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In this paper we investigate the Tayler instability in an incompressible, viscous and
resistive liquid metal column and in a model of a liquid metal battery (LMB). Detailed
comparisons between theory and numerics, both in linear and nonlinear regimes, are
performed. We identify the timescale that is well adapted to the quasi-static (QS)
regime and find the range of Hartmann numbers where this approximation applies. The
scaling law Re ∼ Ha2 for the amplitude of the Tayler destabilized flow is explained
using a weakly nonlinear argument. We calculate a critical electrolyte height above
which the Tayler instability is too weak to disrupt the electrolyte layer in a LMB.
Applied to present day Mg-based batteries, this criterion shows that short circuits
can occur only in very large batteries. Finally, preliminary results demonstrate the
feasibility of direct numerical multiphase simulations of the Tayler instability in a
model battery.

Key words: MHD and electrohydrodynamics, multiphase and particle-laden flows, multiphase
flow

1. Introduction
In a fairly recent review article (Kim et al. 2013) on liquid metal batteries (LMBs),

Professor D. Sadoway’s group at MIT proposed LMBs as a solution to meet future
electrical energy storage problems. Although LMBs have been around for some time
already, this proposal ignited a global interest for this technology; we refer to Weaver,
Smith & Willmann (1962), Agruss (1963), Cairns et al. (1967), Crouthamel & Recht
(1967), Cairns & Shimotake (1969), Swinkels (1971), Steunenberg & Burris (2000)
from Weber et al. (2014) for early works on LMBs. LMBs are usually composed
of three layers of fluids (liquid metal electrode–electrolyte–liquid metal electrode)
of different densities stacked over each other and stabilized by gravity. Apart from
the liquid aspect, the electrical function of LMBs is identical to common galvanic
cells. LMBs have several advantages with respect to classical galvanic cells when
it comes to large-scale power generation though. Common galvanic cells are built
using solid and liquid (or gel) components for the electrodes and the electrolytes,
and the solid–liquid interfaces gradually degrade through charging and discharging,
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thereby limiting the cell’s lifetime and size. Galvanic batteries meeting powergrid
standards could be built in principle by connecting large numbers of small cells, but
this would be expensive to produce and maintain. The erosion problems disappear
in liquid systems, since the electrolyte–electrode interfaces are continuously renewed
by permanent small recirculating flows. In principle the continuous regeneration of
the interfaces makes the lifetime of LMBs significantly larger than that of galvanic
batteries. Moreover, as discussed by Bradwell et al. (2012) and Kim et al. (2013),
materials susceptible to be used in LMBs are not necessarily as exotic/rare as one
could fear. Finally, the stabilizing effect of gravity seriously simplifies the design
of these devices and enables scalability. In principle, it should be possible to build
powergrid-scale devices by assembling small numbers of large LMBs.

The above rosy picture must be moderated by the fact that, at very large scales,
intense electrical currents passing through LMBs might trigger magnetohydrodynamical
(MHD) instabilities (as suggested in Stefani et al. 2011 and Weber et al. 2013, 2014).
For instance large currents may trigger the Tayler instability in the well-conducting
liquid metal layers and induce fluid flows, which in turn may deform the electrode–
electrolyte interfaces to a great extent. Some fluid movement is certainly desirable, but
there is a danger of short circuit when the motion of the fluid is so intense that it can
destroy the integrity of the stratified structure of the battery. Note that a very similar
problem arises in the case of Al-reduction cells, where the width of the electrolyte
layer has to be kept above some critical threshold to avoid instabilities. It is therefore
necessary to assess the strength of MHD-induced flows before contemplating any
significant industrialization of LMBs, and one objective of the present paper is
contribute to this effort.

Better known in the plasma context, the Tayler instability (Tayler 1957, 1960)
is probably one of the simplest plasma instabilities that are known. In regions of
quiescent fluid, strong electrical current tubes can spontaneously lose stability. With
such minimal ingredients, the Tayler instability has attracted the attention of the
astrophysical community for a long time (Vandakurov 1972; Tayler 1973). But
applications to liquid metals in laboratory environments, where the fluid movements
are slow, have only been studied recently. The linear regime of the Tayler instability
has been studied in many articles (Tayler 1957, 1960; Rüdiger & Schultz 2010;
Rüdiger, Schultz & Gellert 2011; Rüdiger et al. 2012) and predictions for the
instability threshold and growth rates have been successfully compared to experiments
in a liquid column of Galinstan (Seilmayer et al. 2012). The characterization of the
nonlinear regime is however not so well documented. Direct numerical simulations
on the Tayler instability in the quasi-static (QS) low conductivity limit have been
done in Weber et al. (2013, 2014) and a scaling law for the intensity of the flow
induced by the instability has been observed. Stefani et al. (2011) was the first article
to discuss the importance of MHD instabilities in the context of LMBs.

The objective of the present paper is to revisit the Tayler instability in the context
of LMBs using various analytical and numerical tools, including SFEMaNS which
is a finite element code that our group has been developing for many years. The
paper is organized as follows. We start in § 2 by properly defining the base state
of the fluid and by defining two configurations to evaluate the impact of various
boundary conditions. We conclude that simulating a current-free region around the
liquid metal domain has little impact on the onset of the Tayler instability. In
§ 3, we use SFEMaNS to investigate qualitatively and quantitively the linear and
the nonlinear regimes of the Tayler instability in cylinders of various sizes for
different Hartmann numbers, Ha, and magnetic Prandtl numbers, Pm. We discuss
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Tayler instability in columns and LMBs 81

the difference between helical and phase-fixed modes and demonstrate that the
top and bottom boundary conditions have a strong impact on the presence of these
modes. The nonlinear saturation amplitudes are measured and an oscillatory secondary
instability is identified. The theoretical § 4 is dedicated to the analysis of both the
linear and nonlinear stages. We use the analytical method of Tayler to study the linear
stability of the problem for all possible values of the viscosity and magnetic diffusion.
Detailed comparisons between theoretical predictions from the linear stability analysis
and direct numerical simulations are performed. We show that for each value of
the Prandtl number there exists a range of Hartmann numbers in which the Tayler
instability appears in QS form. We also discuss in this section the possible existence
of weakly nonlinear equilibria; we develop an argument that leads to a plausible
explanation for the scaling law for the intensity of the Tayler destabilized flow
observed in Weber et al. (2013, 2014). In § 5, we consider the Mg-based LMB
system. After compiling information for typical values of the physical parameters,
we discuss the relevance of the Tayler instability in LMBs. Using the scaling law
deduced in § 4 for the nonlinear intensity of the flow at saturation, we estimate a
safe upper bound for the critical width of the electrolyte layer and apply this estimate
to Mg-based batteries. We end § 5 by showing some numerical simulations of the
Tayler instability in a LMB model using our multiphase MHD solver. We use these
simulations to test the critical electrolyte layer height criterion.

2. Base state and equations
As schematized in figure 1, we consider a cylindrical vessel of radius R and height

H. This vessel is filled with an electrically conducting fluid of density ρ, conductivity
σ , permeability µ0 and kinematic viscosity ν. A homogenous current density Jb= J0ez
runs through the fluid.

The velocity field U, pressure P and magnetic field B inside the tube are assumed
to satisfy the MHD equations:

∂tU +U · ∇U =− 1
ρ
∇P+ 1

ρµ0
(∇× B)× B+ ν1U

∂t B=∇× (U × B)− 1
σµ0
∇× (∇× B)

∇ ·U = 0
∇ · B= 0.


(2.1)

Tayler’s original set-up is shown in figure 1(a): the cylinder has infinite height H→∞
and is surrounded by a current-free region. We will refer to this case as configuration I
in what follows. Denoting by C an arbitrary constant and using cylindrical coordinates
(r, θ, z), the following base state

Ub = 0, Bb = µ0J0

2
reθ , Pb =C− µ0J2

0

4
r2, r< R, (2.2a−c)

Bb = µ0J0

2
R2

r
eθ , r> R, (2.3)

is then considered. The inner and outer magnetic fields match continuously across the
interface r= R, where they have the magnitude B0=µ0J0R/2, a notation that will be
used consistently thereafter.
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FIGURE 1. (Colour online) Base state in two different configurations. A cylinder of radius
R is filled with a conducting fluid of density ρ, conductivity σ and kinematic viscosity
ν. A homogenous current density Jb = J0ez runs through the fluid and induces a toroidal
magnetic field Bb = B0(r)eθ . (a) Configuration I: the tube is surrounded by a current-free
region (air). (b) Configuration II: a synthetic boundary condition confines the magnetic
field to the inside of the cylinder.

The presence of an external current-free region is not important for the physics
of the Tayler instability. We will substantiate this claim by studying the synthetic
configuration II, shown figure 1(b), in which there is no outer region (r 6 R). The
base state (2.2) is again a solution inside the cylinder provided a fictive surface current
density

Js|r=R = er × Bb

µ0

∣∣∣∣
r=R

= J0R
2

ez, (2.4)

is enforced at the boundary r = R. Numerically, it is slightly simpler to work in
this second configuration since there is no exterior domain. Physically this boundary
condition corresponds to an infinite conductor outside the cylinder. It will be shown in
§ 4.3.3 that this boundary condition does not significantly impact the threshold and the
linear regime in general. We will exclusively restrict ourselves to this configuration II
in the direct numerical simulations.

3. Numerical study of Tayler’s instability
3.1. Numerical set-up

Our group has been developing for many years a finite element/Fourier code, called
SFEMaNS, capable of solving nonlinear MHD problems in axisymmetric domains.
SFEMaNS uses a Fourier representation along the azimuthal direction and finite
elements in the meridian sections. For instance, the approximate velocity field has
the following representation:

U =
M∑

m=0

Uc
m(r, z, t) cos mθ +

M∑
m=1

Us
m(r, z, t) sin mθ, (3.1)

where Uc
m(r, z, t) and Us

m(r, z, t) are vector-valued finite elements functions and
M is the number of (complex) Fourier modes used in the discretization. All of
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Tayler instability in columns and LMBs 83

the fields, either vector-valued or scalar-valued, are represented as above. Unless
specified otherwise we use M = 16 in the simulations reported in the rest of the
paper. SFEMaNS (Guermond et al. 2009, 2011a) has been thoroughly tested and has
been used to solve dynamo problems (Nore et al. 2011; Giesecke et al. 2012; Nore
et al. 2012). Originally limited to describing MHD in only one kind of electrically
conducting fluid, we have now added a module to allow for multiphase MHD
simulations that shall be used in § 5.

The code is non-dimensionalized with respect to the following units:

[x] = R, [U] = B0/
√
ρµ0, [t] = [x]/[U], [B] = B0, [p] = ρ[U]2 (3.2a−e)

so that the non-dimensional fields satisfy the equations

∂tU +U · ∇U =−∇P+ (∇× B)× B+
√

Pm
Ha
∇ · (∇U +∇UT),

∂t B=∇× (U × B)− 1
Ha
√

Pm
∇× (∇× B),

∇ ·U = 0.


(3.3)

Two non-dimensional parameters appear in these equations: the Hartmann number, Ha,
and the magnetic Prandtl number, Pm, and they are defined by

Ha= B0R
√
σ

ρν
, Pm= σµ0ν. (3.4a,b)

In liquid metals, the magnetic Prandtl number is always very small Pm' 10−5–10−6,
meaning that magnetic diffusion is far stronger than viscous diffusion. This
observation has motivated other teams (e.g. Weber et al. 2013) to use the QS
approximation of MHD to describe fluid motions in which the magnetic Prandtl
number Pm no longer appears as an explicit parameter. This may present some
technical advantages and could have been implemented in SFEMaNS, but we have
preferred to keep a time-stepping strategy to be able to evaluate the influence of the
magnetic Prandtl number.

As specified above, all of the numerical computations are performed using
configuration II, i.e. all of the fields are restricted to the inner region r 6 R. The
aspect ratio h=H/R is finite to make the computational domain bounded. The initial
data for (3.3) can be of two kinds: either we start from a slightly perturbed base state
or we restart from a previously computed state. On the vertical walls, we impose the
no-slip boundary condition on U and the synthetic boundary condition (2.4) on the
magnetic induction:

U|r=1 = 0, er × B|r=1 = ez. (3.5a,b)

On the top and bottom lids, we use two different types of boundary conditions: either
we impose periodicity on U, B and P, or we impose the following conditions,

Uz|z=0,h = 0, [(∇U +∇UT) · ez] × ez|z=0,h = 0
Bz|z=0,h = 0, (∇× B)× ez|z=0,h = 0,

}
(3.6)

meaning that the lids are impenetrable, the tangential component of the stress is zero,
the magnetic induction is tangential and the electrical current is normal to the top and
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bottom lids. We henceforth refer to these two sets of top/bottom boundary conditions
as periodic TB-BC and stress-free TB-BC. The no-slip boundary conditions are not
used in this article on the top and bottom lids because the linear stability analysis
(done in § 4.3.1) is significantly easier to perform with periodic or stress-free TB-BC.
We use these TB-BC in the numerical simulations to be able to make comparisons
with the linear stability analysis from § 4. We expect the effect of this boundary
condition not to be significant for vessels of sufficiently large aspect ratio. The effect
of realistic no-slip boundary conditions on the top and bottom plates have been
studied in Weber et al. (2013, 2014). The initial data, the boundary conditions and
the value of h that we choose to perform computations will always be specified
locally in the text.

We will perform simulations for different choices of the parameters Ha, Pm and h.
Qualitative behaviours will be illustrated in the form of snapshots. Quantitative results
will also be given. For instance, recalling the discrete representation of the velocity
field (3.1), we will compute

um(t)=
√

2
h

∫ 1

0

∫ h

0
(‖Uc

m‖2 + ‖Us
m‖2)r dr dz, 06m6M, (3.7)

the volume-averaged root-mean-square (r.m.s.) velocity of the Fourier mode m.
Tayler instability simulations will be done by using the base state (2.2) augmented

with random noise. Since in the linear regime the Tayler instability only grows along
the Fourier mode m= 1, we then expect that

u1(t)∼ eγat, (3.8)

where γa > 0 is called the growth rate. The suffix ‘a’ refers to the Alfvén time units
that we use in SFEMaNS and is added to avoid confusion with the growth rate γ that
will be defined in the theoretical § 4. The growth rate γa will be evaluated numerically.
The analysis of the nonlinear regime of the Tayler instability (Weber et al. 2014) is
important to be able to estimate how strong the flow may become; this will be done
by using the total specific kinetic energy:

Ka =
M∑

m=0

(1+ δm0)
π

2

∫ 1

0

∫ h

0

(‖Uc
m‖2 + ‖Us

m‖2
)

r dr dz. (3.9)

We will also report the volume-averaged r.m.s. total velocity

urms,a =
√

2Ka/(πh). (3.10)

The phenomenology of the nonlinear transition will be discussed, and differences
between periodic and stress-free boundary conditions will be analysed.

3.2. Cylinder with aspect ratio h= 2
3.2.1. Periodic TB-BC

We first study the Tayler instability in a periodic cylinder of aspect ratio h= 2. The
instability is observed for Pm= 10−2 and Ha= 24, and two types of growing modes
with different symmetries are observed, see figure 2. Helicoidal structures (figure 2a,b)
are found for generically random initial data, but the mode shown in figure 2(c,d) is
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FIGURE 2. (Colour online) Periodic TB-BC with h= 2, unstable Tayler mode at Ha= 24
and Pm= 10−2: (a) U, coloured by Uz; (b) isosurface of Bz; (c) U, coloured by Uz; (d)
isosurface of Bz. A growing helicoidal mode (a) and (b) is observed for general initial
conditions, but non-helicoidal modes (c) and (d) can also be observed when the phase
between the initial velocity and magnetic fields is π/2.
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FIGURE 3. (Colour online) The r.m.s. velocity u1(t) versus time at Pm= 10−2 and for
different Ha numbers. Periodic cylinder with aspect ratio h= 2.

also obtained if the phase between the initial velocity and magnetic fields is set to
π/2. This mode is composed of two counter-rotating vortices (figure 2c) and a pair
of oppositely oriented bz blobs (figure 2d). Both modes have exactly the same growth
rate γa = 0.0187 (i.e. they live in the same four-dimensional eigenspace; each mode
comes in pair due to the symmetries of the problem, see § 4.3.1) and their wavelength
is equal to the height of the domain. The vertical position of all the eigenmodes is
arbitrary owing to the periodicity along the vertical direction.

To better evaluate the importance of the parameters Pm and Ha, we now explore the
ranges Pm ∈ {1, 10−2, 10−4, 10−6} and Ha ∈ {20, 24, 30, 35, 40, 100}. For instance, we
show in figure 3 the time evolution of the r.m.s. velocity u1(t) for Pm=10−2 and Ha∈
{20, 24, 30, 35, 40, 100}. The exponential growth (positive or negative) of the Tayler
instability in the linear regime clearly appears as straight lines in the semilogarithmic
representation. For each pair of parameters (Pm,Ha), the growth rate γa is estimated
by linear fit from these plots. The results are compiled in table 1 (left part). Apart
from the values obtained for Pm = 1, we observe that γa ∼

√
Pm. An explanation
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Ha Pm= 1 Pm= 10−2 Pm= 10−4 Pm= 10−6

24 — 0.187× 10−1 0.191× 10−2 0.179× 10−3 Pm Hac

30 — 0.586× 10−1 0.607× 10−2 0.602× 10−3 10−2 21.7
35 — 0.881× 10−1 — 0.914× 10−3 10−4 21.7
40 0.3302 1.146× 10−1 1.205× 10−2 1.208× 10−3 10−6 22.5
100 0.5734 3.307× 10−1 4.184× 10−2 4.201× 10−3

TABLE 1. Growth rate γa (left) and critical Hartmann number Hac (right) at various Pm
in a cylinder with aspect ratio h= 2 and periodic TB-BC.

Ha 24 30 35 40 50

Ka (Pm= 10−2) 4.63× 10−2 2.56× 10−1 3.05× 10−1 3.58× 10−1 —
Ka (Pm= 10−4) 5.4× 10−4 3.2× 10−3 4.3× 10−3 5.5× 10−3 1.1× 10−2

TABLE 2. Kinetic energy at saturation for various Pm and Ha in a cylinder of aspect
ratio h= 2 and periodic TB-BC.

for this behaviour and a detailed comparison with the linear stability theory will be
presented in § 4.3. Linear interpolation of the measured γa allows us to estimate the
threshold Hac, i.e. when γa = 0. The threshold values Hac thus obtained are reported
in table 1 (right part); Hac is fairly independent of Pm, in agreement with the linear
stability analysis of Rüdiger et al. (2011, 2012).

We now follow the non-helicoidal structures of figure 2(c,d) in the nonlinear
regime. The time evolution of the kinetic energy Ka is reported in figure 4 for
Pm= 10−2, 10−4, 10−6. The qualitative behaviour of Ka with respect to time is similar
for the different values of Pm investigated, but the amplitude of the realized flow
dramatically decreases with Pm, indicating that a scaling law might exist. This point
will be discussed in § 4. Table 2 shows the mean kinetic energy measured at saturation
for various values of Pm and Ha.

For all of the values of Pm explored, we observe that the shape of the steady-state
solution at Ha=24 (i.e. near the threshold) is similar to that of the eigenvectors shown
in figure 2(c,d). Two steady counter-rotating vortices have formed together with a pair
of magnetic blobs in quadrature. Between Ha = 24 and Ha = 30 the flow becomes
time-dependent. The oscillating velocity and magnetic fields that can be observed (not
shown here) are similar to the time-periodic eigenmode observed at Ha= 35. Figure 5
shows snapshots of the solution obtained at Ha = 35 and Pm = 10−2 during one
period (t, t + T/4, t + T/2, t + 3T/4, t + T): there are two pulsating vortices in
phase opposition. Table 3 shows the measured period as a function of Pm and Ha.
The period decreases as Ha increases. The time-periodic regime is observed for all
values of Pm at Ha = 30 and Ha = 35, but for Ha = 40 the time-periodic state is
observed only at Pm=10−2; the dynamic becomes quasi-periodic for smaller values of
the Prandtl number, i.e. Pm= 10−4 and Pm= 10−6 (see figure 4b,c). Since Pm= 10−2

gives the same qualitative results as Pm= 10−4 and Pm= 10−6, we will use Pm= 10−2

in the parametric studies in the next sections.

3.2.2. Stress-free TB-BC
When the periodic TB-BC condition is replaced by the stress-free TB-BC, the

eigenmodes that are observed are no longer helicoidal; actually, these modes can
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FIGURE 4. (Colour online) Time evolution of the kinetic energy Ka for h=2 with periodic
TB-BC and different Pm: (a) Pm = 10−2; (b) Pm = 10−4; (c) Pm = 10−6. We restarted
calculations varying Ha as indicated in the figure.
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FIGURE 5. (Colour online) Periodic TB-BC, h = 2, time-periodic state at Ha = 35 and
Pm= 10−2: (a) t and t+ T; (b) t+ T/4; (c) t+ T/2; (d) t+ 3T/4. Two pulsating vortices
in phase opposition.

exist only in periodic boxes as will be shown in the theoretical § 4. Our computations
show that two eigenmodes become unstable when Ha = Hac ≈ 21.7. The dominant
mode consists of two counter-rotating vortices filling the vessel; the corresponding
growth rates and thresholds are the same as those found in the periodic case, see
table 4. This mode is henceforth referred to as SF-one and is shown in figure 6(a).
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FIGURE 6. (Colour online) Stress-free TB-BC, h= 2 and Pm= 10−2: competing
eigenstates (a) SF-one and (b) SF-half shown by vectors coloured by Uz.

Pm 10−2 10−4 10−6

T(Ha= 30) 20.4 ≈190 ≈1800
T(Ha= 35) 18.8 ≈160 ≈1570
T(Ha= 40) 17.2 QP QP

TABLE 3. Periodic TB-BC with h= 2: period of the system at Ha= 30, 35, 40 (this period
corresponds to twice the period of the kinetic energy because the flow has two alternating
vortices). QP stands for a quasi-periodic regime.

Ha γa (SF-one) γa (SF-half)

20 −0.1343× 10−1 −0.1930× 10−1

24 0.1873× 10−1 0.0555× 10−1

30 0.5900× 10−1 0.3584× 10−1

TABLE 4. Stress-free TB-BC with h= 2 and Pm= 10−2: growth rates for SF-one and
SF-half eigenstates.

The second eigenmode is composed of a single vortex filling the vessel and is
henceforth referred to as SF-half, see table 4 and figure 6(b).

We now perform a simulation in the nonlinear regime to see how the SF-one
and SF-half modes compete. The time evolution of the kinetic energy is shown in
figure 7(a) for Ha = 24, 30, 35. At Ha = 30, starting from initial random noise, a
state with one-wavelength (such as the SF-one eigenvector, see figure 7b) increases
exponentially and reaches a maximum around t=195 (see figure 7a). Then, the kinetic
energy decreases and reaches a minimum value at t= 225. During this transition the
number of vortices occupying the vessel changes from 2 to 1. The orientation of
the axis of the vortices changes as well and rotates by π/2 (see figure 7b–e). The
kinetic energy increases afterwards and reaches a plateau at t= 350. The final state is
composed of one steady vortex and one magnetic field blob resembling the SF-half
eigenvector.

3.3. Cylinder with optimal aspect ratio h= 2.77
The linear theory developed in § 4.3.2 predicts that a cylinder of aspect ratio h= 2.77
gives the lowest threshold on the Hartmann number, Hac,∗= 19.296. We will use this
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FIGURE 7. (Colour online) Stress-free TB-BC, h=2 and Pm=10−2. (a) Time evolution of
the kinetic energy in the nonlinear regime: Ha=24,30,35. (b–e) Competition between two
states at Ha= 30: (b) t= 150, Oxz-plane; (c) t= 200, Oxz-plane; (d) t= 250, Oxz-plane;
(e) t= 300, Oyz-plane. The two vortices of the most unstable linear eigenmode merge into
one vortex and rotate by π/2 for 2006 t6 250. Note the change of view point at t= 300.
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FIGURE 8. (Colour online) The optimal box h= 2.77 at Ha= 24 and Pm= 10−2:
eigenmode for (a) periodic TB-BC and (b) stress-free TB-BC.

optimal cylinder height in the LMB configuration. Our numerical estimation of the
threshold on the Hartmann number is Hac ≈ 19.4; the linearly unstable modes in the
periodic and stress-free TB-BC cases are similar to those obtained for h= 2 and are
shown in figure 8.

We now perform nonlinear runs for the two types of boundary conditions. For the
periodic case, we have performed a set of computations starting from different
initial conditions (see figure 9a). Starting from random noise at Ha = 24, the
system converges to a steady state with one wavelength in the vertical box (two
counter-rotating vortices, see figure 8a). Restarting from this state and increasing
the Hartmann number to Ha= 35 leads to a first plateau in the kinetic energy. This
is not the asymptotic state since performing another run with Ha = 35 using as
initial data a state computed at Ha = 40 (curve titled ‘Ha = 35’ at time t > 1170)
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FIGURE 9. (Colour online) Time evolution of the kinetic energy for h = 2.77 and
Pm= 10−2 with different boundary conditions: (a) periodic TB-BC; (b) stress-free TB-BC.

leads to a time-periodic regime. The dynamic system obtained at Ha = 40 is also
time-periodic with two vortices pulsating in phase opposition (similar to those in
figure 5). Decreasing the Hartmann number from Ha= 40 to Ha= 30 yields a steady
state (curve titled ‘Ha= 30’ at time t> 1170). Therefore, the transition from a steady
state to an oscillating regime occurs for Ha> 30. On the other hand, the stress-free
case leads to a steady state with one wavelength for all of the Hartmann numbers
that we have explored, Ha ∈ {24, 35, 40, 50}. The steady-state nature of the various
cases is visible on the time history of the kinetic energy, see figure 8(b). These
nonlinear runs clearly illustrate that periodical TB-BC allow for dynamical behaviour
that is not observed with stress-free TB-BC. This is entirely due to confinement by
impermeable top and bottom lids. Since no-slip boundaries are also impermeable, we
expect similar dynamics as in the stress-free TB-BC case.

4. Theoretical analysis of Tayler’s instability
4.1. Perturbation problem

We now investigate the linear stability theory of the Tayler instability. We start by
writing the non-dimensional perturbation equations using the following units:

[x] = R, [t] = ρ/(σB2
0), [u] = [x]/[t], [b] = σµ0[u][x]B0, [p] = ρ[u]2,

(4.1a−e)
to scale the space, the time, the velocity, the magnetic field and the pressure. These
units are different from those used in the previous section but they are better adapted
to describe the Tayler instability in the QS regime. The time scale is such that the
magnetic interaction parameter N := σB2

0R/ρ[u] is equal to 1.
We inject U = Ub + u, B = Bb + b, P = Pb + p into (2.1), where u, b and p are

infinitesimal perturbations, and find that

∂tu=−∇q+ [reθ · ∇b+ b · ∇(reθ)]+Ha−21u+ Nu,

PmHa2∂tb=∇× (u× reθ)+1b+ Nb,

∇ · u=∇ · b= 0,

 (4.2)

where we have introduced a modified pressure field q defined as

q= p+ bθr+ 1
2 PmHa2‖b‖2, (4.3)
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and NuNb are nonlinear terms:

Nu =−(u · ∇)u+ PmHa2(b · ∇)b (4.4)
Nb =−PmHa2(u · ∇)b+ PmHa2(b · ∇)u. (4.5)

We have already stated that the magnetic Prandtl number is always very small Pm'
10−5–10−8 in real liquid metals. In the so-called QS limit, all of the terms weighted by
Pm are neglected. The combination

√
PmHa is also sometimes called the Lundquist

number. We do not adopt the QS approach immediately since our aim is to specify
for which range of the parameters Ha and Pm the QS limit applies.

For configuration I, we impose the no-slip condition on the velocity perturbations
at r= 1 and the continuity of the magnetic induction across the cylindrical boundary
r= 1:

BC I: u|r=1− = 0, b|r=1− =∇ψ |r=1+, (4.6)

where outside the cylinder we look for b in potential form b := ∇ψ with ∇2ψ = 0.
Note that this hypothesis, also used by Tayler, is somewhat restrictive since it excludes
external fields that perhaps could be more complex (the external region is a torus and
thus not simply connected). In configuration II, we impose again the no-slip condition
on the velocity, but this time the perturbations of the tangential magnetic field must
be zero on the lateral boundary r= 1,

BC II: u|r=1− = 0, er × b|r=1− = 0. (4.7)

4.2. Linear stability analysis: method
4.2.1. General solution

In the limit of vanishing perturbations u, b, q→ 0, we neglect the nonlinear terms
Nu and Nb. The linearized perturbation equations can be decoupled in terms of the
modified pressure, which for all non-axisymmetric perturbations, leads to the following
tenth-order Master equation{[

(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2
θθ

]2
∆+ 4∂2

θθ∂
2
zz

}
∂θq= 0. (4.8)

The decoupling process is quite technical and similar to Tayler’s original approach.
The details are reported in the appendix A. We consider the following ansatz with an
harmonic structure with respect to z, θ and t:

q(r, θ, z, t)=
5∑

j=1

PjJm(kjr)eimθeilzeγ t, (4.9)

where m ∈ Z, l ∈ R are azimuthal and vertical wavenumbers, γ ∈ C is the unknown
complex-valued growth rate, Pj are five arbitrary complex-valued coefficients, and kj ∈
C are five different radial wavenumbers with the convention that Re(kj) 6 0. The
functions Jm(kjr) are Bessel functions of the first kind. No Bessel functions of the
second kind Ym(kjr) are involved since r = 0 is part of the fluid domain. The radial
wavenumbers kj are chosen so that the numbers zj= k2

j + l2, j= 1, . . . , 5 are the roots
of the fifth-order characteristic polynomial

Q(z)= [(γ +Ha−2z)(PmHa2γ + z)+m2]2z− 4m2l2 (4.10)

associated with (4.8). This implicitly fixes the five numbers kj as functions of m, l, Ha,
Pm and γ . The dependence of kj on m, l, Ha, Pm and γ is implicit not only because
no analytical formula exists for the roots of Q(z), but also because γ is still unknown
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at the moment. By back-substituting the ansatz (4.9) into the original equations, we
can calculate all of the other fields

u± =
5∑

j=1

Pj
±kj(PmHa2γ + zj)

fj +m(m± 2)
Jm±1(kjr)eimθeilzeγ t,

b± =
5∑

j=1

Pj
±imkj

fj +m(m± 2)
Jm±1(kjr)eimθeilzeγ t,

uz =
5∑

j=1

Pj
−il(PmHa2γ + zj)

fj +m2
Jm(kjr)eimθeilzeγ t,

bz =
5∑

j=1

Pj
ml

fj +m2
Jm(kjr)eimθeilzeγ t,



(4.11)

where we defined fj= (γ +Ha−2zj)(PmHa2γ + zj) and u±= ur ± iuθ and b±= br ± ibθ .
This fixes all of the fields in terms of five arbitrary constants Pj. Note that the notation
u±= ur± iuθ and b±= br± ibθ allows us to recognize simple structures in the solution.

In configuration I, the interior magnetic induction must match an exterior field that
derives from an harmonic potential of the following form

ψ(r, z, θ, t)=DKm(lr)eimθeilzeγ t, (4.12)

where D∈C is a sixth arbitrary constant, and Km is a modified Bessel function of the
second kind. The associated magnetic field is

b± =D(−l)Km±1(lr)eimθeilzeγ t,

bz =D(il)Km(lr)eimθeilzeγ t.

}
(4.13)

At this point, we have found solutions of the homogenous problem inside and
outside the cylinder in terms of six arbitrary coefficients. There are exactly six
boundary/transmission conditions (4.6) and it is thus possible to find a set of six
homogenous algebraic equations for the constants P1, . . . , P5, D. Upon defining
V = [P1, P2, P3, P4, P5,D]T, in matrix notation we have

M(γ ,m, l,Ha, Pm)V = 0, (4.14)

where M ∈C6×6 is a complex-valued matrix depending on γ , m, l, Ha, Pm. The rank-
nullity theorem implies that it is necessary that

det M(γ ,m, l,Ha, Pm)= 0, (4.15)

for this homogenous system of algebraic equations to have a non-trivial solution.
Together with the characteristic polynomial (4.10), this relation formally gives the
dispersion relation of the Tayler instability and allows the growth rate γ ∈ C to be
found as a function of m, l, Ha, Pm. The same technique applies to configuration II,
but this time M ∈ C5×5 since the extra coefficient D is irrelevant in the absence of
the exterior domain.

4.2.2. Solving the dispersion relation in practice
In his article (Tayler 1960), Tayler used a very similar method, but due to the

lack of computing power at that time, no explicit expressions for γ could be found
for arbitrary values of m, l, Ha, Pm. About 50 years later, the necessary computing
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power is readily available and we propose to solve the dispersion relation by using an
iterative Newton-based algorithm. We first fix m, l,Ha,Pm and provide an estimate for
the growth rate γ̂ . We then feed these numbers to an optimization loop that calculates
five candidate wavenumbers kj using the characteristic polynomial, and evaluate the
matrix M together with its determinant. Using a gradient descent method, we modify
γ̂ to converge towards a solution γ that annihilates det(M).

4.2.3. Solution in the QS limit
Upon inspecting the induction equation in (4.2) we infer that the QS (or diffusion

dominated) limit requires that

(QS): PmHa2→ 0. (4.16)

The solution in this limit is obtained by using the technique described above
and setting Pm = 0 in the previous expressions. We henceforth denote γqs the
corresponding growth rate.

4.2.4. Solution in the non-viscous QS limit
We define the non-viscous, QS (or diffusion dominated) (NVQS) regime by

assuming that

(non-viscous QS): Ha→+∞, PmHa2→ 0, (4.17)

at the same time. The magnetic Prandtl number Pm thus needs to decay faster than
Ha−2 as Ha→∞, which, given that real liquid metals have finite Prandtl numbers,
can never happen; we will nevertheless investigate this limit. Neglecting all of the
terms weighted by Ha−2 and PmHa2, the perturbation equations (4.2) no longer
depend on any non-dimensional parameter. The decoupling process then results in a
sixth-order Master equation and solutions for all of the fields are found by setting
Ha−2 = PmHa2 = 0 in (4.11). In this limit, only three Bessel functions appear in
the radial structure with wavenumbers kj, and the characteristic polynomial (4.10)
simplifies into

Q(z)= [γ z+m2]2z− 4m2l2. (4.18)

The dispersion relation is obtained by replacing the viscous no-slip boundary condition
by the non-viscous no-penetration boundary condition

ur

∣∣
1− = 0. (4.19)

The magnetic boundary/transmission conditions are unchanged. Expressing these
boundary conditions gives a matrix M ∈C4×4 in configuration I and a matrix M ∈C3×3

in configuration II. The same iterative technique as before can be used to compute
the growth rate, which we henceforth denote γnvqs. This value is denoted by Γ in
Rüdiger et al. (2012).

4.2.5. Solution in the ideal MHD limit
We also want to investigate the ideal MHD regime: non-viscous and non-diffusive.

This limit consists of assuming that

(Ideal): Ha→+∞, PmHa2→+∞. (4.20)
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This is not an artificial limit, although it is hard to approach in liquid metals
where Pm is very small. In this limit it is appropriate to rescale the time and
adopt the Alfvén time unit; this is done by rescaling the growth rate as follows:
γ = γa/(

√
PmHa). Neglecting all of the terms related to viscous and magnetic

diffusion, we obtain a second-order Master equation for q. Up to some rescaling of
the amplitudes, the fields can be obtained from (4.11). Only one radial wavenumber
k appears in the radial structure and the characteristic polynomial is linear

Q(z)= [γ 2 +m2]2z− 4m2l2, (4.21)

where we recall that z = k2 + l2. The corresponding growth rate in Alfvén’s units
is henceforth denoted by γa,ideal. The wavenumber k is such that the no-penetration
boundary condition is satisfied on the lateral boundary r= 1:

ur

∣∣
1− = 0, (4.22)

which requires that k solves(
1−

√
1+ k2

l2

)
Jm+1(k)+

(
1+

√
1+ k2

l2

)
Jm−1(k)= 0. (4.23)

This equation has only real solutions, and they can be easily computed numerically.
No boundary/transmission condition on the magnetic field can be enforced, which
means that we cannot differentiate configurations I and II. The growth rate is found
by computing the single root of Q, see (4.21):

γa,ideal =
√√√√√ 2|m|√

1+ k2

l2

−m2. (4.24)

Since the wavenumber k is real, we deduce that only modes m=±1 can be unstable
(to have a positive value under the square root). It follows that instability is possible
only if |k|/|l|<√3.

4.3. Linear stability: results and comparison
In agreement with the numerical simulations performed in § 3, and other previously
published results (see e.g. Tayler 1957 and Rüdiger et al. 2011, 2012), we find that
only modes with azimuthal wavenumbers such that |m| = 1 are unstable and the
corresponding growth rates are real above some critical number Hac. The objective
of this section is threefold: first we discuss the cases studied in § 3 and compare the
numerical results with our theoretical estimates; then we explore the range of the
parameters Pm,Ha; finally we consider the non-viscous limits. The numerical growth
rates obtained with SFEMaNS are scaled in Alfvén’s time unit. They are converted
in the present units by using the formula γ = γa/(

√
PmHa).

4.3.1. Case h= 2, Ha= 24, Pm= 10−2

We start with configuration II. Assuming periodicity in the vertical direction with
period h, we must have l = 2πn/h with integer n. The fundamental mode with one
wavelength along z is then l=±π. The mode m= 1 and l= π is unstable, and the
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FIGURE 10. (Colour online) Radial structure of the unstable Tayler mode in
configuration II: m= 1, l=π, Ha= 24 and Pm= 10−2.

growth rate given by the linear stability analysis is γ = 7.805× 10−3. This corresponds
very well to the value 7.804 × 10−3 estimated with SFEMaNS (γa = 1.87 × 10−2 in
table 1). The spatial structure of this mode is shown in figure 10. The amplitudes are
normalized so that max(|ur|, |uθ |, |uz|) = 1. Note that the velocity and the magnetic
fields are in quadrature, and the radial component of each field is in quadrature with
the azimuthal and axial components.

Since the growth rates are exactly the same for all four combinations of m = ±1
and l = ±π, a Tayler mode is a real-valued superposition of these four complex
fundamental modes and can be represented as follows:

ur
uθ
uz
br
bθ
bz

=Re

A+


Vr(r)
iVθ(r)
−iVz(r)
iCr(r)
−Cθ(r)
Cz(r)

 ei(θ+lz) + A−


Vr(r)
−iVθ(r)
−iVz(r)
−iCr(r)
−Cθ(r)
−Cz(r)

 ei(−θ+lz)

 eγ t. (4.25)

We can now understand why the modes come in different classes as observed with
SFEMaNS. If one of the amplitudes A+ or A− is zero, we have an helical mode as
in figure 2(a,b), with either left-hand or right-hand polarizations. These solutions are
the modes labelled L and R in Bonanno et al. (2012). When |A+| = |A−|, we obtain
the modes of figure 2(c,d). In all of the other cases the modes are superposed; this
is not observed in the simulations because of the adopted initial conditions.

The choice of amplitudes is further limited in the finite cylinder with the stress-free
boundary condition. It is possible to construct superpositions such that uz, ∂zu±, bz,
j± ∼ sin(lz) along z, so that the stress-free TB-BC boundary conditions (3.6) can be
satisfied with the choice l = nπ/h and n ∈ N, only if A+ = A∗−. Helical modes are
thus excluded by the stress-free boundary condition in agreement with the numerical
observations in § 3.2.2, i.e. helical modes do not spontaneously emerge as they do
in the setting studied in Bonanno et al. (2012). Note also that with stress-free TB-
BC the fundamental wavenumber is no longer π but π/2 in the cylinder h= 2. This
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FIGURE 11. (Colour online) Critical Hartmann number Hac versus wavenumber l.

is in agreement with the fact that two competing modes (SF-one and SF-half) were
found for this configuration (see figure 6). The linear stability analysis gives a second
unstable mode with l = π/2, and the corresponding growth rate γ = 2.289 × 10−3

at Ha = 24 is three times smaller than that of the SF-one mode. Again this agrees
very well with the value 2.312× 10−3 evaluated numerically (γa = 5.55× 10−3 in the
rightmost column of table 4). The linear stability analysis explains well the presence
of the SF-half mode, but it does not explain why this mode wins the competition over
the SF-one mode in the nonlinear regime.

4.3.2. Variation of Hac with l
The critical Hartmann number for the onset of the Tayler instability, Hac, is

independent of the Prandtl number; it depends only on the vertical wavenumber l.
We have calculated this number for both configurations I and II over a large interval
for l; the results are displayed in figure 11. We observe that the behaviour of Hac
with respect to l is similar in configurations I and II. There is a lower limit under
which the Tayler instability cannot exist. The thresholds for both configurations I and
II become identical in the limit l→+∞; this is a consequence of the fact that the
exterior magnetic field quickly decays away from the cylinder as l increases. The
pairs (l∗,Hac,∗) corresponding to the lowest threshold are

I (�): l∗ = 2.483, Hac,∗ = 21.092,
II (•): l∗ = 2.271, Hac,∗ = 19.296.

}
(4.26)

We have investigated numerically the optimal cylinder with height h∗ = 2π/l∗ = 2.77
and we have obtained Hac≈ 19.4 in configuration II, see § 3.3. These results are also
in good agreement with the result Hac,∗ ≈ 22 found in Rüdiger et al. (2012) for an
infinite cylinder with insulating walls (i.e. configuration I).

4.3.3. Variation of γ and γqs with Ha
Since most of the numerical simulations have been done with the aspect ratio

h = 2, we now fix l = π and compute the theoretical values for the growth rates in
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FIGURE 12. (Colour online) Growth rates versus Ha for various Pm as indicated in the
figure using different units: (a) growth rate γ in units (σB2

0)/ρ; (b) growth rate γa in
units (

√
ρµ0R)/B0. Dashed lines: configuration I. Full lines: configuration II. Markers (E):

growth rates from SFEMaNS. Horizontal lines: non-viscous QS asymptotes in (a), non-
viscous non-diffusive asymptote in (b).

both configurations I and II for a large range of parameters Pm, Ha. The results
are gathered in figure 12: figure 12(a) gives the growth rate γ as a function of
Ha, for various values of Pm; figure 12(b) gives the same results in rescaled units,
γa = Ha

√
Pmγ . Comparing the dashed lines (configuration I) and the solid lines

(configuration II), we observe that both configurations behave very similarly for all of
the values of Pm and Ha explored. This observation further supports the idea that the
exact nature of the magnetic boundary condition on the cylindrical sidewall is not so
important for the Tayler instability. The circles indicate the values measured from the
numerical simulations in configuration II. We observe a very good agreement between
the numerics and the linear stability theory, which cross-validates both approaches.
The theoretical value for the threshold is Hac = 21.58 in configuration II. This value
is very close to the estimate Hac ≈ 21.7 obtained numerically with SFEMaNS (see
table 1).

We now discuss the behaviour of the theoretical curves in figure 12(a) as Ha goes
from Hac to +∞. The two curves labelled γqs correspond to the QS limit with Pm=0.
The graph of γqs monotonically increases with Ha and converges to the non-viscous
horizontal asymptote as Ha→+∞. The approximate values for the non-viscous limit
are γnvqs = 0.0409 in configuration I and γnvqs = 0.0459 in configuration II. These
values closely match the value given by Rüdiger et al. (2012, equation (7)), who
studied configuration I and found Γ ' 0.04.

We now consider the effect of Pm. When Pm� 1, the graph of γ follows that of
the QS limit over some interval of width depending on Pm, and it eventually bends
down and separates from the QS limit as Ha increases. Then the graph of γ reaches
a maximum at a transitional Hartmann number we note Hatr(Pm) and which value
depends on Pm. This behaviour is due to the term PmHa2∂tb that is neglected in the
QS regime. If Pm 6= 0, this term eventually gains weight in the induction equation
when Ha is large enough. It has been possible to go beyond the maximum for Pm ∈
{10−1, 10−2}, and we observe that γ → 0 when Ha→+∞. In this limit, the growth
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FIGURE 13. (Colour online) Transitional Hartmann number Hatr versus Pm; the QS
approximation applies when Ha < Hatr; the ideal MHD limit becomes valid when
Ha�Hatr.

rate is better expressed in Alfvén’s time units γa= γ
√

PmHa as shown in figure 12(b).
With this new scaling, all of the graphs appear in reversed order and we see that
they all seem to converge towards the ideal MHD horizontal asymptote, here found
at γa,ideal = 0.7804.

The quantity labelled Hatr is informative in the sense that the Tayler instability is
of QS nature over the interval [Hac, Hatr(Pm)]. In other words, as long as we keep
Ha<Hatr, numerical simulations done with Pm∈ [10−3, 10−2] will give rise to Tayler
instabilities that are very similar in structure to those that would have been obtained
by using Pm=10−6, which is a value of the Prandtl number that is more representative
of liquid metals. Obtaining a precise behaviour of Hatr as a function of Pm is thus
useful to estimate when we can obtain the correct physics at a smaller computational
cost using SFEMaNS. We have computed Hatr for various values of Pm ∈ [10−4, 1];
the quantity Hatr − Hac is shown in figure 13 as a function of Pm. We observe a
scaling law

Hatr −Hac ∼ Pm−3±0.1, (4.27)

for small values of Pm. We have used this relation to extrapolate the curve in the
range Pm∈ [10−6, 10−5] which is typical for liquid metals. The graph in figure 13 can
be interpreted as a phase diagram in some sense: under the curve the Tayler instability
is of QS nature; above, the Tayler instability has the structure of the ideal MHD limit.
This tells us that the Tayler instability in liquid metal columns can be modelled using
the QS approach up to very high Hartmann numbers. Numerical values of Hatr are
given in table 5.

4.3.4. Non-viscous limits: γnvqs and γa,ideal as a function of l
Figure 12 illustrates well the importance of the non-viscous asymptotes γnvqs and

γa,ideal as Ha→+∞ for the particular value l=π. We now calculate the non-viscous
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FIGURE 14. (Colour online) Growth rates in non-viscous limits versus wavenumber l.
(a) Non-viscous QS limit for configurations I (dashed line) and II (solid line). (b) Ideal
MHD limit. Each branch is associated with one, three or five radial structures as shown
in the inset.

Pm 10−1 10−2 10−3 10−4 10−5 10−6

Hatr 49.0 71.6 124.5 231.9 ≈440 ≈940

TABLE 5. Transitional Hartmann number Hatr number indicating change in regime: the
QS approximation holds when Ha<Hatr.

growth rates γnvqs and γa,ideal over a large interval of wavenumbers l. The results are
shown in figure 14(a) for γnvqs and figure 14(b) for γa,ideal; the computations are done
for both configurations I and II using (4.23) and (4.24).

Figure 14(a) reveals three branches in the NVQS limit, each corresponding to an
unstable mode. The spatial structure of these modes is shown in the inset between
the two panels. The first, second and third Tayler modes are composed of one, three
and five rolls along the radial direction, respectively. We do not focus on modes with
more than one roll in the radial direction in this paper, since the one-roll pattern
is always dominant in the viscous regime. We observe also that each mode has a
negative growth rate beneath a minimal wavenumber l. This observation explains why
the threshold Hac grows to infinity in figure 11 when l→ 0.

In the ideal MHD limit, figure 14(b) shows again three branches for γa,ideal, each
of these branches corresponding to a Tayler mode with one, three and five rolls along
the radial direction.

4.3.5. Conclusions of the linear analysis
Close to threshold and for small Prandtl numbers, the Tayler instability is QS in

nature; more precisely, in the region Hac 6Ha<Hatr(Pm), Pm� 1, the dimensional
growth rate scales like

γqs(Ha)
σB2

0

ρ
= γqs(Ha)Ha2 ν

R2
= γqs(Ha)Ha

√
Pm

B0√
ρµ0R

, (4.28)

where the function γqs(Ha) is the QS growth rate; it is concave down, increases
monotonically and converges to the non-viscous horizontal asymptote as Ha→+∞.
For the reader’s convenience, we have written (4.28) using the time unit, ρ/σB2

0, the
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viscous time unit, R2/ν, and Alfvén’s time unit,
√
ρµ0R/B0. Then, in addition to the

Alfvén scaling Ha
√

Pm, we recover the Ha2 scaling identified in Rüdiger & Schultz
(2010) and Rüdiger et al. (2011, 2012). These expressions show that the time unit
ρ/σB2

0 is well adapted to describe the QS regime.
Considering that the magnetic Prandtl number in liquid metals is usually very small,

say in the range [10−8, 10−5], and that it is very difficult to reach very high Hartmann
numbers in experiments with liquid metals, we conclude that the QS regime is relevant
for the analysis of the Tayler instability in LMBs. Numerical codes that adopt the
QS approximation as in Weber et al. (2013) are thus well adapted to capture the
dynamics in these systems in the range 06Ha. 103 (see table 5), since as argued in
Weber et al. (2013) adopting a time-marching strategy to solve the induction equation
in this regime can be time consuming due to severe time step restrictions. Still this
does not exclude that other numerical codes such as SFEMaNS, which are based on
time-stepping, cannot track the Tayler instability in the QS limit. Actually, table 5
shows that the QS behaviour is well captured when 0 6 Ha . Hatr(Pm); this is the
case for Hartmann numbers in the range 06Ha. 102 when Pm ∈ [10−3, 10−2]. This
range is well within reach of time-stepping codes.

4.4. Nonlinear regime
The linear stability analysis is valid only in the infinitesimal limit, i.e. it cannot predict
the nonlinear saturation level of instabilities. The purpose of this section is to use a
weakly nonlinear equilibrium theory to estimate the nonlinear amplitude of the Tayler
instability in the QS limit. We do not perform a detailed analysis but instead sketch
a plausible scenario leading to a particular scaling of the amplitude of the flow.

To simplify the notation, we introduce the state vector X = [u, b, q]T and rewrite
the nonlinear perturbation problem (4.2) as

∂tJ X +L X =N (X, X). (4.29)

The QS limit is obtained by neglecting all of the terms that are proportional
to PmHa2 � 1. We then have J = diag(1, 1, 1, 0, 0, 0, 0), and L is a linear
differential operator involving only spatial derivatives. The nonlinear operator reduces
to N (X, X) = (−(u · ∇)u, 0, 0). Let us then first return to the linear stability
analysis problem. The unstable Tayler mode computed in the previous section, say
XT =YT(x)eγqst, is such that YT solves the eigenvalue problem

L YT =−γqsJ YT . (4.30)

Recall that the eigenspace is four-dimensional, i.e. YT is a (real) superposition of four
fundamental modes.

Let us now imagine that a stationary weakly nonlinear equilibrium solution Y e exists
so that the following nonlinear equation holds:

L Y e =N (Y e,Y e). (4.31)

We have indeed observed saturated states in our numerical simulations (see figures 4,
7 and 9), but we also have seen that they can become unstable. In both cases, the
simulations show that the unstable Tayler mode composes the dominant part of the
solution. We then propose the following ansatz

Y e = ATYT + A1Y1 + A2Y2 + · · · (4.32)
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where the parameters
1� AT� A1� A2� · · · (4.33)

keep track of the order of magnitude of the Tayler mode and the first- and second-
order harmonics Y1 and Y2. To understand how the nonlinear equilibrium settles, we
insert this ansatz into (4.31) and isolate the equations that the harmonics must satisfy.
The first-order harmonics is directly forced by the nonlinear self-interaction of the
Tayler mode:

A1L Y1 = A2
TN (YT,YT). (4.34)

This linear problem is solvable since the right-hand side forces spatial structures with
wavenumbers m=0,±2 and 0,±2l, that are necessarily in the orthogonal of the kernel
of L T. As consequence, we have

A1 ∼ A2
T . (4.35)

Less trivial and only after a good deal of analytical hard work, one can indeed
calculate the harmonic Y1, but this is not the aim of the present study.

In the next step, the second harmonics Y2 needs to satisfy the balance equation:

A2L Y2 = γqsATJ YT + A3
T

[
N (YT,Y1)+N (Y1,YT)

]
. (4.36)

This linear problem is not solvable for arbitrary choices of the amplitude AT . The
solvablity condition will fix the amplitudes of the m=±1 and ±l components of the
Tayler mode YT . Obtaining these amplitude equations is complicated and requires a
lengthy calculation, but it is clear that the two terms in the right-hand side can be of
the same order of magnitude only if

γqsAT ∼ A3
T . (4.37)

In other words, if the classical cubic Landau-saturation approximation for a
supercritical bifurcation applies to the Tayler instability in the QS regime, the
amplitudes must scale as follows:

AT =C
√
γqs H⇒UT =C

√
γqs
σB2

0R
ρ

(4.38)

where C is a O(1) non-dimensional constant and UT is the dimensional amplitude
of the velocity field at saturation. This relation can also be rewritten in terms of the
Reynolds number associated to the perturbations

Re= UTR
ν
=C

√
γqs(Ha)Ha2. (4.39)

The scaling Re∼Ha2 has been observed in the recent work of Weber et al. (2014).
We now compare the scaling (4.39) with the numerical results obtained with

SFEMaNS and those published in Weber et al. (2014). We calculate the growth
rates γqs(Ha) for various values of the Hartmann number in the range 0 6 Ha 6 50
using l = π. We show in figure 15(a,b) the graph of Re = C

√
γqs(Ha)Ha2 and

urms = ReHa−2 = C
√
γqs(Ha). We also show in these two figures the results obtained

with SFEMaNS with Pm ∈ {10−4, 10−2} using the formulae Re(Ha)= urms,aHaPm−1/2

and urms(Ha) = urms,aHa−1Pm−1/2, where urms,a is computed with (3.10). There is a
reasonable agreement between the theoretical predictions of the weakly nonlinear
model and the numerical simulations for C ≈ 0.6. We have restricted ourselves to
Ha6 50 to be close to the QS limit as specified in table 5.

In figure 15(c,d), we show the graph of Re=C
√
γqs(Ha)Ha2 and urms = ReHa−2 =

C
√
γqs(Ha) where γqs(Ha) is computed using l = π/1.2. We also report in this
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FIGURE 15. (Colour online) Weakly nonlinear saturation of the Tayler instability, theory
versus numerics: (a) Re versus Ha, SFEMaNS versus theory; (b) urms versus Ha,
SFEMaNS versus theory; (c) Re versus Ha, Weber et al. (2014) versus theory; (d) urms
versus Ha, Weber et al. (2014) versus theory. Theoretical curves for various values of C.
Numerical results obtained using SFEMaNS (a,b), using the data of Weber et al. (2014)
(c,d). Note that in (d), Hac= 19.7 for the theory and Hac= 29 from Weber et al. (2014).

figure results published in Weber et al. (2014, figure 6) for a cylinder of aspect ratio
h = 2.4. The numerical results were obtained using a QS code and with the no-slip
boundary condition enforced at the top and bottom lids. These are not exactly the
same boundary conditions as those that we have imposed, which explains the slight
difference on the value of the threshold. We nonetheless observe that our theoretical
predictions work well in this case also for a large range of Hartmann numbers with
C' 0.3.

5. Tayler instability in LMBs

We apply the theories developed above to Mg-based LMBs. After a discussion on
material properties, we calculate a critical lateral size of a Mg-based battery and also
discuss how large the electrolyte layer should be to avoid a short circuit.
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Liquid ρ (kg m−3) η (Pa s) σ (S m−1) Pm Ha/Hatop

Mg 1.58× 103 1.23× 10−3 3.57× 106 3.49× 10−6 1
MCl2–KCl–NaCl 1.67× 103 1.40× 10−3 2.13× 102 2.24× 10−9 7.24× 10−3

Sb(Mg) 6.53× 103 1.30× 10−3 2.56× 106 6.4× 10−7 0.82

TABLE 6. Density ρ, dynamic viscosity η, conductivity σ , Pm and relative Hartmann
number Ha/Hatop of the three fluids composing a magnesium-based LMB.

5.1. Physical properties
LMBs are usually composed of three liquid phases with different densities. The top
and bottom layers assume the role of the electrodes and the middle layer is the
electrolyte. The densities of the liquid metals composing the three layers are chosen
so that the assembly is stable under the action of gravity. Three types of assemblies
have been considered in the literature for possible industrialization in the near future
(Kim et al. 2013; Wang et al. 2014).

(a) Magnesium batteries: Mg (light) for the top electrode, MCl2–KCl–NaCl for the
electrolyte (intermediate density) and the alloy Sb(Mg) for the bottom (heavy)
electrode.

(b) Sodium batteries: with Na, NaF–NaCl–NaI and Bi(Na) for the top, middle and
bottom material, respectively.

(c) Lithium batteries: with Li, LiF–LiCl–LiI and a Sb–Pb alloy for the top, middle
and bottom material, respectively.

The physical properties of the magnesium LMB at 700 ◦C are listed in table 6 (see
also Crawley & Kiff 1972 and Sohal et al. 2013). We also report in this table the
corresponding magnetic Prandtl numbers and the relative Hartmann numbers using
the Hartmann number of the top layer as a reference, Hatop. All of the fluids have
very low Prandtl numbers and, upon inspection of the relative Hartmann numbers, we
conjecture that the Tayler instability is likely to occur first in the top layer, as already
suggested in Weber et al. (2013).

Let us now specify some typical dimensions. In the Mg-based LMBs studied
in Bradwell et al. (2012), the lateral size R and height H of the top and bottom
electrodes are nearly 10−2 m. Larger prototypes now reach 5 × 10−2 m 6 R 6
15× 10−2 m for a total height around Htop+He+Hbottom= 5× 10−2 m. The electrolyte
layer is always rather thin, He6 5× 10−3 m, since the voltage drop over the resistive
electrolyte layer must be smaller than the open circuit voltage of the cell (Weber et al.
2014). LMBs are potentially interesting in comparison with other battery technologies
if they can be scaled up to larger sizes (possibly reaching R> 1 m), but the Tayler
instability becomes potentially hazardous as the size increases (Stefani et al. 2011).

An important quantity in LMBs is the typical current density J0. Although
it would be desirable to be able to reach high values for J0, this quantity is
limited in practice. For instance, high current densities increase internal resistance
losses, which then lower the efficiency of the battery. Also, high J0 require fast
ion-exchange rates on the interfaces; this can lead to local depletion/accumulation of
the migrating ions (Bradwell et al. 2012), which may further reduce the efficiency of
the battery. Presently, Mg-based LMB prototypes operate with current densities up to
J0 = 3× 103 A m−2, see Bradwell et al. (2012) and Kelley & Sadoway (2014). The
more recent Li-based LMBs of Wang et al. (2014) have been efficiently cycled with
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current densities up to J0 = 104 A m−2. These numbers remain far below the current
densities J0= 105–106 A m−2 that are reached in the liquid metal column experiments
of Seilmayer et al. (2012), but it is reasonable to think that larger values of J0 can
be reached in the future in the LMB technology. In the rest of the paper we consider
the following three scenarios:

(i) J0 = 3× 103 A m−2, (ii) J0 = 104 A m−2, (iii) J0 = 105 A m−2 (5.1a−c)

to estimate the importance of Tayler’s instability in LMBs.

5.2. Critical size of battery Rc for the Tayler instability
We identify in this section under which conditions the threshold for the Tayler
instability can be reached in Mg-based LMBs. As emphasized in Rüdiger et al.
(2012), the Hartmann number

Ha= µ0I0

2π

√
σ

ρν
, (5.2)

is proportional to the total current I0 = J0πR2 passing through the system. Using
the physical parameters of the top layer and the minimal critical Hartmann number
Hac,∗=19.296 corresponding to the lowest possible threshold (see (4.26)), we estimate
the minimal critical current

Ic ' 1.78 kA (5.3)

that is necessary to trigger the Tayler instability in the top Mg layer. This order
of magnitude matches the experimental value reported in Rüdiger et al. (2012) and
Seilmayer et al. (2012) for a column of liquid Galinstan. Given Ic and the three
scenarios for J0 defined above, we can estimate the order of magnitude for critical
lateral battery sizes

(i) Rc ' 0.436 m, (ii) Rc ' 0.239 m, (iii) Rc ' 0.075 m. (5.4a−c)

The Tayler instability is not to be expected to occur in LMBs with lateral dimension
R < Rc. For instance, the prototype Mg-based batteries currently available on the
market fall into the category (i). Since for these batteries R . 0.15 m, so far, it is
safe to say that the Tayler instability cannot occur in these cells. However, if LMB
technology should reach higher standards on J0 like in case (iii), the Tayler instability
might occur in cells as small as the present prototypes.

As observed by Weber et al. (2013, 2014), the critical Hartmann number increases
sharply in cells with small aspect ratios; hence, one needs to take into account the
influence of the aspect ratio h of the cells to make better estimates. Using the data
of figure 11 and the wavenumber–aspect ratio relation l = nπ/h, we can calculate
the critical current Ic(h) as a function of the aspect ratio h of the top electrode and
for different numbers of rolls in the vertical direction, say n= 1, 2, 3. Given J0, we
then calculate the critical lateral size Rc(h) as a function of the aspect ratio h of the
electrode. We show in figure 16 the marginal stability curves thus obtained (we take
the lowest Rc(h) number for n∈ {1, 2, 3}). Flat cells have to be very large to become
Tayler unstable, but as the aspect ratio reaches 1, all of the curves level off to the
optimal values given in (5.4). These curves give an idea on the possibilities of the
occurrence of the Tayler instability in LMBs using present day and future technology.
All of the prototype cells (represented by rectangles in figure 16) are well beneath the
marginal stability curve corresponding to case (i), i.e. J0 = 3× 103A m−2. The Tayler
instability is not an issue for these batteries.
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FIGURE 16. (Colour online) Estimated phase diagram for the occurrence of the Tayler
instability in Mg-based LMBs in terms of physical dimensions and for the three
J0-scenarios: (i) J0 = 3 × 103 A m−2; (ii) J0 = 104 A m−2; (iii) J0 = 105 A m−2. There
is a risk of Tayler instabilities only in batteries of horizontal size r > Rc. Various flows
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5.3. Critical electrolyte thickness He,c for short circuit
It is essential in LMBs to avoid short circuits between the top and bottom layers
(Stefani et al. 2011; Weber et al. 2014). Short circuits are possible when the fluids
move sufficiently fast so that the thickness of the electrolyte layer becomes negligible
at some point, thereby allowing the fluid from the top electrode to get in contact with
the fluid from the bottom electrode. Using a simple energy argument, we now estimate
the critical thickness of the electrolyte layer, He,c, above which short circuits caused
by the Tayler instability should not happen.

Considering the nonlinear scaling (4.38), compatible with the results of Weber et al.
(2014), we estimate the kinetic energy density of the flow:

ekin = ρU2
T

2
= C2γqs

2
σ 2B4

0R2

ρ
= C2γqs

32
σ 2µ4

0J4
0R6

ρ
, (5.5)

where γqs(Ha) is the non-dimensional QS growth rate calculated using the linear
stability analysis. Parts of this kinetic energy will be transformed into gravitational
potential energy as the fluid interfaces start moving. Since the fluid composing
the bottom layer is significantly heavier than both that of the electrolyte and the
top layer, wavy motions of the interfaces are more likely to occur at the upper
electrode–electrolyte interface. We therefore consider a simplified short-circuit model
in which a parcel of fluid from the top electrode moves across the electrolyte layer
towards the lower electrode. This event increases the density of gravitational potential
energy of the amount

epot = (ρe − ρtop)gHe. (5.6)
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It seems reasonable then to assume that a short-circuit happens when all the available
kinetic energy is transformed into potential energy. The statement ekin = epot yields a
critical thickness of the electrolyte layer:

He,c = C2γqs(Ha)
32

σ 2
topµ

4
0J4

0R6

ρtop(ρe − ρtop)g
. (5.7)

A configuration where He >He,c has not enough kinetic energy available to allow for
a short circuit and may thus be considered safe. Conversely, it is unlikely that He <
He,c immediately implies that short circuits will happen, but the configuration starts
to be unsafe. Note finally that the above argument is essentially the same as applying
Bernoulli’s conservation law to the three-layer fluid system.

Since the above formula suggests a very fast increase of He,c ∼ R6 with respect to
the horizontal size of the battery, one may be led to think that He,c quickly becomes
very large, thereby excluding the possibility of building very large LMBs. To evaluate
this idea quantitatively, let us apply the estimate (5.7) to Mg-based LMBs using the
three scenarios stated in (5.1) for J0.

We calculate γqs(Ha) for a large range of Hartmann numbers using the linear theory
for the optimal cylinder height htop = 2.77, with wavenumber l = 2π/2.77. This is
the worst-case scenario since it gives the smallest threshold for the configuration that
fits two counter-rotating vortices in the box. For very large Ha ∈ [300, 1000] we
use the asymptotical value γnvqs = 0.0512. Then we compute He,c as a function of
the horizontal size R by using the different material properties, the relation Ha =
(µ0J0R2√σ/η)/2, C= 0.6, g= 9.81 m s−2 and the three values of J0 defined in (5.1).
The results are shown in figure 17; the highlighted band shows the typical range of
the thickness of the electrolyte, He,c ∈ [1, 5] × 10−3 m. This figure clearly shows the
steep increase ∼R6 and the dependence on J0; it also shows that LMBs with radius
such that

(i) R6 3.14 m, (ii) R6 1.40 m, (iii) R6 0.30 m (5.8a−c)

should not suffer from short circuits induced by the Tayler instability with an
electrolyte layer only 1 mm thick, He,c= 10−3 m. Short circuits can be expected only
in very large batteries, R> 3 m, with the present-day technology of Mg-based LMBs
(case (i)). But if the standards evolve so much that J0 can be as high as in case (iii),
cells of radius exceeding 0.30 m may become unsafe.

5.4. Simulation of the Tayler instability in a model LMB under low gravity
We now want to simulate a multiphase configuration resembling a LMB in order to
test the reliability of the critical electrolyte thickness criterion (5.7). For this purpose,
we rewrite (3.3) to account for the action of gravity and the fact that the density, the
dynamic viscosity and the electrical conductivity are no longer constant. The new non-
dimensional system (3.3) takes the following form:

ρ(∂tU +U · ∇U)=−∇P+ (∇× B)× B+ 2

√
Pmtop

Hatop
∇ · (η∇sU)− 1

Frtop
ρez,

∂t B=∇× (U × B)− 1
Hatop

√
Pmtop

∇×
(

1
σ
∇× B

)
,

∇ ·U = 0,


(5.9)
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FIGURE 17. (Colour online) Critical height of the electrolyte layer He,c versus R for
three current density J0-scenarios: (i) J0 = 3× 103 A m−2; (ii) J0 = 104 A m−2; (iii) J0 =
105 A m−2. Dimensions are in metres. Dashed lines correspond to the high Hartmann
number range: Ha∈ [300, 1000] (calculated using the asymptotical value of γnvqs). Arrows
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where ∇sU = (∇U +∇UT)/2 is the strain rate tensor, and the Hartmann and Prandtl
numbers are computed using the conductivity and dynamic viscosity of the top layer.
The Froude number is here defined by

Frtop = µ0J2
0R

4ρtopg
. (5.10)

The fields ρ, σ , η are non-dimensionalized by using the values of the top liquid
layer and are reconstructed in SFEMaNS by using two level set functions Φi, one
for the bottom interface, i= 1, and one for the top interface, i= 2 with 0 6 Φi 6 1.
For instance, the density is reconstructed as follows:

ρ =
(
(1−Φ1)

ρbot

ρtop
+Φ1

ρe

ρtop

)
(1−Φ2)+Φ2, (5.11)

and η and σ are reconstructed similarly. Both level set functions are advected by the
flow and are thus computed by solving the transport equations

∂tΦi +U · ∇Φi = 0, i= 1, 2. (5.12)

The computation is done in SFEMaNS by augmenting (5.12) with an artificial
diffusion based on entropy residuals; we refer to Guermond, Pasquetti & Popov
(2011b) for more details. The profiles of the interfaces are kept sharp (but smooth)
by using a compression technique. Typical profiles at rest of Φ1 and Φ2 along the
vertical direction are shown in figure 18; the thickness of the electrolyte layer is
he = 0.1. The boundary conditions at r= 1− are the same as in (3.5) and the TB-BC
are chosen to be stress-free in the simulations reported below. No boundary condition
is needed for Φi, since we enforce U ·n= 0 over the entire boundary of the container.
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FIGURE 18. (Colour online) Profiles of the level set functions Φ1 and Φ2 in a vertical
cut of the cylinder at rest for Hatop = 15.8. The level set functions jump sharply from 0
to 1.

Let us now test the critical electrolyte thickness criterion (5.7) in a Mg-based LMB
with J0 = 3× 103 A m−2. We use the parameters listed in table 7, which correspond
to realistic Mg batteries except for Pm, σe/σtop and Fr. In its current form the time-
stepping code cannot handle Prandtl numbers as low as 2.24 × 10−9 6 Pm 6 3.49 ×
10−6, but the analysis of the Tayler instability suggests that we should obtain the same
dynamics by using Pmtop = 2.65× 10−3 when Ha is not too large (see table 5). We
also reduced the conductivity ratio between the top electrode and the electrolyte for
numerical stability reasons, but we expect this modification to have little impact since
the electrolyte layer is thin.

We focus on three cases: Hatop = 15.8, 23.7, 47.3 corresponding to batteries with
radii R= 0.394, 0.483, 0.682 m, respectively. The aspect ratios of the electrodes at rest
are htop= hbot = 2.77. We rewrite the pinch criterion (5.7) in non-dimensional form as
follows:

he,c = C2γqs(Hatop)

2
FrtopHa2

topPmtop

ρe/ρtop − 1
. (5.13)

As discussed previously, a short-circuit event in a Mg-based LMB at low Ha number
would require tiny electrolyte layers of aspect ratios h< he,c' 10−8–10−7 (see table 7).
Since these values are numerically unfeasible, we are going to work with a larger
value of Frtop in the numerical model, i.e. we choose Frtop= 0.633. This is equivalent
to underestimating g by many orders of magnitude, thereby making it easier for the
interfaces to undergo large deformations. By letting the thickness electrolyte to be he=
0.1, we expect no breaking of the electrolyte layer for Hatop= 23.7, since (5.13) gives
he,c=0.044<he; however, we should come close to short circuit for Hatop=47.3 since
(5.13) gives he,c = 0.45> he.

Figure 19(a) shows the time evolution of urms,a for the three cases considered,
Hatop = 15.8, 23.7, 47.3. The kinetic energy remains at a very low level and the
system essentially stays at rest for Hatop= 15.8. Above the Tayler instability threshold,
the energy increases exponentially and saturates for Hatop = 23.7. The third curve
in figure 19(a) shows the time evolution of urms,a for the solution corresponding to
Hatop= 47.3 using as initial data the asymptotic state for Hatop= 23.7 at time t= 4000;
we observe a sharp increase of the energy until the electrolyte layer pinches at time
t= 4050.
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FIGURE 20. (Colour online) Tayler instability in a LMB: (a) initial condition, Ha= 15.8;
(b) t = 4000, Ha = 23.7, Bz blobs; (c) t = 4000, Ha = 23.7, velocity field; (d) t = 4050,
Ha = 47.3, Bz blobs; (e) t = 4050, Ha = 47.3, velocity field. Here Bz contours visualize
±10 % of the maximum and minimum value, velocity field plots are coloured by Uz. The
top and bottom interfaces are visualized by isosurfaces Φ1 = 0.5 (yellow online or light
gray) and Φ2 = 0.5 (green online or black).

The three insets in figure 19(b) show the two iso-interfaces Φ1 = Φ2 = 0.5 in
a meridian section; there is one inset for each value of Hatop. No deformation is
noticeable on both interfaces for Hatop= 15.8. For Hatop= 23.7, the interface between
the top layer and the electrolyte is deformed, whereas the interface between the
bottom layer and the electrolyte remains almost flat. In agreement with our critical
electrolyte height criterion, the deformation is not large enough to pinch the electrolyte
layer. Doubling the Hartmann number to Hatop = 47.3, creates a more vigorous flow
in the top layer which succeeds in washing away parts of the electrolyte to a point
where the two interfaces nearly osculate. The occurrence of a pinch for this set of
parameters is compatible with our estimate (5.13), since he = 0.1< he,c.

Figure 20 finally shows some 3D snapshots of the system. In 20(a), we see the two
interfaces separating the three fluids at the beginning of the computation for Ha=15.8
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and 23.7. For Hatop= 15.8 there is no Tayler instability and the interfaces remain flat
at all times. In contrast, for Hatop = 23.7, the Tayler mechanism destabilizes the top
layer, see figure 20(b,c). There are two counter-rotating vortices and a pair of magnetic
field perturbations in quadrature in the top layer. Only small motions occur in the
bottom layer. For Hatop= 47.3, the Tayler counter-rotating vortices in the top layer are
so strong that a contact is established between the two interfaces and a short circuit
occurs.

6. Conclusion

We have studied the Tayler instability in liquid metal columns and in LMBs using
numerical and theoretical approaches.

The main conclusions from the numerical investigations on single-phase simulations
are the following. In agreement with previous results (Rüdiger et al. 2011, 2012;
Weber et al. 2013, 2014), we find only m= 1 unstable modes, which can be helical
or phase fixed depending on the initial conditions and the boundary conditions at
the top and bottom lids. The use of simplified boundary conditions at the cylindrical
boundary r = 1− seems to have a small impact on Tayler’s instability. We have
observed saturated states and seen how different unstable modes compete in the
nonlinear regime. Secondary instabilities have also been observed and can be induced
by the use of periodic boundary conditions. Finally we have produced quantitative
data to allow careful comparisons with theoretical models.

In the theoretical section devoted to the liquid metal column, we have performed a
linear stability analysis using the method of Tayler (1957, 1960). We observe excellent
agreements with the numerical simulations. We also explain why helical modes do
not spontaneously emerge in finite cylinders with impermeable walls. Near threshold,
the Tayler instability always appears in QS form, and m = 1 modes grow on the
time-scale ρ/σB2

0 in agreement with previous work (see Rüdiger et al. 2011, 2012).
We observe that there exists a transitional Hartmann number Hatr(Pm) such that
the quasistatic approximation applies when Ha ∈ [Hac, Hatr(Pm)]. This information
allows us to perform numerical simulations with larger Pm than in reality without
compromising the physics. In a short discussion on the nonlinear regime, we show
that the Landau saturation scenario explains the scaling Re∼Ha2 observed in Weber
et al. (2014) and in our own numerical simulations.

In the section devoted to LMBs, we collect physical parameters and dimensions of
Mg-based LMBs and evaluate some orders of magnitude of parameters controlling
the Tayler instability in these batteries. In present-day Mg-based LMB technology,
the maximal current density is of the order J0 = 3 × 103 A m−2, which is roughly
100 times lower than the current densities that have been reached in liquid metal
experiments on Tayler’s instability (Seilmayer et al. 2012). This implies that critical
Hartmann numbers for the Tayler instability can only be reached in large Mg-based
LMBs with radii R > 0.43 m. This critical size is large with respect to currently
available prototypes, but large LMBs are likely to be necessary in devices adapted to
power-grid standards. In previous works on LMBs (Stefani et al. 2011; Weber et al.
2013, 2014), the Tayler instability has been said to be potentially detrimental to the
integrity of LMBs, since it might induce fluid motions so strong that they could
compromise the layered structure of the battery and create short circuits between the
two electrodes. Using the Landau-saturation scaling for the amplitude of the nonlinear
Tayler flow and a simple energy argument, we have evaluated a critical height for the
electrolyte layer above which short circuits should not occur. Applying this criterion
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to present-day Mg-based LMBs with J0 = 3 × 103 A m−2, we have found that only
very large batteries (R>3 m) are exposed to short circuits. However, LMB technology
will likely evolve and larger maximal current densities J0 will be possible; this will
decrease the maximal lateral size for a safe device. Already J0 = 104 A m−2 has
been reached in a Li-based LMB (Wang et al. 2014). We hope that J0 will increase
with time and that our simple critical electrolyte layer height formula may serve to
provide a safe upper bound for the size of LMBs.

Finally, we have demonstrated that direct numerical simulations of the Tayler
instability in LMBs can be done. We have developed for this purpose a new
multiphase version of SFEMaNS. We have used these simulations to test the critical
electrolyte layer height criterion, and we have found that the electrolyte layer can
pinch if its thickness is below the critical one calculated from our model.

In the future, we plan to include the effects of convective heat transfer and non-
homogenous current densities. Inhomogeneity of B0 or J0 can significantly alter the
Lorentz force J0 × B0. Joule dissipation of the large electrical currents introduces a
heat source localized around the electrolyte layer. This can lead to convective motions
in the upper electrode which might become as intense as the flow induced by the
Tayler instability (Kelley & Sadoway 2014).
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Appendix A. Decoupling of the linearized perturbation equation
We express the perturbation equations in cylindrical cooordinates using components

u±= ur± iuθ , b±= br± ibθ and a modified pressure field q= p+ bθr+ (PmHa2‖b‖2)/2.
The perturbation equations are

(∂t −Ha−2∆±)u± =−(∂r ± ir−1∂θ)q+ (∂θ ± 2i)b± (A 1a)
(∂t −Ha−2∆)uz =−∂zq+ ∂θbz (A 1b)
(PmHa2∂t −∆±)b± = ∂θu± (A 1c)
(PmHa2∂t −∆)bz = ∂θuz, (A 1d)

with

∆± =∆± 2i
r2
∂θ − 1

r2
, ∆= ∂2

rr + r−1∂r + r−2∂2
θθ + ∂2

zz. (A 2a,b)

Gauss’ law becomes

1
2(∂r − ir−1∂θ + r−1)b+ + 1

2(∂r + ir−1∂θ + r−1)b− + ∂zbz = 0. (A 3)

Applying ∂θ to the first two equations of (A 1), and using the third and fourth
equations, we eliminate the flow variables and find[

(∂t −Ha−2∆±)(PmHa2∂t −∆±)− ∂θ(∂θ ± 2i)
]

b± =−(∂r ± ir−1∂θ)∂θq (A 4)[
(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2

θθ

]
bz =−∂z∂θq. (A 5)
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Next using the properties

(∂r − ir−1∂θ + r−1)∆+ =∆(∂r − ir−1∂θ + r−1) (A 6a)
(∂r + ir−1∂θ + r−1)∆− =∆(∂r + ir−1∂θ + r−1) (A 6b)

(∂r ∓ ir−1∂θ + r−1)(∂r ± ir−1∂θ)=∆⊥, (A 6c)

where ∆⊥ is the two-dimensional transverse Laplacian operator, and applying (∂r ∓
ir−1∂θ + r−1) to (A 4) and ∂z to (A 5), we obtain[

(∂t−Ha−2∆±)(PmHa2∂t−∆±)− ∂θ(∂θ ± 2i)
]
(∂r ∓ ir−1∂θ + r−1)b± =−∆⊥∂θq (A 7)[

(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2
θθ

]
∂zbz =−∂2

zz∂θq. (A 8)

Applying[
(∂t −∆)∆+Ha2∂θ(∂θ + 2i)

] [
(∂t −∆)∆+Ha2∂θ(∂θ − 2i)

] [
(∂t −∆)∆+Ha2∂2

θθ

]
(A 9)

to Gauss’ law (A 3) and using (A 7) and (A 8), we eliminate the dependent variables
b±, bz and finally obtain the master equation for the pressure variable,{[

(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2
θθ

]2
∆+ 4∂2

θθ∂
2
zz

}
∂θq= 0. (A 10)
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