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Many flows of electrically conducting fluids can spontaneously generate magnetic
fields through the process of dynamo action, but when does a flow produce a better
dynamo than another one or when is it simply the most efficient dynamo? Using
a variational approach close to that of Willis (Phys. Rev. Lett., vol. 109, 2012,
251101), we find optimal kinematic dynamos within a huge class of stationary and
incompressible flows that are confined in a cube. We demand that the magnetic field
satisfies either superconducting (T) or pseudovacuum (N) boundary conditions on
opposite pairs of walls of the cube, which results in four different combinations.
For each of these set-ups, we find the optimal flow and its corresponding magnetic
eigenmodes. Numerically, it is observed that swapping the magnetic boundary from
T to N leaves the magnetic energy growth nearly unchanged, and both +U and −U
are optimal flows for these different but complementary set-ups. This can be related
to work by Favier & Proctor (Phys. Rev. E, vol. 88, 2013, 031001). We provide
minimal lower bounds for dynamo action and find that no dynamo is possible below
an enstrophy (or shear) based magnetic Reynolds number Rmc,min = 7.52π2, which is
a factor of 16 above the Proctor/Backus bound.
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1. Introduction
Many planets and stars are surrounded by magnetic fields, which we believe are

created by flows in their electrically conducting fluid interiors. This process is studied
in dynamo theory, and ever since its advent, a central question has been to identify
what makes a flow an efficient dynamo. Some will say it has to be helical, others
will demand shear and again others will say it is chaotic stretching of fluid parcels
that we need. Different dynamo mechanisms may be important in different physical
situations, but as a prelude to more elaborate calculations we can try to ask a very
simple question: can we identify the flows that act as the best (optimal) dynamos for
a given geometry? What are their characteristics and is there something that we can
learn from them?

The search for optimized dynamos is not new and has been adopted in particular
in preparation for experimental dynamo campaigns (Riga, Karlsruhe, Madison, VKS).
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Most of these studies, however, consider flows that vary in small- to mid-scale
O(10–100) parameter spaces and/or use symmetrical flows to reduce the numerical
cost. Several works have optimized radial structures of axisymmetric flows: Love
& Gubbins (1996) for Kumar–Roberts flows in 3D parameter space, Holme (2003)
for Dudley–James flows in a 26D phase space, Stefani, Gerbeth & Gailitis (1999)
for the Riga dynamo. In a more advanced study by Khalzov et al. (2012) dedicated
to the Madison Plasma Device Experiment, it is not the axisymmetric flow that is
optimized, but an axisymmetric boundary forcing in a 10-parameter phase space.
Non-axisymmetric flow optimizations are quite rare; however, Alexakis (2011)
optimized ABC flows in a 2D phase space.

What should one do if one wished to optimize the full spatial structure of a
flow? Clearly it is necessary to find an efficient way to walk through a potentially
extremely high-dimensional parameter space. Such a path can be provided by
variational optimization methods (Lions 1970). These methods have been frequently
used in the inverse problems that are solved by seismologists (Tarantola 1984;
Tromp, Komattisch & Liu 2008), but also in the geodynamo context, variational data
assimilation techniques (Li, Jackson & Livermore 2011, 2014) have been proposed
to infer dynamical information concerning the Earth’s interior. In the hydrodynamical
context, the variational optimization method has recently provided new insights into
the problem of subcritical transition (Pringle & Kerswell 2010; Pringle, Willis &
Kerswell 2012; Duguet et al. 2013; Kerswell, Pringle & Willis 2014).

In the present context of optimized dynamo action, it is precisely this type
of variational method that allowed Willis (2012) to solve the optimized dynamo
problem. Within a huge class (∼105-dimensional parameter space) of stationary
incompressible flows that fitted in a periodic cubic box, minimal dynamo thresholds
and accompanying flows and fields were identified. The minimal dynamo thresholds
for the optimized dynamos as reported by Willis are among the lowest ones ever
observed and can be compared with existing lower bounds for dynamo action (Backus
1958). This possibility to numerically quantify the precise lower bound for dynamo
action is indeed quite exceptional and certainly very new in dynamo theory.

In this article, we extend the work initiated by Willis (2012). The search for
optimal dynamos in periodic fluid domains was a critical first step, but if we want
to reach towards geophysically or experimentally realizable flows, it is necessary to
bound the flows within finite fluid domains and to impose boundary conditions on
the magnetic field. This presents a serious challenge since boundary conditions are
not often trivially implemented in these optimization methods. For the moment, we
still consider cubic domains instead of more planetary-like settings, but we find a first
way to build the most efficient dynamos in domains with boundaries. Our flows will
remain inside the box and magnetic fields will satisfy either perfectly conducting or
pseudovacuum conditions on the sidewalls. The same types of conditions were studied
by Krstulovic et al. (2011), and the advantage is that one can still use periodic box
codes to perform the calculations. We will explain the method in detail, in particular
the parts related to the boundary conditions. We aim to find optimal dynamos, and
as a by-product the minimal critical magnetic Reynolds numbers for dynamo action.
An unexpected outcome of this study is the fact that when a flow U is an optimal
dynamo with a given set of boundary conditions, the inverted flow −U is also an
optimal dynamo for a complementary but different set of boundary conditions. We
can explain this using an argument close to recent work by Favier & Proctor (2013).
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Optimal dynamo action by steady flows confined to a cube 25

2. Problem and method
2.1. Objective function

The variational optimization method (Lions 1970; Talagrand & Courtier 1987) is
strongly inspired by Willis (2012). We choose to optimize the asymptotic growth of
the magnetic energy in the cube directly to select the most efficient dynamo. More
precisely, inside the fluid domain V , which is a cubic box of unit size, we search
for the best stationary flows U(x) and initial magnetic fields B0 = B(x, 0) that give
the maximal magnetic energy growth at a large but finite time T . This results in the
following objective functional with various constraints:

L = ln〈B2
T〉 − λ1(〈(∇×U)2〉 − 1)− λ2(〈B2

0〉 − 1)
−〈Π1∇ ·U〉 − 〈Π2∇ ·B0〉
−
∫ T

0
〈B†
· [∂tB−∇× (U×B)+ Rm−1

∇×∇×B]〉 dt. (2.1)

We denote here 〈· · ·〉 = (1/V ) ∫
V
· · · dV as the integral over the box. The first term

expresses that we maximize the logarithm of magnetic energy at time T , since at
large T the magnetic energy can be described by an exponential function. We write
as shorthand BT =B(x, T) for the final magnetic field. In the non-dimensional setting,
the fluid flow has to be normalized (constrained by λ1), here by an enstrophy or
dissipation norm. As noted by Willis, the alternative normalization that fixes the
kinetic energy −λ1(〈U2〉 − 1) is problematic as discontinuous flows with unlimited
shear may then be picked up by the optimizer. This problem is avoided by using
the dissipation norm. The flow also has to be a solenoidal (constrained by Π1) field.
The magnetic field satisfies the induction equation at all times (constrained by B†).
It is sufficient to impose that the initial magnetic field B0 is solenoidal (constrained
by Π2), since solenoidality is preserved by the induction equation, and therefore
∇ ·B= 0 is guaranteed at all times. The maximization is not well defined unless the
initial magnetic field amplitude is fixed (normalized) (constrained by λ2).

The functional was written immediately in non-dimensional form and depends on
two non-dimensional numbers: T , the time horizon, and Rm, the magnetic Reynolds
number, defined as

Rm= SL2/η. (2.2)

Here, S is a measure for the dimensional enstrophy or typical shear magnitude, L
is the dimensional box size and η is the magnetic diffusivity. Time is measured in
units of S−1, space in units of L, velocity in units of SL and magnetic field units are
arbitrary.

2.2. Boundary conditions
The crucial difference from Willis’ work is that we demand that U and B satisfy
boundary conditions on the walls Σ of the cubic box. We can impose these boundary
conditions by adding supplementary constraints to L or we can limit the variations
to classes of functions that meet a fixed set of boundary conditions. We choose the
second approach.

Flows U are allowed to slip on the boundary but cannot penetrate it:

n ·U|Σ = 0, (2.3)

where n is the external unit normal everywhere on Σ .
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Magnetic fields B will satisfy either a perfectly conducting (T, tangential) or a
pseudovacuum (N, normal) boundary condition, on each of the three pairs of parallel
end plates. Out of eight possible configurations, we consider only four physically
independent combinations:

x̂×B|x=0,1 = 0,
x̂ · J|x=0,1 = 0,

ŷ×B|y=0,1 = 0,
ŷ · J|y=0,1 = 0,

ẑ×B|z=0,1 = 0,
ẑ · J|z=0,1 = 0,︸ ︷︷ ︸

NNN

x̂×B|x=0,1 = 0,
x̂ · J|x=0,1 = 0,

ŷ×B|y=0,1 = 0,
ŷ · J|y=0,1 = 0,

ẑ ·B|z=0,1 = 0,
ẑ× J|z=0,1 = 0,︸ ︷︷ ︸

NNT

x̂×B|x=0,1 = 0,
x̂ · J|x=0,1 = 0,

ŷ ·B|y=0,1 = 0,
ŷ× J|y=0,1 = 0,

ẑ ·B|z=0,1 = 0,
ẑ× J|z=0,1 = 0,︸ ︷︷ ︸

NTT

x̂ ·B|x=0,1 = 0,
x̂× J|x=0,1 = 0,

ŷ ·B|y=0,1 = 0,
ŷ× J|y=0,1 = 0,

ẑ ·B|z=0,1 = 0,
ẑ× J|z=0,1 = 0.︸ ︷︷ ︸

TTT

(2.4a−d)

Cases NTN, TNN and TNT, TTN are not studied, because they are identified as NNT
and NTT up to a permutation of x, y and z. We denote J = Rm−1∇ × B as the
current density. On perfectly conducting boundaries ΣT , one more usually expresses
a condition n× E= 0|ΣT , but given Ohm’s law J = E+U × B, impermeability (2.3)
and the fact that n ·B|ΣT = 0, this is equivalent to n× J= 0|ΣT .

2.3. Euler–Lagrange equations
At the optimal the Lagrangian must be stationary with respect to arbitrary variations,
which means that

δL = δL

δλ1
δλ1 + δL

δλ2
δλ2 +

〈
δL

δΠ1
δΠ1

〉
+
〈
δL

δΠ2
δΠ2

〉
+
∫ T

0

〈
δL

δB† · δB
†
〉

dt

+
〈
δL

δU
· δU

〉
+
〈
δL

δB0
· δB0

〉
+
〈
δL

δBT
· δBT

〉
+
∫ T

0

〈
δL

δB
· δB

〉
dt

+BT = 0. (2.5)

Each of the variational derivatives δL /δ· has to disappear separately, which defines
nine Euler–Lagrange equations for the optimal problem. Boundary terms (BT)
generated by partial integration should disappear and define boundary conditions
for the fields Π2,B† and here a supplementary condition for the flow U.

The five variational derivatives with respect to the Lagrange multipliers λ1, λ2, Π1,
Π2, B† generate the physical constraints that fix the functional classes for U and B0
and produce the ‘direct’ induction equation for B. The four variational derivatives with
respect to U,B0,BT,B generate four non-trivial equations, which can be obtained by
partial integration:

δL

δU
=
∫ T

0
B× (∇×B†) dt+ 2λ1∇2U+∇Π1→ 0, (2.6)

δL

δB0
=B†

0 − 2λ2B0 +∇Π2→ 0, (2.7)

δL

δBT
= 2BT

〈(B2
T)〉
−B†

T = 0, (2.8)

δL

δB
= ∂tB† + (∇×B†)×U− Rm−1

∇×∇×B† = 0. (2.9)
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Optimal dynamo action by steady flows confined to a cube 27

Equations (2.6) and (2.7) will be used to define updates and will only reach zero
in an iterative optimization process. Equation (2.8) defines the so-called compatibility
condition that allows the adjoint magnetic field B†

T to be initialized. Equation (2.9)
sets the adjoint induction equation.

The partial integrations produce the boundary terms that should also disappear at
the optimum. Here, they are

BT = −
∮
Σ

Π1(n · δU) dS−
∮
Σ

Π2(n · δB0) dS

+
∫ T

0

∮
Σ

[(J† × δB) · n+ (B† × δE) · n] dS dt

−
∮
Σ

[δU× (∇×U)] · n dS= 0. (2.10)

We abbreviate by

δE= Rm−1
∇× δB−U× δB− δU×B, J† = Rm−1

∇×B† (2.11a,b)

the variation of the electrical field and an adjoint current density. We now inspect term
by term. The first term always disappears since n · δU|Σ = 0. The next three terms
are all boundary terms related to the magnetic field. Using the various boundary
conditions NNN, NNT, NTT and TTT on δB and δJ or δE, we find that they
disappear only when the adjoint boundary conditions

x̂×B†|x=0,1 = 0,
Π2|x=0,1 = 0,

ŷ×B†|y=0,1 = 0,
Π2|y=0,1 = 0,

ẑ×B†|z=0,1 = 0,
Π2|z=0,1 = 0,︸ ︷︷ ︸

NNN

x̂×B†|x=0,1 = 0,
Π2|x=0,1 = 0,

ŷ×B†|y=0,1 = 0,
Π2|y=0,1 = 0,

ẑ× J†|z=0,1 = 0,︸ ︷︷ ︸
NNT

x̂×B†|x=0,1 = 0,
Π2|x=0,1 = 0,

ŷ× J†|y=0,1 = 0,

ẑ× J†|z=0,1 = 0,︸ ︷︷ ︸
NTT

x̂× J†|x=0,1 = 0,

ŷ× J†|y=0,1 = 0,

ẑ× J†|z=0,1 = 0,︸ ︷︷ ︸
TTT

(2.12a−d)

apply. This entirely sets the boundary conditions for the adjoint problem that need to
be fulfilled.

The final boundary term does not disappear for all flows that meet the impermeability
condition (2.3) and therefore fixes a supplementary constraint. Optimality apparently
requires that the flow satisfies

n× (∇×U) |Σ = 0 (2.13)

on the boundaries. This necessity of a supplementary requirement on the tangential
components of the flow is not really an accident and is mainly a consequence of the
use of the enstrophy norm. From the equation for δL /δU (see (2.6)), we can for
example see that the optimal U may be interpreted as a solution of a Poisson problem,
which requires indeed more than the impermeability condition (2.3) to have a unique
solution.

Alternatively, we could also have restricted the flows to those that satisfy the no-slip
boundary conditions U|Σ = 0. In that case the boundary term automatically disappears
and then no extra condition is required, but we will not deal with this case here; it
represents an interesting extension to the problem.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2015.545
Downloaded from http:/www.cambridge.org/core. CNRS - LIMSI, on 13 Dec 2016 at 14:49:41, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2015.545
http:/www.cambridge.org/core


28 L. Chen, W. Herreman and A. Jackson

2.4. Numerical method
2.4.1. Galerkin expansions

To implement the boundary conditions, we expand all fields on a complete set
of basis functions that have the boundary conditions built-in and thus use Galerkin
expansions. For the flow components we use the Taylor–Green basis:Ux(x, y, z)

Uy(x, y, z)
Uz(x, y, z)

= ∑
mx,my,mz∈N

Ûx(mx,my,mz) sin(mxπx) cos(myπy) cos(mzπz)
Ûy(mx,my,mz) cos(mxπx) sin(myπy) cos(mzπz)
Ûz(mx,my,mz) cos(mxπx) cos(myπy) sin(mzπz)

 . (2.14)

Boundary conditions (2.3)–(2.13) are indeed satisfied and the expansion is also
complete for all flows satisfying these boundary conditions. We introduce the
shorthand notation

Ux ∈ Escc, Uy ∈ Ecsc, Uz ∈ Eccs (2.15a−c)

for the function spaces (e.g. the suffix scc means sine function of x, cosine function
of y and cosine function of z).

For the direct and adjoint magnetic field components, we use similar expansions:

Bx, B†
x ∈ Ecss,

By, B†
y ∈ Escs,

Bz, B†
z ∈ Essc,︸ ︷︷ ︸
NNN

Bx, B†
x ∈ Ecsc,

By, B†
y ∈ Escc,

Bz, B†
z ∈ Esss,︸ ︷︷ ︸
NNT

Bx, B†
x ∈ Eccc,

By, B†
y ∈ Essc,

Bz, B†
z ∈ Escs,︸ ︷︷ ︸
NTT

Bx, B†
x ∈ Escc,

By, B†
y ∈ Ecsc,

Bz, B†
z ∈ Eccs,︸ ︷︷ ︸
TTT

(2.16a−d)

which are again complete expansions for magnetic fields that satisfy the boundary
conditions (2.4)–(2.12).

Upon inspection of the direct and adjoint induction equations and regarding the
expansions of the flow (2.14) and magnetic field (2.16) it can be verified that

∇× (U×B), (∇×B†)×U (2.17a,b)

have the same structure as the fields B and B†, meaning that they can be expanded
on the same basis, see (2.16). This implies that the fields B and B† are conserved in
the separate classes of functions introduced above.

The term ∇Π2 that appears in (2.7) has the same structure as B0 or B†, if

Π2 ∈ Esss︸ ︷︷ ︸
NNN

, Π2 ∈ Essc︸ ︷︷ ︸
NNT

, Π2 ∈ Escc︸ ︷︷ ︸
NTT

, Π2 ∈ Eccc︸ ︷︷ ︸
TTT

. (2.18a−d)

This expansion automatically satisfies the boundary conditions that are needed on Π2
(see (2.12)).

With U of the form (2.15) and B, B† of the form (2.16), both of the terms 2λ1∇2U
and

∫ T
0 B× (∇×B†) dt are within the same class of functions as (2.15). Restricting

Π1 ∈ Eccc (2.19)

we then have the guarantee that(
δL

δU

)
x

∈ Escc,

(
δL

δU

)
y

∈ Ecsc,

(
δL

δU

)
z

∈ Eccs, (2.20a−c)

which means that δL /δU will be in the same class of functions as U, see (2.15).
This is important since δL /δU will be used in the velocity field update, see (2.22).
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(1)

(3)

(4) (2)Update

Random
normalized
solenoidal

BC satisfied
(0)

FIGURE 1. (Colour online) The iterative optimization process.

2.4.2. Extension to the periodic box and projectors
The proposed Galerkin expansions are not periodic in a cube of size 1 but all of

them are periodic in a cube of size 2. By numerically extending the fluid domain to
a double-sized cube, one can use a standard (dealiased) pseudospectral periodic box
code to time step the direct and adjoint induction equations. Our periodic code uses
a predictor–corrector scheme for the flow interaction terms and an exact integration
rule for the diffusive terms.

The fields U and B0 need to be initialized within the right classes of functions
Eccs,Ecss, . . . , and this is done using projectors, given in appendix A. Even though the
equations conserve the fields within these classes, small numerical errors induce some
drift. At each iteration in the optimization loop (after update), we remove these small
errors by projecting the new U and B0 on the chosen classes. Alternatively, we could
have used sine and cosine transforms to make dedicated and more efficient numerical
codes, but here it was not necessary to adopt this strategy.

2.4.3. Optimization scheme
The optimization itself is an iterative procedure. As illustrated in figure 1, we

initialize the algorithm with random solenoidal and normalized U and B0 that
satisfy the boundary conditions (step (0)). Each iteration in the optimization loop
is decomposed in four steps. The magnetic field is time-stepped from time 0 to
time T , satisfying the induction equation, Gauss’ law and the boundary conditions
(step (1)). Knowing BT , one initializes B†

T using the compatibility equation (2.8)
(step (2)). The adjoint (2.9) is integrated backwards from time T to time 0, such that
B† remains solenoidal and the boundary conditions are satisfied (step (3)). This results
in knowledge of B†

0, which is needed to evaluate δL /δB0. The time integral∫ T
0 B× (∇ × B†) dt that appears in δL /δU is calculated using Simpson’s composite

quadrature rule, which demands the knowledge of B and B† at all times; this can
cause excessive memory demands and is avoided by using a checkpoint strategy, see
Willis (2012). We are then ready to propose better estimates for U and B0 (step (4)).
We precondition using a diagonal approximation to the Hessian of the form

δ̂2L

δUδU
(m)≈−2λ1π

2m2,
δ̂2L

δB0δB0
(m)≈−2λ2. (2.21a,b)

We denote m = (mx, my, mz) and m2 = (m2
x + m2

y + m2
z ). This allows us to write

updates as
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30 L. Chen, W. Herreman and A. Jackson

Û(m) := Û(m)+ ∆1

2λ1π2m2

δ̂L

δU
(m), (2.22)

B̂0(m) := B̂0(m)+ ∆2

2λ2

δ̂L

δB0
(m); (2.23)

this is a preconditioned descent method. In the code, we relax ∆1 ∈ [0, 1] and ∆2 ∈
[0, 1] to prevent large steps in wrong directions, following precisely the same method
as Pringle et al. (2012).

The update cannot be evaluated as long as values of Π1, Π2, λ1, λ2 are not set.
Interestingly, they are exactly determined by requiring that the updated fields still
satisfy the constraints. The values of Π1 and Π2 are set by requiring that the updated
fields U, B0 remain solenoidal; λ1, λ2 are fixed by the requirement that the updated
U and B0 remain normalized.

After the update, the forward branch of the loop can be relaunched and the entire
process iterated as many times as necessary. We measure progress in the optimization
through

ri =
√√√√〈(δL

δU

)2

i

+
(
δL

δB0

)2

i

〉
, (2.24)

where i = 1, 2, . . . is the iteration number. In essence, we need limi→+∞ ri = 0 for
convergence, but in numerical simulations it is not easy to determine a threshold value
for ri beneath which we can call an optimization sufficiently converged.

We note finally that the optimizer can get stuck in local minima if they exist, and
for this reason, it is important to repeat optimizations with different and independent
initial random fields. We will perform a perturbation study around the identified
optima.

2.4.4. Testing
As a first test of our code we reproduce Willis’ results. In the absence of all

projectors, using periodic flows, we reproduce the minimal magnetic Rm for dynamo
action under the enstrophy norm for a periodic flow in a cube as Rmc,min=2.48π2. The
extra factor of π2 results from the use of a different length scale in the definition (2.2)
of Rm (our periodic box has size 2, Willis’ box has size 2π). It should be noted that
for a unit box with periodic boundaries, Willis’ result becomes Rmc,min = 9.92π2; we
shall need this reference value in our comparisons of § 3.3.

The projectors used to restrict the fields to particular classes only appear in a
few places in the code: at initialization of the random fields and after each update.
They have been tested in a separate manner and we are confident that these minimal
modifications are correct.

3. Results

All results presented in this section have been obtained using a strict protocol. We
initialize U, B0 with normally distributed random spectral coefficients, project out the
non-solenoidal part, restrict the functions to the specified classes and normalize the
fields properly. We solve direct and adjoint induction equations with 323 resolution
for NNT- and NTT-type boundary conditions and 483 for NNN and TTT.
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FIGURE 2. (Colour online) An illustration of the iterative optimization procedure.
Magnetic fields with imposed NNT boundary conditions are considered, Rm = 7.80π2;
(a) for different values of the iteration, the magnetic energy as a function of time; (b)
the non-dimensional residue ri (2.24) as a function of iteration i.

The question arises of how to set the terminal time T . To be sure of dynamo action
we want this to be several magnetic decay times, and we choose this to be four decay
times. The decay time in a size L box for the magnetic field with all four types of
boundary conditions cannot be larger than

tdecay = L2

ηπ2
. (3.1)

Our time scale is measured in units of S−1, and thus we convert this time into these
units. This leads to a non-dimensional time horizon T = 4Rm/π2 when the box is
of size unity. Our computations confirm that this is long enough to get past the
transient growth stage and allows for a reasonably short computational time (65 min
for one iteration). We call an optimization ‘converged’ after i iterations, if the residue
ri . 10−3.

3.1. Illustrating the iterative optimization in progress

We fix Rm = 7.80π2 and implement NNT boundary conditions for the magnetic
field. Figure 2(a) displays 〈B2〉 as a function of time t, as the optimization makes
progress. The initial random fields cannot support a dynamo at iteration 1, and we
see exponential decay at late times. As we iterate the optimization loop, the final
magnetic energy gradually increases, such that at iteration 261 it is very slightly
growing with time but essentially no longer changing as the iterations proceed. This
converged optimal is a slightly supercritical dynamo, because we show in § 3.2 that
the minimal dynamo threshold Rm= Rmc,min = 7.52π2 for NNT boundary conditions.

Figure 2(b) shows the corresponding error measure ri as a function of iteration
number i. From the start until the end, this error goes down by five orders of
magnitude, which indicates the success of the optimization. The erratic path on the
descent is the result of the way in which ∆1 and ∆2 are varied. This may perhaps
be avoided, but we did not find better ways than Pringle et al. (2012) to increase the
speed of convergence.
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FIGURE 3. (Colour online) Growth rates of optimized dynamos as a function of Rm and
for different magnetic boundary conditions; (a) NNT and NTT boundaries; (b) NNN and
TTT boundaries.

3.2. Growth rates γ of optimized dynamos as a function of Rm
In a more systematic survey, we vary Rm in significant intervals. For each value of
Rm, five independent optimizations are launched from different random seeds. We
measure the asymptotic growth rates γ of the optimized dynamos at late times t,
where

〈B(x, t)2〉 ∼ e2γ t. (3.2)

In practice, we measure the growth rate in the following way. We integrate the
induction equation using the optimal U and the initial B0 over an extended time
horizon to T = 12Rm/π2. The energy growth rate γ is measured during the last
diffusive time interval, where we are always far away from the initial transient. In
figure 2(a), the growth rate of the magnetic energy in the final iteration is γ = 0.005
using this definition.

In figure 3, we group the optimal growth rates γ obtained from these independent
optimizations as a function of Rm and for the four types of boundary conditions.
Figure 3(a) shows cases NNT and NTT. We immediately recognize that both types of
boundary conditions lead to very similar optimal growth rates. We also recognize the
existence of three distinct lines. The line furthest to the left defines the real optimal
branch, but some runs did converge towards suboptimal branches. Figure 3(b) shows
cases NNN and TTT. Here also, both types of boundary conditions lead to very similar
optimal growth rates, but we only have one optimal line.

3.3. Minimal dynamo thresholds Rmc,min

An important quantity in this study is Rmc,min, the minimal critical magnetic Reynolds
number. Within the specified class of flows, no flow will act as a dynamo when Rm<
Rmc,min. We measure these lower bounds for dynamo action by performing a linear
regression on the optimal growth rates of figure 3, which allows us to identify Rmc,min
where γ = 0. The results are given in the first row of table 1. The mixed boundary
conditions (NNT, NTT) allow for a lower Rmc,min than with perfectly conducting or
pseudovacuum boundary conditions (TTT, NNN).

In the same table 1, we have added some reference values for critical dynamo
thresholds. Willis’ (2012) periodic optimal dynamo has a larger threshold than our
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NNT NTT NNN TTT Periodic Roberts ABC 1:1:1

Critical Rmc,min 7.52π2 7.54π2 12.01π2 12.05π2 9.92π2 35.16π2 ∼61.7π2

Mean helicity 〈H〉 0 0 0.18/π 0.21/π 0 1/(2π) 1/(2π)

Maximum strain rate e 2.16 2.27 3.49 3.28 0.80 1/
√

2
√

2/3
RMS velocity 〈U2〉1/2 0.59/π 0.60/π 0.33/π 0.34/π 0.35/π 1/(2π) 1/(2π)

Critical Rmu 4.47π 4.49π 3.96π 4.05π 3.50π 17.58π ∼30.8π

TABLE 1. Some properties of the optimal flows, together with some other flows of interest.
The first four columns have given magnetic boundary conditions (NNT, etc.) whereas the
next three have periodic magnetic boundary conditions. The r.m.s. (root mean square)
vorticity is set to unity. The periodic flow is the optimal reported in Willis (2012), rescaled
to a unit box; the Roberts flow is an ABC flow with A=B= 1,C= 0. The ABC flow 1:1:1
has all coefficients equal. The critical Rmu is the minimal threshold for dynamo action with
unity kinetic energy as defined in (4.1). For our optimal flows, they are calculated from
the r.m.s. velocity and from Rm= Rmc,min as in (4.3).

mixed boundary optimal. We can also compare with thresholds for Roberts (1972) and
ABC flows. Using the fact that for these flows the enstrophy and r.m.s. velocity are
equal to unity in a 2π box, we can find the values of Rmu from published values: for
Roberts the value 8.79 (note [17] of Willis (2012) and figure 4 of Alexakis (2011)
for a supercritical value of 10) is adjusted by a factor of 2π to scale to a unit cube;
for ABC 1:1:1 we adjust the classic value of 8.9 (Arnold & Korkina 1983; Galloway
& Frisch 1984; Bouya & Dormy 2013) by a factor of

√
3 to give unit r.m.s. velocity

in a 2π box and then scale to the unit cube. We find that these published values of
Rm are 4–7 times above our lower bounds.

3.4. Spatial profiles and kinetic energy spectra
The spatial profiles of the velocity field at the minimal threshold Rmc,min are
represented by streamlines in figure 4. Lines are coloured by intensity and initialized
at random locations. In all cases, we see that the flow is properly confined to the
cube as dictated by our boundary conditions.

In the flows for the NNT and NTT optima, we see one major vortex (figure 4a,b).
Both velocity fields also seem to be quite correlated, and this will be measured more
precisely subsequently. In tables 2 and 3, we give the first five dominant modes for
the optimal flow and the final magnetic field for the NNT and NTT optima. We find
that 95 % of the enstrophy and >89 % of the final magnetic energy are contained in
these five modes. Moreover, the first two dominant modes in the optimal flow (NNT,
83 % of the enstrophy; NTT, 86 % of the enstrophy) can be written as U = ∇ × A,
where A is

NNT :
Ax(x, y, z)

Ay(x, y, z)
Az(x, y, z)

=


0.16
1

(2π)2
sin(2πy) sin(2πz)

0.77
1
π2

sin(πx) sin(πz)

−0.18
1

(2π)2
sin(2πx) sin(2πy)

 ; (3.3)
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FIGURE 4. (Colour online) Velocity field streamlines of the optimal flow at the minimal
critical magnetic Reynolds number Rmc,min and for different magnetic boundary conditions:
(a) NNT optimal flow; (b) NNT optimal flow; (c) NNN optimal flow; (d) TTT optimal
flow.

NTT :
Ax(x, y, z)

Ay(x, y, z)
Az(x, y, z)

=

−0.17

1
(2π)2

sin(2πy) sin(2πz)

0.78
1
π2

sin(πx) sin(πz)

0.18
1

(2π)2
sin(2πx) sin(2πy)

 . (3.4)

The critical magnetic Reynolds number Rmc corresponding to the reduced optimal flow
with two dominant modes is 9.58π2 for NNT type and 9.38π2 for NTT type.

In the flows for the NNN and TTT optima, we see three vortices (figure 4c,d) and
again a significant correlation if one rotates the profiles properly. However, this pair
cannot be easily described by a few dominant modes. Both the flows and the final
magnetic fields for the NNN and TTT optima have higher percentage contributions
from small scales than the NNT and NTT pair.

The spectral content of a flow field is often characterized using the one-dimensional
kinetic energy spectrum. We calculate the one-dimensional kinetic energy spectra E(k),
where k = |m|, and show them in figure 5. The energy density decreases steeply
and exponentially, which is an indication of spectral spatial convergence. Decreasing
several orders of magnitude from k ' 1 to k ' 12–16, we clearly have a spatially
resolved calculation. Numerical errors due to the finite grid spacing are consequently
expected to be small.

Late-time magnetic field eigenmodes are shown in figure 6. We see the signature
of the different magnetic boundary conditions in each of the plots, but magnetic field
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FIGURE 5. (Colour online) One-dimensional kinetic energy spectra for optimal dynamos
at the threshold Rmc,min: (a) NNT and NTT spectra; (b) NNN and TTT spectra.

mx my mz Coefficient mx my mz Coefficient

Ûx 1 0 1 −0.77/π B̂x 1 1 1 −1.13
2 2 0 −0.18/π 0 1 0 0.88
1 2 1 0.15/π 0 1 2 0.81
1 1 2 −0.10/π 1 3 1 0.58
2 0 2 0.08/π 1 1 3 −0.53

Ûy 2 2 0 0.18/π B̂y 1 1 1 0.45
0 2 2 0.16/π 1 3 1 −0.22
1 2 1 −0.12/π 1 0 2 0.14
0 1 1 −0.11/π 1 2 2 −0.10
3 2 1 −0.06/π 2 1 2 −0.08

Ûz 1 0 1 0.77/π B̂z 1 1 1 −0.68
0 2 2 −0.16/π 1 1 3 −0.16
0 1 1 0.11/π 1 2 2 −0.13
1 2 1 0.10/π 1 3 3 0.06
2 0 2 −0.08/π 1 3 1 −0.06

TABLE 2. For NNT, the first five dominant modes of the optimal velocity field and the
final magnetic field, accounting for 95 % of the enstrophy and 90 % of the final magnetic
energy.

eigenmodes are no longer correlated by pairs. We see S-shaped structures in the mixed
boundary cases and spiralling structures in both the NNN and TTT cases.

3.5. Perturbation study
Due to the large-scale nature of the optimization and the fact that we can only launch
a small number of independent optimizations, one might fear that the optima are
perhaps only local optima. Such local optima can indeed exist and even have an
important basin of attraction in parameter space (we observed them in figure 3a). To
ensure the robustness of our results, we perform a perturbation study on the identified
optima at the minimal dynamo thresholds.
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mx my mz Coefficient mx my mz Coefficient

Ûx 1 0 1 −0.78/π B̂x 1 1 1 −1.13
2 2 0 0.18/π 0 1 0 0.88
1 2 1 −0.16/π 0 1 2 0.83
2 0 2 0.08/π 1 3 1 −0.60
1 0 3 −0.07/π 1 1 3 −0.53

Ûy 2 2 0 −0.18/π B̂y 1 1 1 −0.44
0 2 2 −0.17/π 1 3 1 −0.21
1 2 1 0.13/π 2 1 2 0.08
1 1 0 −0.06/π 2 3 2 0.07
3 2 1 0.06/π 2 3 0 −0.06

Ûz 1 0 1 0.78/π B̂z 1 1 1 −0.69
0 2 2 0.17/π 1 1 3 −0.16
1 2 1 −0.10/π 2 0 1 −0.08
2 0 2 −0.08/π 1 3 3 −0.07
3 0 1 0.06/π 3 1 1 −0.06

TABLE 3. For NTT, the first five dominant modes of the optimal velocity field and the
final magnetic field, accounting for 95 % of the enstrophy and 89 % of the final magnetic
energy.

To do so, we generate a normally distributed random perturbation flow with variable
amplitude. We add this perturbation flow to the optimal velocity field at Rmc,min and
renormalize so as to have a unit enstrophy in the perturbed flow, denoted Up. We then
integrate the induction equation with this new flow Up while keeping B0 unchanged
and measure late-time growth rates γp. We define a correlation amplitude

ε = 〈Up ·Uo〉
〈U2

p〉1/2〈U2
o〉1/2

(3.5)

to measure by how far the new velocity field Up differs from the unperturbed
optimal field Uo. This process is repeated using 400 different perturbations of various
amplitudes, and each of these runs adds a point to the plot of figure 7, which shows
the perturbed growth rate γp as a function of the correlation amplitude ε. None of the
perturbations allow us to find growth rates γp larger than 0, which is an indication
that our optima are correctly calculated.

4. Analysis and discussion
4.1. Helicity

The helicity H = U · (∇ × U) is a popular quantity in dynamo theory which
measures the alignment of the flow and its vorticity. Several laminar dynamos such
as Ponomarenko flow, Roberts flow and ABC flow are helical and satisfy the Beltrami
property ∇ × U ∼ U, but helicity also plays a prominent role in mean-field dynamo
theory (Moffatt 1978). How helical are our optimal dynamos?

In figure 8, we show some isosurfaces of helicity of the optimal flows at threshold
for the four types of magnetic boundary conditions. In the mixed boundary cases NNT
and NTT, we see two symmetrical lobes of helicity. This symmetry is lost in the cases
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FIGURE 6. (Colour online) Magnetic field streamlines of the optimal solution at the
critical magnetic Reynolds number Rmc,min at time T = 12 diffusion time units: (a) NNT
optimal magnetic field mode; (b) NTT optimal magnetic field mode; (c) NNN optimal
magnetic field mode; (d) TTT optimal magnetic field mode.
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FIGURE 7. (Colour online) Perturbation study: the optimal dynamo flows at threshold are
perturbed by random flows. We show dynamo growth rates γp found with these perturbed
flows as a function of the correlation amplitude. None of the points are above the optimal
value γ = 0, and as the correlation amplitude goes up, we see that the effect of the
perturbations decreases.

of TTT and NNN. Figure 9 shows probability density functions (p.d.f.s) of the helicity.
We observe a strong pairwise correlation as before. In all set-ups NNT, NTT, NNN,
TTT, the value H= 0 is the most probable within the cube. Cases NNT and NTT are
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FIGURE 8. (Colour online) Helicity isosurface of amplitude: (a,b) −0.4/π (yellow) and
0.4/π (red) for NNT and NTT optimal flow; (c,d) −0.1/π (blue) and 0.4/π (green) for
NNN and TTT optimal flow.
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FIGURE 9. (Colour online) Probability density function of helicity in the box for the
different optimal flows at criticality, Rmmin,c.

similar and the p.d.f.s are symmetrical, implying that the helicity is zero on average.
This is not the case with NNN and TTT; these optima have a preferentially positive
helicity. Mean helicities are reported in table 1 and remain well below unity.

4.2. Minimal magnetic Reynolds number based on r.m.s. velocity
The magnetic Reynolds number (2.2) we used in this work is not very standard in
the dynamo literature. We needed to use this definition since it is compatible with the
enstrophy normalization which was necessary because optimizations with normalized
kinetic energy do not yield converged optima. A more standard definition for the
magnetic Reynolds number is based on the r.m.s. velocity U:

Rmu = UL
η
. (4.1)

We can calculate this Rmu a posteriori, since we can measure

U
SL
= 〈U2〉1/2 (4.2)
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from the optima. In this way, we have

Rmu = Rm〈U2〉1/2, (4.3)

which yields the values reported in table 1. Interestingly, it seems that with this
definition of Rmu we can reinterpret the results. The NNN and TTT optima have now
the lowest critical thresholds, before the mixed boundary condition optima NNT and
TTT.

4.3. Symmetry of the cube and its consequences
To study symmetries in the flows and equations, we shift the coordinate system to the
centre of the cube (but do not change notation to avoid unnecessary complexity). In
this frame, the cubical boundary surface is the union of coordinate surfaces x=±1/2,
y = ±1/2, z = ±1/2. This boundary is clearly mapped onto itself, by any possible
permutation of x, y, z combined with any possible change of sign. More explicitly,
with x= (x, y, z), a cube is symmetrical with respect to all operations Rx:

Rx= (s1x, s2y, s3z), Rx= (s2y, s1x, s3z),
Rx= (s2y, s3z, s1x), Rx= (s3z, s2y, s1x),
Rx= (s3z, s1x, s2y), Rx= (s1x, s3z, s2y),

 (4.4)

with s1, s2, s3=±1. This parametrizes the 48-member symmetry group of the cube (or
octahedral) Oh. Next to the trivial identity, each transform can be associated with a
rotation or a reflection with respect to a mirror plane. Operators R can be represented
using orthogonal matrices R (R−1 = RT).

We study the presence and the consequences of these symmetries in the optimized
dynamo problem. The symmetries explain why optima are degenerate and why we
find exactly the same optimal growth rates in pairs (NNT and NTT, NNN and TTT).

4.3.1. Trivial consequence of symmetry: degeneracy of the optima
The equations of the kinematic dynamo problem are invariant under any coordinate

transform x= RTx̃, x̃= Rx that involves R, an orthogonal matrix:

∂tB=∇× (U×B)+ Rm−1∇2B ⇔ ∂tB̃= ∇̃× (Ũ× B̃)+ Rm−1∇̃2B̃,
∇ ·B= 0 ⇔ ∇̃ · B̃= 0.

}
(4.5)

Here, the two fields are related as

U(x)= RTŨ(Rx), B(x)= RTB̃(Rx). (4.6a,b)

An immediate consequence in the present context of optimized dynamo action is that
if the boundary conditions are also invariant under R transformation, we can say that

U(x) is an optimal dynamo ⇔ RTU(Rx) is an optimal dynamo. (4.7)

In the cases of NNN and TTT, we have the same types of boundary conditions
everywhere, which implies that the NNN and TTT optima are both 48-fold degenerate.
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The mixed boundaries NNT and NTT have symmetry groups that are reduced to
dihedral symmetry:

Rx= (s1x, s2y, s3z),
Rx= (s2y, s1x, s3z),︸ ︷︷ ︸

NNT

Rx= (s1x, s2y, s3z),
Rx= (s1x, s3z, s2y),︸ ︷︷ ︸

NTT

(4.8a,b)

with s1, s2, s3=±1 and thus only 16 members. As a result, NNT and NTT optima are
16-fold degenerate. The fact that we observe 3= 48/16 separate ‘optimality’ branches
in the mixed boundary case (see figure 3a) is probably also related to this reduced
symmetry group of the boundaries.

In the simulations, we do see this trivial degeneracy: depending on the random
initialization, the optimizer converges to optima that have the same optimal growth
rates, but with rotated or mirror reflected spatial structures.

4.3.2. Symmetry and anti-correlation in the optimal flows
Instead of investigating the symmetry of the equations and boundary conditions,

we can also measure whether the optimal solutions themselves are symmetric. Let
us introduce some notations and concepts. Two vector field V1(x) and V2(x) are
correlated (+) or anti-correlated (−) by an isometry R when

RTV1(Rx)=±V2(x). (4.9)

Choosing V1 =V2 =V, we can check whether the vector field V is symmetrical (+)
or anti-symmetrical (−) with respect to some R. Let us denote Vi,R =RTVi(Rx) and

sij = 〈Vi,R ·Vj〉
〈V2

i,R〉1/2〈V2
j 〉1/2

, (4.10)

with i, j = 1, 2. Using this quantity we can study the (anti)-correlations and (anti)-
symmetries of the different optimal flows in a systematic way and with respect to all
48 isometries R of the cube.

For NNT and NTT optimal flows, V1=UNNT and V2=UNTT, we have found several
high scores |sij|> 0.9, which are listed in table 4. The first row on the left-hand side
of the table shows that these optimal flows are inversion symmetric:

UNNT(x)=−UNNT(−x), UNTT(x)=−UNTT(−x). (4.11a,b)

This immediately explains why these flows have no mean helicity. The other
isometries are not exact, but the scores are still high enough to say that there is
a significant correlation. On the right-hand side of the table, we see that the optimal
flows UNNT and UNTT are almost perfectly anti-correlated by an isometry. The most
negative score min(s12) = −0.995 is found for the operation Rx = (z, −y, x) and
its inverse. This corresponds to a rotation of π about the axis (ex + ez)/

√
2 and a

reflection with respect to a plane with that vector as unit normal. Up to 0.5 % we
can say that

UNTT(x)'−RTUNNT(Rx). (4.12)

When applied to the boundary, the transform Rx = (z, −y, x) essentially maps the
NNT boundary into a TNN boundary, which is the exact complementary of an
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Rx s11 s22 Rx s12

(−x,−y,−z) 1 1 (+z,−y,+x) −0.995
(+x,−y,+z) 0.94 0.98 (−z,+y,−x) −0.995
(−x,+y,−z) 0.94 0.98 (+z,+y,+x) −0.96
(−z,+y,+x) 0.91 0.93 (−z,−y,−x) −0.96
(−z,−y,+x) 0.91 0.93 (+x,+y,−z) −0.92
(+z,+y,−x) 0.91 0.93 (−x,−y,+z) −0.92
(+z,−y,−x) 0.91 0.93 (+x,−y,−z) −0.92

(−x,+y,+z) −0.92

TABLE 4. Symmetries and anti-correlations of optimal flows V1 =UNNT, V2 =UNTT
under isometries of the cube (see (4.10) for the definition of sij).

NTT boundary, under the exchange N↔ T. As explained below, this anti-correlation
explains why NNT optima and NTT optima have the same growth rates.

For NNN and TTT optimal flows, V1 = UNNN and V2 = UTTT, we find maximal
correlations, max |s11|=0.42 for NNN, max |s22|=0.61 for TTT. This is not significant:
all symmetries are broken in NNN and TTT optimal flows, in agreement with
figure 4(c,d). We do find an almost perfect anti-correlation between the different
optima: min(s12) = −0.97, for a single isometry Rx = (y, x, −z). Up to 3 % we can
say that

UNNN(x)'−RTUTTT(Rx). (4.13)

The transform Rx= (y, x,−z) corresponds to a rotation of π around the vector (ex +
ey)/
√

2.
Considering the degeneracy of the optima, the perfect anti-correlation of the optimal

flows can be simplified to

UNNT is optimal for NNT ⇔ −UNNT is optimal for TTN,
UNNN is optimal for NNN ⇔ −UNNN is optimal for TTT,

}
(4.14)

which will serve as a starting point for the next section.

4.3.3. Identical growth rates for complementary boundary conditions
In recent work, Favier & Proctor (2013) have shown that for a general fluid domain

V with impermeable walls, a stationary dynamo U that is anti-symmetric with respect
to an isometry R of the system,

U(x)=−R−1U(Rx), (4.15)

will grow magnetic fields with the exact same growth rate γ for both the types of
complementary pseudovacuum (N) or perfectly conducting (T) boundaries.

In the present context, none of our optimal flows are anti-symmetric with respect
to themselves, but we do find the same growth rates γ and also find pairwise anti-
correlation for the optimal flows of complementary set-ups (NNT and NTT, NNN and
TTT). We can explain this using the same type of argument as developed by Favier
& Proctor (2013), and limit the demonstration here to the case of NNN and TTT.
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Suppose an arbitrary fluid volume V , with perfectly conducting T boundaries. A
flow UT drives a magnetic field eigenmode bT(x) exp(γ t), which means that

γ bT −∇× (UT × bT)+ Rm−1
∇×∇× bT = 0. (4.16)

We suppose that γ is real. On the boundary,

UT · n|Σ = 0, n× eT|Σ = 0, (4.17a,b)

where eT = Rm−1∇ × bT − UT × bT is the electrical field. We now manipulate this
equation by taking the scalar product of (4.16) with aT and integrating over the
volume. Partial integration brings us to

〈(γ aT +UT × (∇× aT)+ Rm−1
∇×∇× aT) · bT〉

+
∮
Σ

(eT × n) · aT dS︸ ︷︷ ︸
=0

+Rm−1
∮
Σ

((∇× aT)× n) · bT dS= 0. (4.18)

The first boundary term disappears because of the boundary condition on eT. A
sufficient condition to get 0 on both sides is

γ aT +UT × (∇× aT)+ Rm−1
∇×∇× aT = 0 (4.19)

+BC : (∇× aT)× n|Σ = 0. (4.20)

According to the boundary condition BC, the field bN = ∇ × aT is normal to the
boundaries. By taking the curl of (4.19), we find that this field bN solves

γ bN =∇× [(−UT)× bN] − Rm−1
∇×∇× bN (4.21)

+BC : bN × n|Σ = 0. (4.22)

This is nothing else but the induction equation, and implies what we searched for:
the flow UN=−UT is equally a dynamo for a magnetic field eigenmode that will be
normal to the boundaries and it will grow at exactly the same rate γ .

4.4. Backus bound
Backus (1958) took a different definition for the magnetic Reynolds number RmB in
terms of the maximum strain rate of the flow. With the present scaling, we have
RmB = SmaxL2/η = eRm, where e = Smax/S is the maximum eigenvalue of the non-
dimensional strain rate tensor with components

eij = 1
2(∂iUj + ∂jUi). (4.23)

We calculated this maximal local strain e for our optimal flows at threshold, and show
values in table 1. We note that the NNN and TTT optimal flows display a considerably
larger maximal strain than the NNT and NTT optima or the periodic box case of
Willis (2012).

The Backus bound provides a minimal requirement on RmB based on the energy
equation of B. A necessary condition for dynamo action is (see also Proctor 1977)

RmB > min

∫
V1

|∇×B|2 dV∫
V2

|B|2 dV︸ ︷︷ ︸
β

. (4.24)
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NNT NTT NNN TTT

βmin π2 π2 2π2 2π2

β 4.60π2 4.63π2 10.0π2 10.0π2

TABLE 5. Comparison of βmin and the measured β for the final magnetic field BT at
Rmc,min.

In this formula, V1 is the fluid domain and V2 is the entire domain, but here V1 =
V2. The largest-scale magnetic fields within the fluid domain supply a lower bound
on β. The measured β for the optimal set of modes is expected to be larger, since
the structure of the magnetic field is not entirely large scale.

Our best dynamo, with e= 2.16 and Rmc,min= 7.52π2, from table 1, then has RmB=
16.2π2, approximately 16 times larger than the Backus bound βmin. This indicates that
the maximum strain rate is significantly larger than the strain developed in most of
the volume, and we know from table 5 that the β realized is ∼5 times the minimal
available value. This explains the observed difference.

5. Conclusion
By adapting the procedure of Willis (2012), we have developed a Cartesian model

to find the most efficient dynamo with a flow confined within a cube. Table 1 shows
the values of Rmc,min for our results and for the original results of Willis (2012) along
with thresholds for some famous ABC flows. We have been careful to refer all results
to the same size of box. Compared with the ABC flows, our optimal dynamos have
thresholds that are approximately a factor of 5 to 8 lower. On comparing with the
optimal of Willis (2012), also using normalized enstrophy, it transpires that periodic
magnetic boundary conditions are not the optimal boundary conditions to enable
efficiency. One can see this heuristically by considering the smallest-size magnetic
structures that are allowed by the box and its boundary conditions. Periodic boundary
conditions necessarily only allow a field with one full wavelength within the box,
whereas our boundary conditions allow a half wavelength (see e.g. (2.14)). Thus, it
is possible to have lower dissipation and a more efficient dynamo.

The symmetries of the cube are responsible for a strong degeneracy of the optima.
A more surprising consequence of symmetry is that we find that when U generates
an optimal dynamo for a given set of idealized boundary conditions, then −U can
generate an optimal dynamo too, but for a different and complementary set of
boundary conditions. We explain this observation using a similar argument to the one
developed by Favier & Proctor (2013).

Compared with existing results on lower bounds, we showed in § 4.4 that our best
dynamo operates approximately 16 times above the Backus bound. We can conjecture
what this implies for spherical dynamos with insulating boundary conditions, although
rigorous results must follow from calculations. This observed minimum bound for RmB
of ∼16.2π2 suggests that working dynamos might need to have RmB∼ 150 in practice
when based on the maximum strain rate. We finally note that our optimal flows tend
not to be very helical, a result already seen by Willis.

The next challenge is to develop the same strategy for the sphere. The sphere has
more applications in laboratory settings and also represents a simpler geometry; one
can conjecture that it will operate with a lower magnetic Reynolds number as a result
of this simpler geometry. We hope to report on this topic in the future.
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Appendix A. Projectors in spectral space
In our numerical method, we use a periodic box code. All fields or field components

are represented on the standard Fourier basis adapted to a periodic cube of size 2. A
function f (x, y, z) then has the expansion

f (x, y, z)=
∑

mx,my,mz∈Z
f̃ (mx,my,mz)eiπ(mxx+myy+mzz). (A 1)

Let E be the space of all periodic functions on the cube with size 2. We then have

E = Eccc ⊕ Eccs ⊕ Ecsc ⊕ Escc ⊕ Essc ⊕ Escs ⊕ Ecss ⊕ Esss, (A 2)

which is easily understood by rewriting the generic Fourier expansion using Euler’s
rule. That same rule also allows us to find projectors Pccc,Pccs, . . . ,Psss that allow
us to restrict a function f (x, y, z) to the required class. For example, for all f ∈ E ,

Pcccf ∈ Eccc,Pccsf ∈ Eccs, . . . ,Psssf ∈ Esss. (A 3)

These projectors are most easily defined in spectral space. Given the Fourier-space
coefficients f̃ (mx, my, mz) and denoting Fourier-space amplitudes f̃ (±mx, ±my, ±mz)

as f̃±±±, we find that

P̃cccf+++ = 1
4 Re( f̃+++ + f̃+−+ + f̃++− + f̃+−−),

P̃sscf+++ = 1
4 Re( f̃+++ − f̃+−+ + f̃++− − f̃+−−),

P̃scsf+++ = 1
4 Re( f̃+++ + f̃+−+ − f̃++− − f̃+−−),

P̃cssf+++ = 1
4 Re( f̃+++ − f̃+−+ − f̃++− + f̃+−−)


(A 4)

and

P̃sccf+++ =
i
4

Im[f̃+++ + f̃+−+ + f̃++− + f̃+−−],

P̃cscf+++ =
i
4

Im[f̃+++ − f̃+−+ + f̃++− − f̃+−−],

P̃ccsf+++ =
i
4

Im[f̃+++ + f̃+−+ − f̃++− − f̃+−−],

P̃sssf+++ =
i
4

Im[f̃+++ − f̃+−+ − f̃++− + f̃+−−]


(A 5)

for all values of mx, my, mz ∈ Z. If numerical resources are not a problem, these
projectors can be used to transform a periodic box code into one that sets idealized
boundary conditions on the walls of a cube with half that size. Otherwise, it is
strongly advised to make dedicated codes using sine and cosine transforms.
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