.1. Short-wavelength Lagrangian stability analysis
The approach we follow here is based on the short-wavelength Lagrangian theory,

used by Bayly (1986) and Craik & Criminale (1986), and then generalized in
Friedlander & Vishik (1991), Lifschitz & Hameiri (1991, 1993) and Lifschitz (1994),
where the whole theory is thoroughly explained. This theory is now rather classical
in stability studies of flows (e.g. Bayly, Holm & Lifschitz 1996; Lebovitz & Lifschitz
1996; Leblanc & Cambon 1997), and we thus only recall below some basic elements
of the stability analysis in following the approach of Le Dizès & Eloy (1999). We
found it simplest to work in the inertial frame of reference, but the superscript I will
be omitted in what follows. The perturbation velocity u is written in the geometrical
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optics or Wentzel–Kramers–Brillouin (WKB) form:

u(x, t)= a(x, t)eiχ(x,t)/ϑ . (3.1)

Here, the amplitude a(x, t) and phase χ(x, t) are real functions dependent on space x
and time t. The characteristic wavelength ϑ � 1 is the small parameter used for the
asymptotic (WKB) expansion. In the inviscid limit, the evolution of (3.1) is governed
by the linearized Euler equations. Along the pathlines of U , the leading-order problem
can be written in Lagrangian form as a system of ordinary differential equations
(Lifschitz 1994):

dX
dt
= U(X, t), (3.2)

dK
dt
=−(∇U)T(X, t)K, (3.3)

da
dt
=
(

2KKT

|K|2 − I

)
∇U(X, t) a, (3.4)

with constraint

K · a= 0. (3.5)

Here d/dt = ∂t+U ·∇ are Lagrangian derivatives, I is the identity matrix and K=∇χ
is the (local) wavevector along the Lagrangian trajectory X . The incompressibility
condition (3.5) is always fulfilled if the initial condition (X0,K0, a0) satisfies
K0 · a0 = 0 (Le Dizès 2000). As shown by Lifschitz & Hameiri (1991), the existence
of an unbounded solution for a provides a sufficient condition for instability. Assuming
closed pathlines, stability is naturally analysed over one turnover period T along the
pathline. Note that this system of equations can be seen as an extension of rapid
distortion theory (RDT) to non-homogeneous flows (Cambon, Teissedre & Jeandel
1985; Cambon et al. 1994; Sipp & Jacquin 1998).

In practice, (3.2) has to be solved as a first step to know the trajectory X emerging
out of initial position X0. Knowing X , one can solve the wavevector equation (3.3) for
an initial vector K0. As the magnitude or sign of K0 cannot influence the growth of a,
and because K0 · a0 = 0 in the particular case of a two-dimensional flow with closed
streamlines in the x–y plane, we can consider the role of different K0 with a single
angle

ξ = arccos
(

K0 · ez

‖K0‖
)

(3.6)

that varies in the interval ξ ∈ [0◦, 90◦] (e.g. Le Dizès & Eloy 1999). Knowledge of
X and K finally allows one to solve (3.4) for the amplitudes a and to look for
growing solutions. As shown by Lifschitz & Hameiri (1991), the existence of an
unbounded time evolution of a provides a sufficient condition for instability. The
result holds for viscous flows (Landman & Saffman 1987; Lifschitz & Hameiri 1991)
if the characteristic wavelength ϑ is larger than

√
E/σ , where σ is the maximum

inviscid growth rate of ‖a(x, t)‖ ∼ exp(σ t). Finally, to close this brief description of
short-wavelength Lagrangian theory, it is worth mentioning that viscous effects on the
perturbations can be easily taken into account by adding to the inviscid growth rate σ
the viscous damping rate −K 2E (e.g. Craik & Criminale 1986; Landman & Saffman
1987; Le Dizès 2000).
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FIGURE 3. Growth rates σ ∗ in the βn–ξ plane, obtained from the Floquet analysis, for
ε = 1.5 and ω = 3 (as shown in § 3.1.3 in the limit εp� 1, only one tongue exists for ω > 2).
The greyscale bar represents σ ∗, solid lines are the boundaries of the tongue (corresponding
to a non-zero σ ∗) and the dashed line represents the values of ξ that maximize σ ∗. (a) n = 2
(b) n= 3.

3.1.2. Numerical results: Floquet analysis
We now solve the previous problem in the inertial frame using the basic flow

(2.8). As particles always come back to their initial position after a time that can be
denoted T , we have periodic trajectories X , which also results in periodic functions K
whatever the chosen K0. With K(t) periodic, (3.4) can be analysed in terms of Floquet
theory (e.g. Bender & Orszag 1978). Starting from three canonical initial conditions,
in matrix form a(0)= I , we integrate (3.4) over exactly one period t ∈ [0,T] to obtain
the monodromy matrix a(T). The Floquet exponents are the three eigenvalues $1, $2

and $3 of this matrix and represent the multiplicative gain of the associated Floquet
eigenvector, over one period T . As noted by Kerswell (1993b), det a(T) = 1, and
K0 = K(0) = K(T) is a left eigenvector of a(T), with an eigenvalue $1 = 1. The
two other eigenvalues are then either complex conjugates on the unit circle, indicating
stability, or a real, reciprocal pair, one of which lies outside the unit circle. In this last
case, an instability is present, with growth rate given by

σ(n, ε, βn, ξ)= 1
T

ln|$(n, ε, βn, ξ)|. (3.7)

Figure 3 show results from some calculations of σ in the βn–ξ plane, for fixed
ε = 1.5 and ω = 3. We clearly see resonance tongues emerging from a well-defined
angle, and we will show in § 3.1.3 that its value is given by ξ = arccos(ω/4); here
ξ = 41.41◦. As βn increases, a broadening band of angles becomes destabilized. If we
focus only on the largest growth rate, obtained by maximizing over all angles ξ and
rescale it with respect to the local strain rate

σ ∗ =max
ξ

σ

εp(n− 1)|2C|n/2−1
, (3.8)

we get the curves of figure 4. For n = 2, the rescaled growth rate increases
monotonically with the libration magnitude ε and βn. In the elliptical case n = 2, the
impact of considering large deformation β2 remains very small, but in the triangular
case n= 3, σ ∗ may double in magnitude and increases very sharply when β3→ 1.
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FIGURE 4. (Colour online) Comparison of the analytical growth rate (black dashed lines)
given by (3.16), obtained for εp � 1, with the solution (grey solid lines; red online) of
stability (3.2)–(3.4) for ω = 3 and ε = 0.1, 0.5, 0.7, 1.0, 1.5 and 2.0 (from the uppermost
curve to the lowest one): (a) n= 2; (b) n= 3; (c) n= 4; (d) n= 5.

3.1.3. Asymptotic analysis for small forcings εp� 1
In this section, we solve (3.2)–(3.4) using a multiple scale analysis (e.g. Kevorkian

& Cole 1996), assuming that the product εp� 1 remains small. Since the method is
now rather classical (e.g. Le Dizès 2000; Herreman et al. 2009; Cébron et al. 2012b),
we only give a short outline of the calculation. One first finds the trajectory as

X(t)= X (0)(t)+ εpX (1)(t)+ O(ε2p2). (3.9)

Here X (0)(t) is the circular trajectory induced by the solid-body rotation and X (1)(t)
deviations induced by the multipolar deformation (see § A.1 for the expressions of
X (0)(t) and X (1)(t)). With this, one can evaluate ∇U on the perturbed trajectory, up to
order O(εp), allowing one to solve for the wavenumber:

K(t)=K(0)
(t)+ εpK(1)

(t)+ O(ε2p2). (3.10)

At lowest order, we get

K(0)
(t)=K0[sin(ξ) cos(t + φ)ex + sin(ξ) sin(t + φ)ey + cos(ξ)ez]. (3.11)

Each wavenumber is specified by a magnitude K0, angle ξ and initial phase φ. This
rotating wavenumber is actually stationary in the rotating frame and represents a plane
wave there. The first-order deviation K(1)

(t) is important in the stability calculation
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and its expression is thus given in § A.1. At leading order, for εp = 0, these equations
can be reduced to a harmonic equation for the amplitude az of the axial velocity
plane-wave perturbation,

d2a(0)z

dt2
+Λ2a(0)z = 0, (3.12)

showing that the amplitude oscillates with angular frequency Λ = ±2 cos ξ . This can
be identified as the usual inertial wave dispersion relation in an unbounded fluid
domain. We modify the expansion to make a superposition of two waves

az = [c1 eiΛt + c2 e−iΛt + εpa(1)z ] eεpσ̂ t (3.13)

and give them a common but small growth rate σ = εpσ̂ (σ̂ being our unknown).
Injecting this into the O(εp) balance, we get an equation of the form

d2a(1)z

dt2
+Λ2a(1)z =

∑
j∈Z
[Fj ei(Λ+jω)t + Gj ei(−Λ+jω)t]. (3.14)

Secular terms on the right-hand side appear for all resonant frequencies

Λj =±jω/2, j 6 jmax, (3.15)

with j ∈ N∗ and 0 < 4/ω − jmax 6 1. Owing to the inertial wave dispersion relation,
each value of j corresponds to a resonant angle ξj = arccos(jω/4). These resonant
angles, found in the limit εp� 1, are the points where the Floquet resonance tongues
emanate. Note that jmax = 1 for ω > 2, which means that only one Floquet tongue
exists (see figure 3). The bounds for jmax also show that no instability is possible for
|ω|> 4+ O(εp). This is called the forbidden zone of the LDMI (see e.g. Le Bars et al.
(2007), for the forbidden zone of the TDEI). Note that, at order one in εp, this band
is extended to |ω|> 4 + εp + O(ε2p2) (exactly as for the case considered by Le Dizès
(2000)). The growth rate σ is found after posing the solvability condition: multiply
the right-hand side by exp(±iΛjt) and integrate over a period 2π/Λj. We then find a
homogeneous system of algebraic equations for c1 and c2, which defines the growth
rate (valid for ω 6= 0):

σ ∗ = σ

εp(n− 1)|2C|n/2−1
= 16+ (jω)2

64
|Jj−1(n1ϕ)+ Jj+1(n1ϕ)|. (3.16)

The coefficient C relates to the streamline (and thus initial position) under
consideration. The maximum growth rate is obtained on the most deformed boundary
streamline where C = −1/2. We recognize the Bessel function factor (equal to 4fj)
of (2.17), which shows that each frequency component in the basic flow can couple
different pairs of resonant modes, a particular feature of the LDMI.

Figure 4 shows that the analytical asymptotic growth rate given by (3.16) allows
a quite accurate prediction of the growth rate for values of βn up to 0.3. As
expected, the results differ for large βn but in a rather small extent. In figure 4,
the libration frequency is greater than 2 (ω = 3), and only one resonance is thus
possible (jmax = 1). In most cases, several resonances are possible, and figure 5(a)
compares the formula (3.16) with the exact solution of the stability equation in such
a case (ω = 1 ⇒ jmax = 3), showing that the ε dependence is exactly captured. Note
that, for a given ω, the local growth rate can go to zero for particular values of ε.
Again, this is a particular feature of the LMDI. When the libration angle 1ϕ = ε/ω is
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FIGURE 5. (Colour online) (a) Reduced growth rate σ ∗ against the libration amplitude ε
for the two resonances j = 1 and j = 3 (n = 2, ω = 1) in the limit of small deformation p.
Symbols (circles (red online) for j = 1; squares (blue online) for j = 3) are obtained by a
direct numerical solution of the stability equations (3.2)–(3.4) with p = 0.015, whereas the
dashed lines correspond to the analytical formula (3.16), obtained for εp� 1. (b) Plot of σ ∗
against the libration frequency ω (n = 3, ε = 1), for all the resonances j ∈ 1, . . . , jmax (solid
lines; blue online). The number of resonances jmax changes with ω. The envelope gives the
maximum growth rate σ ∗ for a given ω (dashed line with cross symbols; red online).

Parameter Definition

a Amplitude of the velocity plane-wave perturbation
K Local wavevector along a Lagrangian trajectory
ξ Initial angle of K with the vorticity axis ez
T Turnover period along a pathline
p Multipolar deformation amplitude
$i Floquet exponents of the monodromy matrix a(T)
Λ=±2 cos ξ Angular frequency of the inertial wave in an unbounded domain
j Difference (in ω units) between the angular frequencies of the

resonant inertial waves
·̂= ·/(εp) Operator (dividing the quantity by εp)
σ Inviscid growth rate
σ ∗ Scaled maximum inviscid growth rate (defined by (3.8))
σv Viscous growth rate
k,m, l Radial, azimuthal and axial wavenumbers of the inertial waves in a

bounded geometry
λ Angular frequency of the inertial wave in a bounded domain
ς Frequency detuning
αw Viscous damping of the resonant inertial waves (w= 1, 2)

TABLE 3. Stability analysis parameters.

such that Jj−1(n1ϕ)+ Jj+1(n1ϕ)= 0, the base flow does not have jω frequency content
(see (2.17)) and instability is then impossible. Figure 5(b) completes this description
of multiple resonances by representing the results of (3.16) as a function of ω. This
clearly shows the decrease in the number of resonances when ω is increased.

We now consider two different interesting limit cases of the formula (3.16): the
case of large libration forcing ε� ω/n, and then the case of small libration forcing
ε � ω/n. Note that the formula (3.16) has been obtained in the limit of small
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forcing εp� 1 (p or ε can thus have finite values if the other one is very small).
This imposes that the limit ε� ω/n is actually ωp/n� εp� 1 whereas the other one
is given by εp�min(1, ωp/n).

First, we focus on the scaling of σ ∗ when ωp/n� εp� 1, which implies n1ϕ� 1.
This limit case is interesting because it allows us to test the possibility of an LDMI
excited by a small-scale periodic pattern in the boundary roughness (n� 1). In this
case, using Jj−1(x)+ Jj−1(x)= 2j Jj(x)/x, we obtain

σ ∗ = 16+ (jω)2
32

j

√
2

π(n1ϕ)3
|cos(n1ϕ − jπ/2− π/4)| + O

(
1

(n1ϕ)5/2

)
. (3.17)

Then, the maximum growth rate is reached for j= jmax ≈ 4/ω and reads

σ ∗ ∼ 4

√
2ω
πn3 ε3

⇒ σ ∼ 4p |2C|n/2−1

√
2ω
πnε

. (3.18)

The growth rate σ thus decreases towards 0 as n−1/2 in the limit n� ω/ε. Considering
a boundary of arbitrary shape with many multipolar components (n = 2, 3, . . .), this
shows that the instabilities excited by the lowest orders n will be the more unstable.

The opposite limit case n1ϕ � 1 corresponds to the asymptotic regime of small
libration forcings ε� ω/n, which is the relevant limit in geophysics. In this case, only
the first resonance j = 1 can contribute (since J0(0) = 1 and for all j 6= 0, Jj(0) = 0).
We then have a single unstable mode with rescaled growth rate

σ ∗ = 16+ ω2

64
, (3.19)

which is in agreement with the result previously obtained in the particular case n = 2
(Cébron et al. 2012a,c). In the limit of ω→ 0 (absence of libration), i.e. in the limit
of the so-called synchronization state in an astrophysical context (e.g. Cébron et al.
2012b), the growth rate tends towards σ ∗ = 1/4. This limit can also be obtained
from the results of Le Dizès (2000), who considers the case of a constant non-
zero differential rotation between the multipolar strain and the fluid. In the limit of
infinitesimal multipolar deformation, this case leads to an instability only for n 6 4,
and Le Dizès (2000) shows that the maximum inviscid growth rate is then given by
(using the constant differential rotation as the time scale)

σ̄

p
= [n+ 4(1+ΩG)]2

64(1+ΩG)
2 (n− 1), (3.20)

where ΩG = Ωorb/(Ω − Ωorb), with Ωorb the rotation rate of the strain in the inertial
frame. The expression (3.20) is consistent with the expression (3.19) in the limit of a
synchronized state: Ωorb/Ωspin = 1 − ε, i.e. |1 + ΩG| ∼ |ΩG| = 1/ε and σ̄ = σ/ε (to
have the same time scale).

3.2. Global stability analysis
3.2.1. Problem definition

The linear stability problem for the perturbation flow u and modified pressure π can
be written as

∂tu+ U ·∇u+ u ·∇U + 2ez × u=−∇π+ E1u, ∇ ·u= 0, (3.21)

in the rotating frame of reference (R) used for our global analysis. We will again
omit the use of these superscripts. No-slip boundary conditions are imposed on the
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deformed cylinder’s surface. We adopt a four-vector notation Y = [ur, uθ , uz,π]T, so
that the problem may be rewritten in compact form as

L Y = εp[einθ f (t)N + c.c.]Y + EV Y . (3.22)

The operators L , N and V are defined in § A.2.1. We can now investigate the
stability of the flow using an asymptotic model, valid for small forcings εp� 1 and
small Ekman numbers E� 1.

3.2.2. Leading-order solution: inertial waves in cylinders
In the absence of boundary deformation (p = 0) and viscosity (E = 0), the

perturbation flow is the solution of

L Y (0) = 0, u(0)r (1, θ, z, t)= 0. (3.23)

The solution to this problem is a general superposition of inertial waves in cylindrical
geometry:

Y (0)(r, θ, z, t)=
∑
mlλ

AmlλQmlλ(r) eimθ eilz eiλt. (3.24)

Here Amlλ are arbitrary amplitudes. Each wave is specified by an angular frequency
λ ∈ [−2, 2], an azimuthal wavenumber m ∈ Z and an axial wavenumber l = 2πnz/h,
with nz ∈ Z the number of axial wavelengths. Note that both λ and Λ denote inertial
wave frequencies, but the former is related to inertial waves in a radially bounded
cylinder, whereas the latter is related to those in an unbounded medium. The radial
profiles Qmlλ are solutions of LmlλQmlλ = 0, where Lmlλ corresponds to the operator L
in which replacements ∂t→ iλ, ∂θ → im and ∂z→ il have been made. We find

Qmlλ =


[(2− λ) Jm+1(kr)+ (2+ λ) Jm−1(kr)] /2
−i [(2− λ) Jm+1(kr)− (2+ λ) Jm−1(kr)] /2

−i(kλ/l) Jm(kr)
i(kλ2/l2) Jm(kr)

 , k2 = (4− λ
2)

λ2
l2. (3.25)

The radial wavenumber k and the frequencies are discretized by the boundary
conditions on the surface r = 1, which, together with the previous definition of k,
fixes the inertial wave dispersion relation:

(2− λ) Jm+1(k)+ (2+ λ) Jm−1(k)= 0, λ=±2

√
l2

k2 + l2
. (3.26)

For fixed m, l and both possible signs of the frequency, this equation admits a
countable infinite number of discrete radial wavenumbers, which are easily identified
numerically. We label these radial wavenumbers of the frequency with a radial counter
nr = 1, 2, . . . . A wave is entirely determined by the set (k,m, l, λ) or alternatively
(nr,m, nz, λ) in a cylinder with fixed height. The frequency λ is such that λ ∈ [−2, 2],
which is a general property of inertial waves.

3.2.3. Inviscid growth rate σ at resonance
As in the local theory, we will now propose an asymptotic solution that is a

superposition of two waves and a remainder:

Y = (c1Q1(r) eim1θ eiλ1t + c2Q2(r) eim2θ eiλ2t + εpY (1)) eilz eεpσ̂ t + O(εp2). (3.27)
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Here Qj is shorthand for Qmjljλj . We search for an expression for the growth rate
σ = εpσ̂ . Injecting this ansatz into the previous system of (3.22) we have

L Y (1) = [−σ̂J + (einθ f (t)N + c.c.)]
× [c1Q1(r) eim1θ eiλ1t + c2Q2(r) eim2θ eiλ2t]. (3.28)

The right-hand side is secularly forcing the left-hand side, whenever two waves satisfy
resonance conditions

m1 + n= m2, l1 = l2 = l, λ1 + jω = λ2, (3.29)

for j ∈ Z. This is the global equivalent of (3.15). Considering the inertial wave
dispersion relation, this is a quite restrictive constraint that certainly not all pairs
of inertial waves will be able to satisfy. Exact resonances cannot be found when
|jω| > 4 because λ1, λ2 ∈ [−2, 2]. We denote each resonance in shorthand form by
a quintuplet (m1,m2, nr, nz, j). Here nr is the radial wavenumber label and nz is the
number of vertical wavelengths. As in the study of Eloy, we systematically find the
largest growth rates for central couplings that pair waves with the same radial label
nr,1 = nr,2, synonymous for k1 ' k2. The field Y (1) is necessarily composed of

Y (1) = Z1(r, z) eim1θ eiλ1t + Z2(r, z) eim2θ eiλ2t + ZNR(r, θ, z, t). (3.30)

The last term ZNR absorbs non-resonant contributions. Inserted into the previous
equation, we get the secularly forced system:

L1Z1 =−σ̂c1JQ1 + fjc2N
†Q2, (3.31)

L2Z2 =−σ̂c2JQ2 + fjc1N Q1. (3.32)

Here Li =Lmiliλi . We used (f †)−j = fj in (3.31) (see (2.17)). A solvability condition
fixes the growth rates, but in order to write it, we need a well-adapted scalar product.
We choose here

〈Q1,Q2〉 =
∫ 1

0

(
4∑

µ=1

Q†
1,µQ2,µ

)
r dr. (3.33)

This scalar product is advantageous for our calculations, because direct and adjoint
inertial modes are then identical (Eloy et al. 2003). Indeed, if we consider that adjoint
modes satisfy the same boundary conditions as direct modes (a zero normal velocity),
an integration by parts gives (noting the adjoint with a superscript A)

〈QA
mlλ,LmlλQmlλ〉 = −〈LmlλQA

mlλ,Qmlλ〉. (3.34)

The adjoint operator is thus the opposite of the direct operator (L A
mlλ = −Lmlλ), and

direct and adjoint modes are identical with this scalar product.
The solvability condition is expressed by projecting (3.31) and (3.32) onto Q1 and

Q2. On the left-hand side, we use a partial integration and the definition of the adjoint
modes, e.g. for the first equation:

〈Q1,L1Z1〉 = −〈L1Q1︸ ︷︷ ︸
0

,Z1〉 + Q†
1,4(1) Z1,1(1). (3.35)

This process introduces boundary terms that appeal for first-order corrections Z1,1 and
Z2,1 of the radial velocities of the modes. It is through these terms that O(p) couplings
related to boundary deformation (see § A.2.2 for more details) arrive in the global
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stability analysis. The solvability condition thus results in a homogenous system of
two algebraic equations:

c1(−σJ11)+ c2(εpfjN12 − pgjB12)= 0, (3.36)

c2(−σJ22)+ c1(εpfjN21 − pgjB21)= 0, (3.37)

with matrix elements

J11 = 〈Q1,JQ1〉, N12 = 〈Q1,N
†Q2〉, (3.38a)

J22 = 〈Q2,JQ2〉, N21 = 〈Q2,N Q1〉, (3.38b)

and boundary terms

B12 = Q†
1,4(1)

(
−1

n
∂rQ2,1(1)− i Q2,2(1)

)
, (3.39a)

B21 = Q†
2,4(1)

(
−1

n
∂rQ1,1(1)+ i Q1,2(1)

)
. (3.39b)

We used (g†)−j = gj in (3.36). Elimination of c1 and c2 results in an equation for the
inviscid growth rate at resonance:

σ 2 = (εfjN12 − gjB12)(εfjN21 − gjB21)

J11J22
p2. (3.40)

We have instability only when the real part of the right-hand side is positive. Note that
the relation c1/c2 is fixed by one of the equations of (3.36).

3.2.4. Frequency detuning and viscous damping: growth rate σv
Pairs of waves that perfectly satisfy resonance conditions (3.29) can only exist

in cylinders with well-chosen height h, or for well-defined frequencies jω. These
conditions may however be relaxed in order to admit imperfect resonance. In the
present article, we build in these detuning effects through a frequency detuning.
Imperfect resonance then supposes that

λ1 + jω = λ̄+ ς, λ2 = λ̄− ς, (3.41)

with ς = εpς̂ � 1 a small frequency detuning and λ̄ a modified resonant frequency.
This detuning is introduced in the model by modifying the asymptotic ansatz into

Y = (c1Q1(r) eim1θ ei(λ̄−jω)t + c2Q2(r) eim2θ eiλ̄t + εpY (1)) eilz eεpσ̂ t + O(εp2). (3.42)

Starting from this ansatz, the solvability condition leads to the set of equations (3.36)
and (3.37) in which −σ → −σ + iς in (3.36) and −σ → −σ − iς in (3.37) are
modified.

Viscous corrections induced by boundary layers, which scale as
√

E, formally enter
the model through boundary terms as (3.39) as boundary-layer pumping modifies the
radial velocity at order

√
E. Volume damping can be formally introduced through the

operator V . Still, since viscous effects are not modified by the libration at lowest
order, it is sufficient to use a pre-existing formula (Kerswell & Barenghi 1995). Waves
with positive frequencies λj > 0 have a damping

αw =
√

E
(1+ i)

4
√

2

(4− λ2
w)(m

2
w + l2

w)
√
λw

(m2
w + l2

w − mwλw/2)
+ E(k2

w + l2
w), (3.43)
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for w = 1, 2. If λw < 0 we need to use the complex conjugate formula. Viscosity
is introduced in the previous set of equations (3.36) and (3.37) by modifying
−σ →−σ − αw in both equations. Combining the effects of both viscous damping
and frequency detuning into a growth rate denoted σv, we have

σ̃v =−α1 + α2

2
+ 1

2

√
(α1 − α2)

2 − 2iς(α1 − α2)+ 4(σ 2 − ς 2). (3.44)

We have instability when the real part σv = Re(σ̃v) is positive.

3.3. Parameter survey
In the practical implementation of global stability, we fix the cylinder height h and
vary the libration frequency ω. Then, as described in § 3.2.4 (see (3.41)), imperfect
resonances are taken into account via a frequency detuning, as in Gledzer &
Ponomarev (1992), Kerswell (1993a), Lacaze et al. (2004) and Herreman et al. (2010).
Note that, as in Eloy et al. (2003) or Lagrange et al. (2011), we can also calculate
imperfect resonances by fixing λ1 + jω = λ2 and relaxing the resonant constraint on
the axial wavenumber (l1 − l2 = O(p)). However, this method is less efficient for large
coupling frequencies jω ' 4.

To calculate σv, we thus find all the waves,

mode 1 (nr,m1, nz, λ1), mode 2 (nr,m2, nz, λ2), (3.45)

with numbers

nr = 1, . . . , nr,max,

{
m1=−n+ 1, . . . ,m1,max,

m2= 1, . . . ,m1,max + n,
nz = 1, . . . , nz,max, (3.46)

and both positive and negative frequencies, that solve the dispersion relation (3.26).
For each pair of waves, we then know exactly the resonant frequencies

ω = (λ2 − λ1)/j, |j| ∈ 1, . . . , jmax, (3.47)

so that the resonance conditions (3.29) are exactly satisfied. Since |λ2 − λ1| 6 4
maximally, modes with |j| 6= 1 exist within bands ω ∈ [0, 4/|j|]. Note also that only
central couplings with nr,1 = nr,2 = nr are considered here; we tested that they always
have significantly larger growth rates (as in Eloy et al. (2003)). We take into account
(through j) that a given pair of modes may be destabilized by different frequencies.
For each of these wave pairs, we also calculate all the necessary matrix elements
and damping coefficients. All this information is stored for a post-processing phase
in which we can vary ε, 1ϕ, E and p and consider the effect of detuning ς .
(Practical information on the implementation of the global instability analysis can
be found in a series of commented MATLAB scripts that are available online as
supplementary material at http://dx.doi.org/10.1017/jfm.2013.623.) Here we discuss
some particular features of the global stability theory. Further, we will perform a
systematic comparison with numerical results.

3.3.1. Inviscid growth rate σ versus ω
The non-viscous stability of a given pair of modes entirely depends on the sign

of the two frequencies λ1 and λ2. We observe that when the frequencies of the
waves have the same sign, Sgn(λ1λ2) = +1, then the inviscid growth rate σ is purely
imaginary, so that these pairs of modes can never be destabilized (with Sgn the sign
function). If, on the contrary, frequencies have an opposite sign, Sgn(λ1λ2) = −1, we
always have a real σ and so inviscid instability. With the convention that ω > 0,
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FIGURE 6. (Colour online) Rescaled inviscid growth rates σ/p at resonance as a function of
ω, for different values of j= 1, 2 as marked in the figure and comparison with maximum local
instability growth rate ((3.16) with C =−1/2) (full and dashed lines). We consider triangular
deformation n= 3 in a cylinder with height h= 2. (a) Here we fix the libration angle 1ϕ = 1;
(b) we fix the libration amplitude ε = 1. The survey involves all modes up to nr,max = 2,
m1,max = 50, nz,max = 50.

we have also noticed that modes with λ1 < 0 and λ2 > 0 and thus j > 0 are always
much more unstable than the opposite case. We therefore concentrate on this type of
mode. We finally observe that the couplings with the lowest radial labels, nr = 1, but
the highest azimuthal wavenumbers, m1, and the largest number of axial wavelengths,
nz, are generally the most unstable in the inviscid limit. This explains why we used
nr,max = 2, m1,max = 50, nz,max = 50 for this inviscid study.

In figure 6, we show inviscid growth rates at resonance for a triangular (n = 3)
deformation, at fixed libration angle 1ϕ = 1 (figure 6a) and for fixed libration
amplitude ε = 1 (figure 6b). Each point represents a different unstable pair of modes
at resonance. We only show two different j = 1, 2 so as not to overload the figures.
It is particularly important to notice that couplings with j = 2 may become more
unstable than couplings with j= 1 in the interval ω ∈ [0, 2], a consequence of the large
frequency content of the libration-driven basic flow at large ε or large libration angles
1ϕ. In the numerical simulations, ε is always large, so it is important to take this
effect into account.

The local instability analysis estimate (full and dashed lines) provide excellent upper
bounds over the entire ω span and for both j = 1, 2. Note also in figure 6(b) how the
local growth rate of a given resonance may drop to zero for particular frequencies at
fixed j as a consequence of the Bessel function correction (see (3.16)). This feature is
well reproduced in the global growth rates.

3.3.2. Corrected growth rate σv versus ω
The inviscid growth rates at resonance do not give a very realistic picture, as modes

with high wavenumbers can be strongly damped by viscosity. In figure 7(a), we show
the maximal viscous growth rate max(σv) as a function of ω for ε = 1, p= 0.2, h= 2
and different E numbers (data from survey nr,max = m1,max = nz,max = 10, jmax = 4). At
low E, we see that the maximal growth rate follows a bumpy curve that has a shape
that is quite close to the envelope of figure 6(b). Above ω > 2, only j = 1 couplings
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FIGURE 7. (Colour online) LDMI growth rates in triangularly deformed cylinder (n = 3)
for h = 2 and ε = 1. (a) Maximal viscous growth rates max(σv)/p as a function of
ω for E = 10−3 and 10−4 and p = 0.2. For E = 10−3, we identify unstable couplings
(m1,m2, nr, nz, j). (b) Growth rate σv as a function of E1/2 for h = 2 and p = 0.45. We
identify the four most unstable couplings and give the numerical values for σv at E = 5× 10−4

(parameters studied numerically in § 4). The thicker line (red online) is the envelope of the
resonance curves.

survive. The instability domain is slightly extended in the forbidden zone ω > 4.
Close to threshold, here for E = 10−3, we can clearly identify different resonances.
In the figure, we added (m1,m2, nr, nz, j) to characterize the coupling. We see that
nr = 1 for all modes, so the radial structures are large. Most resonant peaks combine
(m1,m2)= (−1, 2), modes with one or two axial wavelengths (nz) and for j= 1, 2, 3, 4.
We also see two peaks involving modes (m1,m2) = (0, 3) with one or two axial
wavelengths.

3.3.3. Growth rate σv versus E
In figure 7(b), each line follows the growth rates of different couplings with respect

to
√

E, for fixed ω = 3, ε = 1, p = 0.45 and for h = 2. The parabolic form of
each of these curves is indicative of dominant volume damping for the range of E
considered here. However, note that, in the limit of very small E, we naturally expect
the boundary dissipation to be dominant (for E� 1, we have E1/2 � E). Note that
the situation is very different in a spherical or even a spheroidal container, where
the volume damping exactly vanishes for any inertial mode (Zhang, Liao & Earnshaw
2004) and thus where the viscous damping can only be due to surface effects (e.g.
Lacaze et al. 2004).

We further identify the four most unstable couplings at E = 5× 10−4, a configuration
that will be studied numerically, and mark (m1,m2, nr, nz, j) in the figure, together
with the numerical value of the growth rate σv. Modes with higher azimuthal
wavenumbers (m1,m2) = (1, 4), (3, 6), (2, 5), (0, 3) dominate and we count nz = 2, 3
axial wavelengths.

4. Numerical simulations of libration-driven multipolar flow
In this section, we present simulations of libration-driven multipolar flows. First, we

provide some details on the computational method (§ 4.1). Then, in § 4.2 we validate
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that the basic flow (2.8) is indeed established for two different very simple and
experimentally realizable forcings. In the last subsection, we demonstrate the existence
of the LDMI, and characterize its properties, such as the growth rate, saturation
amplitude and viscous dissipation rate.

4.1. Numerical method
To perform our numerical simulations, we use a parallel unstructured finite-volume
code (Vantieghem 2011). It is based on a collocated arrangement of the variables,
and a second-order centred finite-difference-like discretization stencil for the spatial
differential operators. The time advancement algorithm is based on a canonical
fractional-step method (Kim & Moin 1985). More specifically, the procedure to obtain
the velocity and reduced pressure uN+1 and ΠN+1 at time step tN+1 = tN + 1t, given
the respective variables at time step N, is as follows.

(a) We first solve the intermediate velocity u? from the equation

u? − uN

1t
=−uN+1/2

AB ·∇uN+1/2
CN −∇ΠN

− 2γ N+1/2ez × uN+1/2 + E∇2uN+1/2
CN − d(γ N+1/2)

dt
ez × x, (4.1)

with no-slip boundary condition u?bnd = 0. In this expression, uN+1/2
AB and uN+1/2

CN
denote the velocity at time step N + 1/2 obtained using a second-order
Adams–Bashforth, respectively Crank–Nicolson approach, i.e.

uN+1/2
AB = 3

2u
N − 1

2u
N−1, (4.2)

uN+1/2
CN = 1

2(u
N + u?). (4.3)

The mixed Adams–Bashforth/Crank–Nicolson formulation for the advective term
has the advantage of being kinetic-energy-conserving and time-stable for any 1t
(Ham, Mattsson & Iaccarino 2006), and it does not require the solution of a
nonlinear system for the unknown u?.

(b) The new velocity uN+1 is then related to u? by

uN+1 = u? −1t(1ΠN+1), (4.4)

with 1ΠN+1 =ΠN+1−ΠN . Imposing the incompressibility constraint on uN+1 leads
to a Poisson equation for 1ΠN+1,

∇2(1ΠN+1)= (1t)−1∇ ·u?, (4.5)

with boundary condition en · ∇(1ΠN+1) = 0. This Poisson equation is solved with
the algebraic multigrid method BoomerAMG (Henson & Meier Yang 2000).

To discretize the equations in space, we use a grid that is shaped such that its
boundary coincides with a streamline of the flow (2.8). To this end, we transform
a circular mesh into one bounded by a streamline (see figure 8). This requires an
explicit parametrization of the streamlines r = F(θ), which is derived in appendix B.
As shown in figure 8(a), we start from a grid whose nodes occur on curves of constant
θ or constant r, except for a smaller inner core of radius r < 0.15. The outer part
of the grid (i.e. for 0.15 6 r 6 1) consists of highly regular regions of quadrilateral
elements, separated by transition layers of triangular elements; these transition layers
allow one to decrease the number of grid points in azimuthal direction as r→ 0, so
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FIGURE 8. Illustration of the deformed numerical grid in the x–y plane for p = 0.2. For
clarity, the closer spacing in the boundary-layer region has been left out. (a) Initial circular
grid before tripolar deformation. (b) Final grid after tripolar deformation (4.6)–(4.7).

as to avoid any clustering of the grid points near the origin. The grid consists of
quadrilateral elements and is unstructured for r < 0.15. Furthermore, the grid points
are more closely spaced in the wall-normal direction in the vicinity of r = 1 in order
to account for the presence of thin viscous boundary layers of thickness δ = √2E/ω
(Wang 1970); more precisely, the grid spacing in the near-wall region is such that
there are at least five grid nodes within a distance δ from the wall. Then, we gradually
deform the outer quadrilateral elements, starting at r0 = 0.5 towards r = 1. The radial
coordinate of the grid nodes is transformed from r into r′ according to the following
formulae:

r′ = r for r 6 r0, (4.6)

r′ =
[

1+ (F(θ)− 1)
r − r0

1− r0

]
r for r0 < r 6 1. (4.7)

This results in a smooth transformation, in which the grid elements are not too
distorted, as shown in figure 8(b) for p = 0.2. Moreover, we also wish to avoid grid
distortion at interfaces between zones of triangular and quadrilateral elements because
these interfaces are more sensitive to numerical stability and accuracy problems.
Therefore, we choose the value r0 = 0.5 such that the grid deformation only affects
the elements in the outer shell of quadrilateral elements. To determine the required
grid resolution for the simulations of the LDMI 3D flows, we have first performed
a grid convergence study. More specifically, for a given set of typical parameters
(E = 5× 10−4, n= 3, p= 0.45, ε = 1, ω = 3), we have investigated the dependence of
the growth rate σv on the number of control volumes NCV . We characterize the spatial
resolution using the resolution number Rgrid, defined by Rgrid = N1/3

CV . To estimate the
growth rate σv, we use the procedure outlined in § 4.3. Our results are summarized in
figure 9, where we show the relative difference 1σv between σv for a given value of
Rgrid and σv for the largest value of Rgrid that we have considered (Rgrid = 167):

1σv = σv(Rgrid)− σv(Rgrid = 167)
σv(Rgrid = 167)

. (4.8)
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FIGURE 9. (Colour online) Convergence of the growth rate of a 3D multipolar instability
with increasing grid resolution (for E = 5 × 10−4, n = 3, p = 0.45, ε = 1, ω = 3). For each
simulation at a given mesh resolution Rgrid, we perform several measures of σ , which gives
several measures of the relative difference 1σv . We report in this figure the mean value of
1σv (dots), as well as the obtained extremum values (error bars). The arrow indicates the
minimal resolution used for the systematic study of the instability in § 4.3.

Figure 9 shows that the relative difference of σv is smaller than 0.5 % for Rgrid & 105,
and much smaller than the uncertainties (error bars) associated with the measure
of σv. For the systematic study of the multipolar instability discussed below,
we systematically work at Rgrid ≈ 131.8 (indicated by an arrow in figure 9) for
E > 5 × 10−4, which corresponds to approximately 2.2 million control volumes. For
lower Ekman number, we employ grids with up to 2.9 million control volumes
(i.e. Rgrid ≈ 142.7) to ensure numerical convergence. Finally, one can notice that no
instability is observed for Rgrid 6 34, i.e. when the grid is too coarse.

The typical time step is of the order 1t = 5 × 10−3, and the integration time tmax ≈
750. The time step was systematically chosen such that the Courant–Friedrichs–Lewy
(CFL) number remained smaller than 0.9 during the entire computation. The
simulations were carried out using 64 central processing units (CPUs) on the Cray-
XE6 machine ‘Monte Rosa’ of the Swiss Supercomputing Centre (CSCS).

4.2. Numerical validation of the forced two-dimensional basic flow
Here, we investigate how to easily establish the basic flow (2.8). An obvious choice
would be to solve the Navier–Stokes equations in an inertial frame of reference, in a
domain bounded by a streamline, and to impose a boundary velocity ubnd =∇ × (Ψ ez).
However, this would require a numerical technique that can take into account a
moving boundary, such as the arbitrary Lagrangian–Eulerian method. Moreover, this
numerical approach does not have a simple experimental counterpart. Therefore, we
have considered two alternatives that are expected to generate the basic flow (2.8) in
the bulk. A first possible realization is the one of a librating rigid container whose
boundary takes the form of a streamline of the basic flow. An ingenious, but somewhat
more complex, alternative to obtain streamline deformation was devised by Eloy et al.
(2003) for steady rotation along deformed streamlines. They performed experiments in
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a cylindrical container, deformed by the compression of two or three rollers. To extend
this approach towards libration mechanical forcing, one can librate the rollers while
rotating the container at constant speed. In both cases, the dynamics of the system is
most easily expressed in the librating frame of reference attached to the deformation,
because the boundary is stationary in this frame. As such, the flow is governed by
the equations (2.5) and (2.6). However, in the former case the boundary condition is
ubnd = 0, whereas in the latter case it is ubnd = −ε cos(ωt) ez × en, where en denotes
the outward unit normal vector of the boundary. To assess if the basic flow is correctly
established, we consider the following error estimate:

E (C)=

∫ T

0

∫
C>−r2/2

‖u− U‖2 dr dt∫ T

0

∫
C>−r2/2

‖U‖2 dr dt

, (4.9)

where the integration is performed within a domain enclosed by a contour C = const.
This expression can be interpreted as follows: it is the relative L2 error norm of the
deviation between the numerically established flow and the exact basic flow (2.8),
within a domain bounded by a streamline of (2.8), time-averaged over an interval T
of 10 libration periods. We have evaluated E (C) for 20 equidistant values of C in the
interval [0.025, 1]. In figure 10, we show E for the two considered cases (librating
rigid container, and librating rollers on a deformable container rotating at constant
speed) and for several values of p.

We see that E (C) remains small for both forcing mechanisms and for all
investigated values of p, except in a viscous boundary layer that emerges to
accommodate the difference between the bulk flow (close to the exact basic flow)
and the boundary velocity ubnd. The thickness of these viscous layers is (Wang 1970)

δ =
√

2Eω−1. (4.10)

We assume that the velocity matching in this layer (between the bulk and the wall)
is of the form of 1 − exp(r∗δ−1), where r∗ = r − F(θ) denotes the distance from
the wall. The boundary-layer correction should thus remain smaller than 1 % outside
an annular-like region where r∗δ−1 < − log(0.01) ≈ 4.6. This distance is indicated
by a dashed axial line in figure 10. The excellent agreement within the bulk is
also confirmed in figure 11, which compares the exact basic flow and the numerical
solutions at time t =Mπ/ω with M an integer, i.e. when the basic flow has maximum
strength. Moreover, M is such that we are beyond the spin-up regime, i.e. such that
t > 5E−1/2. Comparing both realizations, we find that the discrepancy between the
established and basic flow within the boundary layer is considerably larger in the case
of a rigid container. This can be explained as follows. For the case of a deformable
container, the boundary velocity of the system with rollers is much closer to the exact
basic flow (2.8). We thus expect viscous effects to be much less important. Hence, the
discrepancy E is much smaller near the walls than when a rigid container is used to
establish the desired basic flow.

Nevertheless, as the bulk flow in both realizations is very close to (2.8), all the
theoretical results obtained in § 3 are valid in both cases. In the following, we will
only consider the case of a rigid container because of its experimental convenience.
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FIGURE 10. (Colour online) Relative L2 error norm E between the established flow and
the exact basic flow (2.8), for the case of (a) a rigid librating container and (b) a rotating
container deformed by librating rollers. Parameters: n= 3, E = 5× 10−4, ε = 1.0 and ω = 2.5.
The dashed vertical line indicates a distance of 4.6δ, with δ = √2Eω−1 the thickness of
the viscous layer, for which the theoretical boundary-layer correction should be smaller than
1 %≈ exp(−4.6).

4.3. Onset and development of the LDMI
In this section, we discuss 3D nonlinear simulations of the libration-driven tripolar
instability. The simulation domain is a cylinder that is periodic in the z direction
with a tripolar cross-section (in the x–y plane) like the ones discussed in the previous
section. Furthermore, we keep the aspect ratio h between the height of the cylinder
and the mean radius of the cross-section fixed at a value of 2. The choice of periodic
boundary conditions is motivated by the fact that we avoid the presence of thin Ekman
layers at the top and bottom of the cylinder, which have two important drawbacks.
(i) They are at the origin of 3D flows, even before the multipolar instability emerges.
(ii) The proper numerical resolution of these layers would lead to a considerable
increase in CPU time.

We will first present some general features of this instability. Then, we will validate
the theoretical results obtained in § 3 through a systematic study of the dependence
of the viscous growth rate σv on the flow parameters E, ω, p and ε. Finally, as
numerical simulations allow us to go beyond the linear theory, we will investigate two
characteristics of the nonlinear regime that are of interest, namely the amplitude and
viscous dissipation of the instability at saturation.
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FIGURE 11. (Colour online) Comparison for n = 3, p = 0.3, E = 5 × 10−4, ω = 2.5 and
ε = 1 between the exact basic flow (2.8) (bottom half) and the numerically established 2D
basic flow (top half) for the case of (a) a rigid tripolar (n= 3) container and (b) a deformable
container, deformed by rollers.

4.3.1. General characteristics of the LDMI flows
The basic flow being 2D, and the stability analysis showing instability for 3D

perturbations, we can expect that the axial kinetic energy Ez,

Ez = 1
2

∫
V

u2
z dV, (4.11)

is a good proxy for the development of the instability (V being the volume of the
container). Figure 12(a,b) shows typical time series of Ez, which exhibit three distinct
stages. Until t ≈ 40, Ez is negligibly small, and hence the basic flow is virtually
2D. From t ≈ 40, the axial kinetic energy undergoes exponential growth over many
decades. During this stage, uz has a wavy structure, as highlighted by a snapshot of
uz at t = 80 (see figure 12c). Eventually Ez saturates at a value of approximately 0.08
around t ≈ 110. In the last stage, Ez exhibits chaotic intermittent behaviour, which is
related to the appearance of small-scale turbulence; this is illustrated in figure 12(d) by
the snapshot of uz at t = 160. The turbulence is space-filling, and is thus not related
to the presence of a boundary-layer instability. This contrasts with previous studies
of libration-driven flows in axisymmetric containers (Noir et al. 2009, 2010; Calkins
et al. 2010; Sauret et al. 2012), where the observed turbulence was triggered by a
Taylor–Görtler instability and remained limited to the near-wall region.

4.3.2. Thresholds and viscous growth rates of the LDMI
We now investigate systematically how ε, p, ω and E affect the growth rate σv

of the instability. Libration frequencies ω < 2 are left out of consideration to avoid
any direct forcing of inertial modes. Note, however, that the LDMI is nevertheless
expected for ω < 2, as shown by figure 6. In order to extract growth rates from
time series of the axial kinetic energy Ez such as the ones plotted in figure 12(a,b),
we proceed as follows. First, we use a moving average procedure to filter out the
frequency component at 2ω from Ez. Subsequently, we fit a function of the form
A exp(2σvt) + B to the filtered signal within a certain time window [t1, t2]. The growth
rates σv obtained in this way are slightly dependent on the choice of t1 and t2. For the
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FIGURE 12. (Colour online) Time series of the axial kinetic energy Ez in a 3D numerical
simulation of the LDMI for n = 3, ω = 3, ε = 1, p = 0.45 and E = 5 × 10−4, on both (a) a
logarithmic scale, illustrating the exponential growth, and (b) a linear scale, giving evidence
of the subsequent intermittent behaviour. Snapshots of uz during (c) the exponential growth
stage at t = 64, and (d) the intermittency stage at t = 160.

robustness of the results, we have repeated the procedure described above for several
choices of t1 and t2. In the following figures, the growth rates displayed correspond to
the mean of the measured values, whereas the error bars indicate the maximum and
the minimum value.

The thick solid lines in figure 13 show the (inviscid) asymptotic WKB formula
(3.16) for C = −1/2 (boundary pathline), whereas each of the crosses or thin lines
represents a (viscous) resonance between a pair of inertial modes. Finally, the grey
circles (red online) correspond to the numerically obtained growth rates, and are in
good agreement with the values of σv of the most unstable resonances. The slight
numerical discrepancy between the simulations and global analysis may be attributed
to the following two factors: (i) the global theory is, strictly speaking, only valid in
the limit εp� 1; and (ii) the seed perturbation on which the instability grows consists
of pure numerical noise, which implies that we do not control whether inertial modes
are equally represented within this seed perturbation. As such, the most unstable
resonance does not necessarily dominate at the onset of instability and during its
initial exponential growth. Finally, we see that the asymptotic WKB analysis provides
a correct upper bound for the growth rates, but the results are not close to this bound.
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FIGURE 13. (Colour online) Growth rate σv as a function of the flow parameters E, p, ε
and ω for n = 3. Results of the asymptotic WKB analysis (thick black line) given by (3.16)
for C = −1/2 (boundary pathline), global analysis (thin lines and crosses; blue online) and
numerical simulations (circles; red online): (a) as a function of E for ε = 1, p = 0.45 and
ω = 3; (b) as a function of ω for ε = 1, p = 0.45 and E = 5 × 10−4; (c) as a function of
p for ω = 3, ε = 1 and E = 5 × 10−4; and (d) as a function of ε for ω = 3, p = 0.45 and
E = 5× 10−4.

This is naturally due to the fact that the WKB theory is an inviscid theory, whereas the
range of Ekman numbers under consideration is not asymptotically small. Note also
that we represent in figure 13 the maximum local inviscid WKB growth rate, which is
reached on the boundary pathline (C = −1/2), i.e. in a zone dominated by viscosity
(viscous boundary layer) in the simulations. The growth rate provided by the local
stability analysis can thus only be an upper bound. Nevertheless, we observe that the
WKB captures reasonably well the trend of the dependence of σv on ω, ε and p.

Figure 13(b) shows us that the instability tends to disappear for ω > 4. Indeed,
the LDMI is the result of parametric resonances of inertial waves that do not exist
for ω > 4 at zeroth order in ε and p: this is the forbidden zone (see § 3.1.3). Note
that the finite values of εp force us to consider the first order in εp, which gives a
forbidden zone for ω > 4 + εp, as in Le Dizès (2000). The global analysis and the
numerical simulations give evidence of the existence of resonant frequencies around
which the growth rate peaks as, for example, at ω = 3, as already observed by Cébron
et al. (2012c). Near ω = 3.75, there is some disagreement between the global theory
and the simulations. The increased growth rates in this frequency range are due to
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FIGURE 14. (Colour online) Time series of the axial Fourier components nz = 0–9 of the
total kinetic energy for n= 3, ω = 3, p= 0.45, ε = 1 and E = 5× 10−4. Numerically obtained
growth rates for the components nz = 2, 3, 4 are shown in the figure (and can be compared
with the values given in figure 7(b), i.e. σv = 0.136 for nz = 2 and σv = 0.127 for nz = 3).

the proximity of the forbidden zone, which leads to numerous resonances involving
higher-order inertial modes, as already seen in Le Bars et al. (2010) for instance.
Hence, these become increasingly difficult to capture in the global analysis.

We can furthermore decompose the flow into its Fourier components (along the z
direction),

u(r, t)=
∞∑

nz=−∞
Unz(x, y, t) einzz, (4.12)

and consider the energies Enz(t) associated with these modes,

Enz(t)= 1
2

∫∫
U2

nz
(x, y, t)+ U2

−nz
(x, y, t) dx dy. (4.13)

Figure 14 shows the time evolution of the different components Enz for ω = 3,
p = 0.45, ε = 1 and E = 5 × 10−4. We observe resonances that are associated with
axial wavenumbers nz = 2, 3, 4. Note that multiple resonances may coexist for each
single value of nz, which leads to a simultaneous growth of all the resonances. The
growth rates σv corresponding to nz = 2, 3, 4 are displayed as well. For nz = 2, 3,
these are in excellent agreement with the theoretically predicted growth rates given
in figure 7(b). However, we also find a resonance for nz = 4. Finally, we see that,
for t & 120, the flow contains a broad range of axial wavenumbers. This is a clear
signature of the emergence of nonlinear effects and the generation of turbulence
observed in figure 12(d).

4.3.3. Amplitude of the flow driven at saturation
We have shown previously (see e.g. figure 12d) that the LDMI may generate

vigorous flows that contain a broad range of length scales. An important measure of
this regime is the amplitude A of the flow, defined by

A (t)=
√

V−1
bulk

∫∫∫
Vbulk

(u− U)2 dV. (4.14)
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FIGURE 15. (Colour online) Amplitude of the LDMI for n = 3, ω = 3 and ε = 1. (a) Time
series of A (see definition in (4.14)) for p= 0.3, E = 5× 10−4 and p= 0.45, E = 2.5× 10−4

(dashed line). (b) Time-averaged amplitudes A against growth rates σv for p = 0.45 and
E = 2.5 × 10−3, 1.5 × 10−3, 1 × 10−3, 7 × 10−4, 5 × 10−4, 2.5 × 10−4 and 1 × 10−4 (©)
and E = 5 × 10−4 and p = 0.3, 0.37, 0.4, 0.45 (∗). Linear fit through the four leftmost data
points with a slope of 0.40 (dashed line).

This definition is based on the following considerations. The amplitude of the
instability is related to the difference between the total driven (unstable) flow u
and the exact (laminar) basic flow U . However, as we have shown in § 4.2, important
differences between u and U exist before the instability sets in due to the boundary
viscous layers. To discard the effect of these boundary layers, we limit the integration
domain to a volume Vbulk that only contains points for which C(r, θ) >−(1− 5δ)2/2.

In figure 15(a), we show time series of A (t) for the following parameter sets:
n = 3, ω = 3, p = 0.30, ε = 1, E = 5 × 10−4; and n = 3, ω = 3, p = 0.45, ε = 1,
E = 2.5 × 10−4. In both cases, we can identify three distinct stages. Prior to the
presence of the LDMI, A (t) is almost constant and remains smaller than 0.05. Then,
A (t) increases exponentially, and evolves in a complex way. Eventually, A (t) reaches
a saturated state, in which it fluctuates around some time-averaged value.

To study the effect of the flow parameters more systematically, we consider temporal
averages A of A (t), where the averaging interval typically consists of 150–200 time
units. For the values E = 10−4 to 2.5 × 10−3 considered, this corresponds at least to
1.5 spin-up times. In figure 15(b), we display A against σ 1/2

v for a large number of
parameter combinations. We observe that

A ≈ 0.4σ 1/2
v (4.15)

for σ 1/2
v . 0.3. This finding is consistent with previous studies of the nonlinear

evolution of the elliptical instability (e.g. Mason & Kerswell 1999; Lacaze et al.
2004; Cébron et al. 2010a), and, in a more general sense, the theory of supercritical
pitchfork instabilities. In these previous studies, it was possible to define a single
control parameter κ that governs the onset of instability. It has been observed that,
close to threshold, the amplitude scales as (κ − κc)

1/2, where κc is the critical value for
the onset of instability. In our present study, we may thus interpret σv as equivalent to
κ − κc. This indeed seems justified, as both measures are proxies for the distance from
threshold.
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FIGURE 16. (Colour online) (a) Moving-average D̃ν of the viscous dissipation of the flow
for n = 3, ω = 3, ε = 1, p = 0.4, E = 5 × 10−4 (thick) and p = 0.45, E = 2.5 × 10−4 (thin).
Dashed lines indicated the average dissipation DL

ν of the laminar base state. (b) Snapshot of
the local viscous dissipation rate 2ESijSij for n = 3, ω = 3, ε = 1, p = 0.4, E = 5 × 10−4 at
t = 424.

For larger values of σv, this simple scaling law does not hold any more. This
is in agreement with Kerswell (2002), who argues that the primary instability only
saturates and is stable for a small range of parameters near the threshold. Finally, we
also observe that A tends to saturate to a maximum value of approximately 0.3 for
σ 1/2
v & 0.45.

4.3.4. Viscous dissipation of the instability
The viscous dissipation rate Dν is defined by

Dν = 2E
∫∫∫

SijSij dV, (4.16)

where Sij = (∇u + ∇uT)/2 is the strain-rate tensor. This quantity, however, is strongly
oscillating, and therefore we show in figure 16(a), for two sets of parameters, a
moving average of Dν with an averaging window of two libration periods, and denote
it D̃ν . Clearly, even before the onset of instability, D̃ν takes significant values and
is constant. The dissipation in this stage is mainly due to the presence of viscous
boundary layers. In appendix C, we have modelled this dissipation with a simple
theoretical model based on the boundary-layer theory of Wang (1970). This model
shows reasonable agreement with simulation results of the laminar base state. We
denote this dissipation of the laminar flow DL

ν and indicate its average value by
a dashed line in figure 16(a). After the onset of instability, the dissipation slightly
increases. In figure 16(b), we show a snapshot of the local viscous dissipation rate
2ESijSij at t = 424 for the case n = 3, ω = 3, ε = 1, p = 0.4 and E = 5 × 10−4. As
can be seen, the dissipation rate is up to three orders of magnitude larger in the
boundary-layer region. Since the volume fraction occupied by this region is of the
order of E1/2 ≈ 0.022, we expect that boundary-layer contributions will also dominate
the total viscous dissipation rate in the nonlinear regime.

We may now define the dissipation due only to the instability D I
ν as

D I
ν =Dν −DL

ν . (4.17)
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FIGURE 17. Evolution of the viscously rescaled dissipation E−1/2D I
ν for n = 3, ω = 3, ε = 1,

p = 0.45 and E = 1.5 × 10−3, 10−3, 7 × 10−4, 5 × 10−4, 2.5 × 10−4, 10−4 (©) and
p = 0.3, 0.37, 0.4, 0.45, E = 5 × 10−4 (∗), dashed lines being linear fits to the data points:
(a) as a function of A

2
, i.e. the square of the amplitude of the equilibrated flow driven by the

LDMI; and (b) as a function of the growth rate σv .

As for the amplitude of the instability (see § 4.3.3), we now consider time averages of
D I
ν over long time intervals in the saturated nonlinear regime, and investigate how this

quantity scales with respect to other characteristics of the instability. In figure 17, we
find that D I

ν scales as

D I
ν ≈ 7.8 A

2√
E. (4.18)

This scaling law is in agreement with previous studies (e.g. Williams et al. 2001; Le
Bars et al. 2011), and is consistent with (4.16). Indeed, as the viscous dissipation
is quadratic in the velocity, we also expect it to scale quadratically in A . Since we
have established previously that, close to the threshold, A scales as σ 1/2

v , we expect
D I
ν ∝ σv

√
E. This is indeed the case, as illustrated in figure 17, where we see that all

data points approximately collapse onto a straight line given by

D I
ν ≈ 4.1σv

√
E. (4.19)

It is remarkable that the viscous growth rate, a result of the linear stability analysis, is
still a relevant parameter to characterize the nonlinear regime. It may indicate that the
nonlinear regimes we have explored are not very far from the instability threshold.

4.4. LDMI, a generic instability (simulation in a spherical geometry)
Because of its possible geophysical relevance and to show that the LDMI is a generic
mechanism, we now investigate numerically whether the libration-driven tripolar
instability can also take place in deformed spherical containers. We thus consider a
spherical container, and move each point of its boundary at a cylindrical radius r
towards a point at the cylindrical radius r′ following

r′ =
[
1+ p

n
cos(nθ)

]
r, (4.20)

in each plane perpendicular to the rotation axis (using here n = 3). This deformation
corresponds to a multipolar shape in the limit p� 1 (see (2.4)).
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FIGURE 18. (Colour online) Libration-driven tripolar instability in a deformed spherical
container for the parameters p = 0.25, E = 5 × 10−4, ω = 3.8 and ε = 1: (a) time series of
axial kinetic energy and (b) 3D snapshot of the velocity magnitude at t = 84.

Figure 18 displays results of a simulation for parameters n = 3, p = 0.25, ω = 3.8,
ε = 1 and E = 5× 10−4, which are values of the same order of magnitude as the ones
used in previous sections on cylindrical geometry. In figure 18(a), the time series of
the axial kinetic energy (4.11) again exhibits three distinct stages. Prior to the onset of
instability (for t < 60), Ez oscillates around a small but non-negligible value of 0.001.
The corresponding velocity component uz is related to the Ekman pumping due to
the viscous Ekman layers. Starting from t ≈ 60, Ez undergoes an exponential growth
over a short time interval (until t ≈ 90): an LDMI is thus excited. Further evidence
for this is given in figure 18(b), where we observe that the velocity magnitude ‖u‖ is
characterized by an oscillatory spatial pattern in the bulk of the fluid. Moreover, we
find that the growth rate of the instability is σv ≈ 0.108. We can compare this value to
the corresponding values for cylindrical geometry, shown in figure 13(b). For p= 0.45
and all other parameters equal to those in the present spherical case, we find that the
growth rate in cylindrical geometry is σv ≈ 0.2. Hence, for p= 0.25, we can estimate a
growth rate that is approximately 0.2× 0.25/0.45≈ 0.111, which is in good agreement
with the measured value of σv ≈ 0.108. We can thus conclude that the LDMI, as a
local instability, can be excited in any geometry with a non-zero multipolar component
in its cross-section if the ratio εp/E is large enough.

5. Conclusion and discussion
Given the planetary relevance of libration-driven flows, a number of studies have

been devoted to librating axisymmetric containers in order to investigate the role
of the viscous coupling (e.g. Noir et al. 2009, 2010, 2012; Busse 2010a,b; Calkins
et al. 2010; Sauret et al. 2010, 2012). These works show that, in this case, libration
does not lead to significant power dissipation or angular momentum transfer. As
shown by Cébron et al. (2012c), these conclusions should be re-addressed in elliptical
containers, since space-filling turbulence may be observed in numerical and laboratory
experiments. In this work, we have shown that this space-filling turbulence is actually
due to a particular case of a generic instability, the LDMI, which can be excited in any
librating non-axisymmetric container. For instance, in librating synchronized moons
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(see e.g. Noir et al. (2012) for details), the Ekman numbers of fluid layers are so small
(E = 10−12–10−10) that an LDMI can be expected, even if the libration amplitudes
and the deformations are very small (p= 10−5–10−3, ε = 10−5–10−3, depending on the
compressibility of the fluid and the rigidity of the solid layer). This may question the
usual spherical geometry approximation used to study planetary flows numerically.

In the present study, we have first performed a short-wavelength Lagrangian local
stability analysis of the basic flow. This has allowed us to compute the inviscid growth
rates of the LDMI for arbitrary deformations and libration amplitudes. Then, in the
limit of small deformations, we have obtained an analytical expression for the growth
rate using a multiple-scale analysis, and we have successfully compared it to the exact
stability results. This local stability analysis shows that the LDMI can be excited as
soon as a flow periodic trajectory has a multipolar shape.

To complete our understanding of the LDMI, we have then carried out a global
stability analysis, which allows us to take confinements and viscous effects into
account, and thus to predict accurate onsets of the LDMI. This analysis has shown
that the LDMI can also be seen as the parametric resonance between two inertial
waves of a rotating fluid and a librating multipolar strain (which is not an inertial wave
or mode). Seldom compared in the literature, we have shown that the local and the
global stability results are consistent and lead to similar growth rates in the inviscid
limit.

Numerical simulations are then used to demonstrate the existence of the LDMI in
librating systems. After confirming that the considered basic flow is indeed established
in the bulk of librating multipolar containers, we have systematically compared the
simulations with the theoretical stability results. The quantitative agreement between
the two is excellent, even for the details of simultaneous growths of several parametric
resonances of inertial waves. The simulations are then used to explore the nonlinear
regimes of the LDMI, which are difficult to describe theoretically. This allows us to
confirm that, in the equilibrated state, LDMI-driven flows are of significant amplitude,
which are almost of the same order of magnitude as the basic flow, as previously
observed for the elliptical instability (e.g. Cébron et al. 2010a). Subsequently, the
viscous dissipation of the libration-driven flows is carefully quantified and compared
with previously established scaling laws. Finally, we confirm that the LDMI is a
generic instability by showing one simulation of the excitation of the instability in a
spherical container deformed with a multipolar shape.

To conclude, we would like to point out that the experimental set-up needed to study
the LDMI may be one of the simplest of those devoted to inertial instabilities. Indeed,
we do not need deformable containers (as in Eloy et al. (2003) for the study of
elliptical or triangular instabilities) or two motors (as in Lagrange et al. (2011) for the
study of the precessional instability). To study the LDMI experimentally, only a rigid
deformed container and a rotating table are needed. The range of parameters where
the instability is excited is easy to reach: considering, for instance, a small tripolar
cylinder with a radius R = 15 cm, a height H = 30 cm and a deformation p = 0.45,
slowly rotating at 0.9 r.p.m. and librating with a period of 22 s, an LDMI is excited
as soon as the libration angle is larger than 6◦ (any larger rotation rate would be
strongly destabilizing). Then, in spite of its simplicity, such a set-up easily allows, via
the LDMI, the generation of strong 3D space-filling flows within a rigid container.
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Appendix A. Local and global stability analysis: details
A.1. Asymptotic local stability analysis for small forcings εp� 1

Assuming that the product εp� 1 remains small, we first calculate the trajectory in
the inertial frame. At leading order, we obtain the circular trajectory X (0)(t) due to the
solid-body rotation. For a given initial position, e.g. (R, 0), X (0)(t) can be written as

X (0) = R cos(t) ex + R sin(t) ey. (A 1)

This allows one to obtain the deviations X (1)(t) induced by the multipolar deformation:

X (1)(t)= Rn−1

2ω
[cos((ω − 1)t)− cos((ω + 1)t)] ex

+ Rn−1

2ω
[sin((ω − 1)t)− sin((ω + 1)t)] ey. (A 2)

With this, one can evaluate ∇U on the perturbed trajectory, up to order O(εp),
allowing one to solve for the wavenumber K(t). At lowest order, we obtain K(0)

(t),
given in § 3.1.3, which allows one to obtain the next order:

K(1)
(t)= (n− 1)Rn−2

2ω
[cos((ω + 1)t − φ)− cos((ω − 1)t + φ)] ex

+ (n− 1)Rn−2

2ω
[sin((ω + 1)t − φ)+ sin((ω − 1)t + φ)] ey. (A 3)

Note that we recover the expressions for X(t) and K(t) given in the appendix of
Herreman et al. (2009) by considering the particular case they study, i.e. n = 2 and
ω = 1.

A.2. Global stability analysis

A.2.1. Definition of operators
In the global stability analysis, we have used the operators

L =


∂t −2 0 ∂r

2 ∂t 0 r−1∂θ

0 0 ∂t ∂z

∂r + r−1 r−1∂θ ∂z 0

 , (A 4)
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N = i


D1 − (n− 1)rn−2 −i(n− 2)rn−2 0 0
−inrn−2 D1 + (n− 1)rn−2 0 0

0 0 D1 0
0 0 0 0

 , (A 5)

V =


D2 − r−2 −2 r−2∂θ 0 0
2 r−2∂θ D2 − r−2 0 0

0 0 D2 0
0 0 0 0

 , (A 6)

J =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (A 7)

with

D1 =−rn−1∂r − irn−2∂θ , D2 = r−2∂2
rr + r−1∂r + r−2∂2

θθ + ∂2
zz. (A 8)

A.2.2. Inviscid boundary condition correction induced by wall deformations
The deformation of the cylindrical boundary introduces flow corrections, and it

is necessary to account for these in the global stability calculation. To find these
corrections, we express the kinematic boundary condition on the moving boundary as

∂ζ R

∂t
+ UR ·∇ζ R + uR ·∇ζ R|surface = 0. (A 9)

Here ζ R is defined by (2.14) and the basic flow UR is given by (2.13). The basic flow
is such that this equation reduces to

uR ·∇ζ R|surface = 0. (A 10)

We will now find an asymptotic form of this condition for small p, expressed at the
unperturbed boundary surface r = 1. When p� 1, the lateral surface is written in
cylindrical coordinates as the place where r = rs(θ, t), with

rs(θ, t)= 1+ p

n
cos n(θ +1ϕ sinωt)+ O(p2), (A 11)

for θ ∈ [0, 2π]. Taylor-expanding (A 10) around r = 1, we then get

uR
r (1)=−p

[
1
n

cos n(θ +1ϕ sinωt)

]
∂rur(1)

− p[sin n(θ +1ϕ sinωt)]uθ(1)+ O(p2) (A 12)

which using (2.18) becomes

uR
r (1)= p

[
einθg(t)

(
−1

n
∂rur(1)+ iuθ(1)

)
+ e−inθg†(t)

(
−1

n
∂rur(1)− iuθ(1)

)]
+ O(p2). (A 13)

These O(p) modifications of the radial velocity enter in the growth rate calculation
through the boundary terms of the two equations that express the solvability
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condition (3.35). Considering the form of the asymptotic ansatz (3.27), we have

Q†
1,4(1)Z1,1(1)= pA2g†

−j

[
Q†

1,4(1)
(
−1

n
∂rQ2,1(1)− iQ2,2(1)

)]
︸ ︷︷ ︸

B12

, (A 14)

Q†
2,4(1)Z2,1(1)= pA1g+j

[
Q†

2,4(1)
(
−1

n
∂rQ1,1(1)+ iQ1,2(1)

)]
︸ ︷︷ ︸

B21

. (A 15)

From a physical point of view, these boundary terms correspond to the power
exchanged between two interacting modes (because of boundary deformations).

Appendix B. Explicit streamlines parametrization for n= 3

For the case of the tripolar and quadrupolar basic flows, the streamlines defined
by the streamfunction (2.8) can be expressed as an analytic functional relationship
between r and θ , i.e. r = F(θ). We have used this formulation in our numerical
approach to generate a grid whose boundary coincides with the shapes of the
streamlines (see § 4.1) Ψ ≡ C. We have chosen the value of C such that the boundary
contour tends to the unit circle as p goes to zero, i.e. C =−1/2:

Ψ =−r2

2
+ p

r3

3
cos(3θ)=−1

2
. (B 1)

This implicitly defines r = F(θ), and can be recast as a cubic equation for r,

τ r3 − r2 + 1= 0, (B 2)

where we have defined τ = 2p cos(3θ)/3. This equation can only have positive roots
for all values of θ if 1 = 4 − 27τ 2 > 0. This implies that p 6 1/

√
3, which is

equivalent to the condition βn 6 1 for n = 3 (see § 2). Upon the introduction of
r̃ = r − 1/(3τ), we can transform (B 2) into

r̃3 − 1
3τ 2

r̃ + 1
τ

(
1− 2

27τ 2

)
= 0. (B 3)

Following the general theory for the solution of cubic equations, the solutions for r̃
can now be written as

r̃k = 2
3|τ | cos

[
1
3

arccos
(

Sgn(τ )
(

1− 27
2
τ 2

))
− 2πk

3

]
for k = 1, 2, 3, (B 4)

and hence

rk = 1
3τ
+ 2

3|τ | cos
[

1
3

arccos
(

Sgn(τ )
(

1− 27
2
τ 2

))
− 2πk

3

]
for k = 1, 2, 3. (B 5)

The choice of k is now determined by the requirement that rk → 1 in the limit
of vanishing τ (i.e. for infinitesimally small streamline deformation). For τ > 0
(respectively, τ < 0), we find that the only acceptable solution is the one corresponding
to k = 1 (respectively, k = 3). In both cases, the streamline can be parametrized
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explicitly, up to the leading order in τ , as

r = 1+ τ
2
+ O(p2)= 1+ 1

3
p cos θ + O(p2)= F(θ). (B 6)

We now compute the surface area S of a small annular-like region of relative
thickness δ� 1. We may write

S ≈
∫ 2π

θ=0

∫ F(θ)

r=(1−δ)F(θ)
r dr dθ ≈ 2πδ(1+ O(p2)+ O(δ)+ O(δp2)). (B 7)

Appendix C. Viscous dissipation rate of the basic flow
In this appendix, we derive a simple model to estimate the viscous dissipation of

the laminar base flow based on the boundary-layer theory of Wang (1970). Since,
on average, the flow is steady, the mean viscous dissipation DL

ν should be equal to
the time-averaged power of the Poincaré force (sometimes called Euler force, see e.g.
Eckart (1960)), i.e.

DL
ν =

∫∫
u ·
(
r× dγ

dt
ez

)
dr, (C 1)

where γ is given by 1 − ε cos(ωt) (see § 2.1). Since ω � √E, we may adapt the
local tangential boundary-layer correction provided by Wang (1970) to account for
the non-circular shape of the container. It can be expressed in the librating frame as
follows:

u= ε
[

exp
(

r − F(θ)

δ

)
cos
(
ωt − r − F(θ)

δ

)]
eT − ε cos(ωt) eθ . (C 2)

Here, eT is a unit vector tangential to the streamline, F(θ) is a parametrization of the
boundary (see appendix B for the particular case n = 3), which can be approximated
by F(θ) = 1 + pn−1 cos(nθ) + O(p2) in the limit p� 1, and the last term in this
expression comes from our librating frame. As such, we obtain

DL
ν =

π√
2
ε2
√

Eω [1− 2δ + δ2(1+ e−δ
−1
(sin δ−1 − cos δ−1))+ O(p2)]. (C 3)

Given that n is not present in (C 3), the viscous dissipation rate of the basic flow is
independent of n in the limit of small deformation.

In order to verify (C 3), we have performed extensive 2D numerical simulations of
the basic flow in which the four parameters ε, p, E and ω are independently varied.
The results of this survey are shown in figure 19 and confirm indeed that DL

ν scales,
to the leading order, as DL

ν ∼
√

Eω ε2. The slope of the dashed line in this figure
is approximately 2.13, which is close to the leading-order coefficient π/

√
2 ≈ 2.22

(difference of 4 %).
In figure 19(b), we show the dependence of DL

ν on p. Performing a fourth-order
polynomial fit to these data points, we obtain DL

ν = 0.082 46− 0.001 46 p+ 0.027 p2 +
O(p3). We see that the prefactor in front of the linear term is almost two orders
of magnitude smaller than those in front of the constant and quadratic term. The
magnitude of this coefficient reduces further when we increase the order of the
polynomial fit. This indicates that the first higher-order term in p in (C 3) is indeed
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FIGURE 19. (Colour online) Viscous dissipation rate DL
ν of the two-dimensional basic flow

for n = 3. (a) As a function of ε, E and ω with fixed p = 0.3. Triangles: varying ε, fixed
E = 5 × 10−4 and ω = 3.5. Diamonds: varying E for fixed ε = 1 and ω = 3.5. Asterisks:
varying ω for fixed ε = 1 and E = 5 × 10−4. Dashed line: linear fit to the data points, giving
a slope of 2.13. (b) As a function of p for fixed E = 5 × 10−4, ε = 1 and ω = 3.5. Circles:
numerical data points. Dashed line: fourth-order polynomial fit to the data points.

quadratic in p. The constant factor 0.082 46 can be compared with the prefactor in
(C 3), i.e. π

√
Eω/2= 0.092 929 (difference of 11 %).

R E F E R E N C E S

ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions, 5th edn. Dover.
ALDRIDGE, K. D. 1967 An experimental study of axisymmetric inertial oscillations of a rotating

liquid sphere. PhD thesis, University of Toronto, Canada.
ALDRIDGE, K. D. 1975 Inertial waves and Earth’s outer core. Geophys. J. R. Astron. Soc. 42 (2),

337–345.
ALDRIDGE, K. D. & TOOMRE, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating

spherical container. J. Fluid Mech. 37 (2), 307–323.
BAYLY, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17),

2160–2163.
BAYLY, B. J., HOLM, D. D. & LIFSCHITZ, A. 1996 Three-dimensional stability of elliptical vortex

columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354 (1709), 895–926.
BENDER, C. M. & ORSZAG, S. A. 1978 Advanced Mathematical Methods for Scientists and

Engineers: Asymptotic Methods and Perturbation Theory, vol. 1, Springer.
BUSSE, F. H. 2010a Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid

Mech. 650, 505–512.
BUSSE, F. H. 2010b Zonal flow induced by longitudinal librations of a rotating cylindrical cavity.

Physica D: Nonlinear Phenom. 240 (2), 208–211.
CALKINS, M. A., NOIR, J., ELDREDGE, J. D. & AURNOU, J. M. 2010 Axisymmetric simulations

of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22, 086602.
CAMBON, C., BENOIT, J. P., SHAO, L. & JACQUIN, L. 1994 Stability analysis and large-eddy

simulation of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175–200.

CAMBON, C., TEISSEDRE, C. & JEANDEL, D. 1985 Étude d’effets couplés de déformation et de
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LE DIZÈS, S. 2000 Three-dimensional instability of a multipolar vortex in a rotating flow.
Phys. Fluids 12, 2762.
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