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Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required
for the deployment of fluctuating renewable energies. Built as stable density stratification of two
liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid
flows. Using direct numerical simulation, we study a sloshing long wave interface instability in
cylindrical cells, which is already known from aluminium reduction cells. After characterising the
instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity,
conductivity and magnetic background field. Finally we study the shape of the interface and give a
dimensionless parameter for the onset of sloshing as well as for the short-circuit. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4982900]

I. INTRODUCTION

Liquid metal batteries (LMBs) are among the systems
currently discussed for electrochemical energy storage on the
grid level. With a growing share of renewable and volatile
sources, such as wind and solar, the demand for economic
large-scale storage rises. Future energy systems based primar-
ily or even exclusively on renewables can hardly be imagined
without adequate storage capacity if electricity demand has to
be met independently of the current weather conditions1 and
if grid stability shall be maintained.2

LMBs consist of a stable density stratification of three
liquids: a low density alkaline or earth-alkaline liquid metal
on the top, a heavy metal on the bottom, and a medium
density molten salt mixture sandwiched in between (“differ-
ential density cell”;3 see Figure 1(a)). The operation tem-
perature lies slightly above the highest melting point of the
active materials (typically between 275 and 700 ◦C). Orig-
inally, LMBs were investigated as part of thermally regen-
erative energy conversion systems,4,5 but focus of research
later shifted to their application as electricity storage devices.6

Progress in the field during the 1960s and early 1970s has
been reviewed, e.g., by Crouthamel and Recht,7 Cairns et al.,8

Cairns and Shimotake,9,10 and recently by Kim et al.11 Accord-
ing to the latter authors, research came to a halt in the
1970s because the low specific energy of LMBs rendered
them unattractive for portable applications and “much of the
aforementioned research fell into obscurity for the next few
decades.”

Interest in LMBs has been recently renewed, sparked by
the work of Donald Sadoway and his group at MIT.11 The
focus is now on the cost-driven development12 and grid-scale
electrochemical storage.11 Different active material combina-
tions and electrolytes are currently under investigation, ranging
from Mg| |Sb,13 Ca| |Bi,14 Ca| |Sb,15 Ca-Mg| |Bi,16 Li| |Sb–Pb17

to Na| |Pb–Bi.18

Due to their completely liquid interior, LMBs have
attracted the attention of fluid dynamists as well. A num-
ber of recent publications are devoted to the problem of the
Tayler instability and its circumvention,19–21 to temperature-
driven convection22–24 and electro-vortex flows25–27 in LMBs,
and to a simplified model of sloshing in a three layer sys-
tem.28 These investigations are motivated on the one hand by
the need to prevent a direct contact between anode and cath-
ode melt that could occur if violent motion would develop in
the electrode(s) (see Figure 1(b)). On the other hand, mass
transport in the lower metal is often limiting the cell’s perfor-
mance3,11,13–16,29 calling for enhanced mixing. This could at
the same time prevent the sometimes observed accumulation
of intermetallic compounds14,30,31 at the electrode-electrolyte
interface.

LMBs are thought to be easily scalable on the cell level due
to their simple construction and the self-assembly of the liquid
layers. Large cells (in the order of cubic meters32,33) are sup-
posed to operate at very high power values.34 Current densities
of up to 13 A/cm2 were measured for Li| |Te cells,9 and less
exotic couples such as Na| |Bi30 still reach 1 A/cm2. Together,
high current densities and large electrode areas result in strong
total currents that are able to generate significant electromag-
netic forces. Such forces may give rise to the aforementioned
Tayler instability, but may also generate a rotating long wave
interfacial instability known from aluminium reduction cells
as “sloshing” or “metal pad roll instability.” The manifesta-
tion of this instability in LMBs is the topic of the paper at
hand.

As just mentioned, the metal pad roll instability is well
known from the Hall-Héroult process of aluminium produc-
tion, where it impedes (together with other effects) using a thin
electrolyte. An aluminium reduction cell consists of a stable
density stratification of a molten salt mixture (cryolite) float-
ing atop liquid aluminium (Figure 2(a)). A vertical current is
applied by graphite current collectors in order to reduce Al2O3
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FIG. 1. Sketch of a liquid metal battery (a) and short-circuit due to deforma-
tion of the electrolyte layer (b).

(solved in the cryolite) to Al. Although this system works with
only two liquid phases, it is quite similar to liquid metal bat-
teries: it operates at about 1000 ◦C, the density difference is
only 200 kg/m3, the salt resistivity is four orders of magnitude
higher than the one of the metal, and the current density35

may reach 1 A/cm2. The main difference is the geometry: alu-
minium reduction cells are typically rectangular (4 × 10 m2)
and shallow.36–39

A possible mechanism explaining the origin of metal pad
rolling in aluminium reduction cells was first given by Sele.40

We consider a Hall-Héroult cell with a slightly inclined inter-
face between aluminium and cryolite, see Figure 2(a). The
electrolysis current J will take the easy way—this is where the
salt layer is thin. A deformation of the interface will thus lead
to a perturbed, or compensation current j with a horizontal
component. The main idea of Sele’s model is the interaction
of this horizontal current with a vertical magnetic field B0,z.
The latter one originates, e.g., from the supply lines. The cross
product of horizontal current and vertical field, the Lorentz
force f, is pointing towards the observer. Considering only
the profile of the cell (Figure 2(a)), it is not so obvious why
the Lorentz force will lead to a rotating wave. We illustrate
therefore in Figure 3 the tilted interface for six different time
steps. The perturbed current flows always from a crest (+) of
aluminium to a trough (�); the Lorentz force is orthogonal.
If we assume the Lorentz force to displace only the crest, we
can understand how the rotation develops. After one cycle, we
recover the initial waveform. If the work done by the Lorentz
force is larger than ohmic and viscous dissipation, we can

FIG. 2. Cross section of an aluminium reduction cell (a) and a liquid metal
battery (b) with tilted interface.40,41 J denotes the total cell current, j the
perturbed or compensation current, B0,z , the vertical magnetic field, and f the
resulting Lorentz force.

FIG. 3. Top view of the rotation of a tilted interface in a hypothetical alu-
minium reduction cell with a circular shape.42 The compensation current
(yellow) flows from a crest (+) to a trough (�); the Lorentz force (red) is
orthogonal to current (yellow) and magnetic field (blue). For the orientation
of global current and magnetic field, see Figure 2.

imagine that this process amplifies the rotating gravity wave
such that it can promote its growth.

The instability mechanism described above may also be
applied to a three layer system of a liquid metal battery.43

In order to understand certain differences, it is important to
know the electric conductivity of the phases: for the salt, it is
low (∼102 S/m), high for the current collectors (∼105 S/m),
and even higher for the liquid metals (∼106 S/m). The strong
resistance of the molten salt leads to a purely vertical current
in the electrolyte layer (see Figures 2(a) and 2(b)). In an alu-
minium reduction cell, the perturbed current has therefore to
close in the current collector. In an LMB, it closes already in
the upper (liquid) electrode, leading to an additional Lorentz
force compared to aluminium reduction cells. This mechanism
will be explained in more detail in Sec. III A.

Denoting by J0 the current density of an unperturbed cell,
the sense of the flow can easily be determined by a simple rule.
If J0 ·B0,z > 0, the liquid metal layer at the bottom will rotate
clockwise; if J0 · B0,z < 0, the flow in the lower metal will be
anti-clockwise. This holds for aluminium reduction cells as
well as liquid metal batteries. The upper metal layer in LMBs
will flow in the opposite direction as the bottom metal. Only
the upper interface will deform notably; therefore, the wave
rotates in the same direction as the upper metal.

The onset criterion of metal pad rolling in (rectangular)
aluminium reduction cells was first described by Sele38,40 as

β =
J0B0,z

g∆ρ
·

lx
h1
·

ly
h2

> βcr, (1)

i.e., for stable operation, the dimensionless number β must not
exceed a certain critical value.38 We will denote by I, J0, and
B0,z the absolute values of cell current, current density, and
magnetic background field; g, ∆ρ = ρ2 − ρ1, h1, h2, lx, and ly

refer to the gravity, density difference, the height of the elec-
trolyte and aluminium layer, and the lateral dimensions of the
aluminium reduction cell, respectively (see also Figure 4(a)).
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FIG. 4. Sketch of an aluminium reduction cell (a) and liquid metal battery
(b).

The first factor in the definition of β is the relation of Lorentz
force to gravity force, and the two others are aspect ratios and
account for the layer thickness.

Using a Fourier expansion, a formula for βcr was later
found as

βcr = π
2

�����
m2 ly

lx
− n2 lx

ly

�����
(2)

by Bojarevics and Romerio.44 Here, m and n denote the wave
number in x and y of a rectangular cell. Basically, this formula
adds the influence of the aspect ratio to the Sele criterion. As
a main consequence, square or cylindrical cells will always be
unstable because lx = ly.

Besides the vertical (and constant) magnetic background
field B0,z, also spatial gradients of magnetic fields were sus-
pected to lead to instability.45–47 The derived stability condi-
tion for such fields is somehow similar to the one obtained
by Bojarevics and Romerio: it is found by Sneyd and Wang46

that cells comprising two waves of equal frequency are always
unstable.

A coupling of two modes was further studied by Davidson
and Lindsay41 using a mechanical analogue and shallow water
approximation. The obtained relation for instability is

J0B0,z

ρ1h2 + ρ2h1
>
|ω2

x − ω
2
y |

b1 + b2
, (3)

withω denoting the frequency of a standing gravity wave with
the wave vector pointing in the x or y direction, and bi some
coupling parameters for the different Fourier modes. Again,
square and cylindrical cells are always unstable because the
frequency of one wave in x and a second one in y will be the
same.

Another series of articles is dedicated to the Kelvin-
Helmholtz instability in aluminium reduction cells.45,48 It is
well known that the flow between two counter-rotating liquid
masses is subjected to shear layer (and other) instabilities.49,50

However, the resulting waves are typically relatively short and
therefore strongly dampened by surface tension; they can-
not explain the long waves observed in aluminium reduction
cells.

In summary, the interaction of a horizontal current with
a magnetic background field B0,z and the coupling of two
waves are considered as the crucial elements of the sloshing

instability in aluminium cells.38,47 There already exist sev-
eral shallow water51,52 and full 3D models36,53 for an efficient
simulation of aluminium reduction cells.

Aluminium production is not only a good example for
two phase but also for three phase systems. A Hoopes cell (used
to refine Al) consists of molten pure aluminium and an alu-
minium copper alloy, separated by a salt electrolyte.54,55 To
our knowledge, no interface instabilities were reported in this
system—maybe due to the low current densities (0.35 A/cm2)
and the thick electrolyte layer (>8 cm). Nevertheless, the sta-
bility of interfaces in three layer systems was already studied
in two theoretical articles.28,56 Sneyd56 found the relation for
instability

J0 · (µ0J0)
g(ρ3 − ρ2)

·
h2 cosh(kh2)

sinh2(kh2)
>

1
b′

, (4)

with µ0, b′, h2, ρ3, ρ2, and k denoting the vacuum perme-
ability, a dimensionless value, the electrolyte layer height, the
density of bottom layer and electrolyte, and the wave number
(see also Figure 4(b)). As he assumed the liquid electrodes
to be infinitely high, his critical parameter does unfortunately
not account for the aspect ratio of the cell. Although the above
equation looks similar to the Sele criterion, it is not compara-
ble: it holds only for the interaction of a current with its own
magnetic field—there is no magnetic background field B0,z

present.
Zikanov was the first to investigate the sloshing instabil-

ity in liquid metal batteries28 using a mechanical analogue as
proposed by Davidson and Lindsay.41 Assuming thick layers
with an aspect ratio in the order of one, he found the instability
condition

c1
J0B0,zl2

x

12ρ1gh1h2
+ c2

J0B0,zl2
x

12ρ3gh2h3
>

������
1 −

ω2
x

ω2
y

������
(5)

with c1 and c2 denoting two geometrical constants. He further
explored the interaction of an azimuthal field with a vertical
current, similar to Sneyd, and writes the instability condition
as

µ0J0r · J0

g
*
,

r3

48ρ1h2
2h1

+
r3

48ρ3h2
2h3

+
r

16ρ1h2
−

r
16ρ3h2

+
-
> 1

(6)

with r denoting the radius of a cylindrical cell.
Some of the critical parameters for onset of sloshing

(Equations (2), (3), and (5)) predict cylindrical cells to be
always unstable. However, these criteria neglect dissipation by
magnetic induction and viscosity as well as the influence of sur-
face tension.45 Especially induction effects due to a flow in the
cell can increase the critical values for the onset of sloshing.57

Further, B0,z not only destabilises the cell but also suppresses
the instability again at very high values.58

In this article, we will study only the influence of a vertical
magnetic background field B0,z. This is another step forward to
understand the complex fluid dynamics involved in the oper-
ation of liquid metal batteries. A detailed investigation of the
interaction of currents with an azimuthal field (Equations (4)
and (6)) will be postponed to future work.
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II. MATHEMATICAL MODEL AND IMPLEMENTATION

In this chapter, we present a three-dimensional multiphase
model implemented in the open source library OpenFOAM.
The main difference of our model compared to others is the
way of computing the magnetic field. It allows simulations
with very realistic boundary conditions. The numerical scheme
is developed in close analogy to a MHD model for one single
phase;59 the multiphase aspects are explained in detail in the
literature.60–62

The flow in an incompressible, viscous, and electrically
conducting fluid of several phases is described by the Navier-
Stokes equation (NSE),61

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · (ρν(∇u + (∇u)ᵀ)) − ρgez

+ fL + fst (7)

and ∇ · u = 0, with u, t, ρ, p, ν, g, fL, and fst denoting the
velocity, time, density, pressure, kinematic viscosity, gravity,
Lorentz force, and surface tension, respectively. The unit vec-
tor ez is pointing upwards. Introducing a modified pressure
pd = p + ρgz by adding the hydrostatic pressure, boundary con-
ditions may be formulated easier and numerical errors reduced.
We find

∇p = ∇pd − ρgez − gz∇ρ. (8)

Introducing the electric current density J and magnetic field
B, the Lorentz force can be expressed as fL = J×B. The NSE
then becomes
∂(ρu)
∂t

+ ∇ · (ρuu) = −∇pd + gz∇ρ + ∇ · (ρν(∇u + (∇u)ᵀ))

+ J × B + fst. (9)

No-slip boundary conditions are applied for velocity and an
equivalent Neumann boundary condition for the pressure,

∇pd = J × B + fst + gz∇ρ. (10)

Ohm’s law for moving conductors,

J = −σ∇φ + σ(u × B) − σ
∂A
∂t

, (11)

allows for calculating the full current density in the cell. The
current density of the initial state of rest is

J0 =
I
S

ez, (12)

with A, φ, σ, I, and S denoting the vector potential, elec-
tric potential, electric conductivity, cell current, and cross
section of the cell. We use in our model the quasi-static
approximation,21,63,64 and neglect the temporal derivative of
the vector potential (∂A/∂t ≈ 0). Demanding charge con-
servation (∇ · J = 0) and applying the divergence operator
to Equation (11), we find a Poisson equation for the electric
potential

∇ · (σ∇φ) = ∇ · (σ(u × B)). (13)

As no current is flowing through the side walls of the cylinder,
we apply there the boundary condition ∇φ · n = 0 with n
denoting the surface normal vector. We force the perturbed
current to form closed loops by adjusting the boundary flux of
φ at top and bottom according to J0,

∇φ · n = −
J0 · n
σ

. (14)

While not completely correct, this is a quite reasonable bound-
ary condition, because the current collectors often have a
slightly lower conductivity than liquid metals.

In a last step, the magnetic field B is calculated using
the perturbed vector potential a and the magnetic field of an
infinitely long cylinder,

B0,ϕ =
µ0I
2πr

eϕ (15)

as

B = ∇ × a + B0,ϕ + B0,z. (16)

In the quasi-stationary limit (∂A/∂t ≈ 0)64 and using the
Coulomb gauge, the vector potential is obtained by solving
the Poisson equation

0 =
1
µ0
∆a + J − J0 (17)

with the boundary conditions obtained by Green’s identity65

a(r) =
µ0

4π

∫
dV

J(r′) − J0(r′)
|r − r′ |

. (18)

This integral can be calculated much faster than Biot-Savart’s
law—this is the reason why we use the vector potential.

The three different phases of the liquid metal battery are
modelled using the volume of fluid method. The phase frac-
tion αi describes the fraction of fluid i in a single cell. It is
determined by solving the transport equation60,61

∂αi

∂t
+ ∇ · (uαi) = 0. (19)

All variable fluid properties are then defined by the phase
fraction as

ρ =
∑

i

αi ρi, ρν =
∑

i

αi ρiνi and σ =
∑

i

αiσi. (20)

Note that the conductivity of the mixture can be calcu-
lated as a serial or parallel connection of resistances.66 Both
approaches represent extreme cases. The true conductivity of
a cell depends on the angle between the interface and the cur-
rent density. As this is not known, we use the above mentioned
simplified parallel circuit. This may lead to a thinning of the
electrolyte layer and overestimate onset and short-circuit of
the cell. However, as it smoothes the conductivity at the inter-
face, it stabilises the simulation and is therefore the better
choice.

The surface tension is modelled using the continuum
surface force (CSF) model by Brackbill,60,61,67 i.e., it is imple-
mented as a volume force fst =

∑
i
∑

j,i γijκijδij, concentrated
at the interface. The contact angle at the walls is assumed to
be 90◦. The interface tension γij between phases i and j is
assumed to be a constant. The curvature between phase i and
j is given as

κij ≈ −∇ ·
αj∇αi − αi∇αj

|αj∇αi − αi∇αj |
, (21)
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and the Dirac delta function δij = αj∇αi − αi∇αj ensures
that the force is applied only near an interface. Finally, we
find

fst ≈ −
∑

i

∑
j,i

γij∇ ·

(
αj∇αi − αi∇αj

|αj∇αi − αi∇αj |

)
(αj∇αi − αi∇αj).

(22)

For an overview of the workflow, please refer to Figure 20 in
the Appendix.

First order schemes are used for discretisation of the
temporal derivative (Euler implicit) and the convection term
(upwind) because higher order schemes lead to diverging solu-
tions in some cases. All other schemes are second order accu-
rate. All cells are purely orthogonal hexaedra; the lateral grid
resolution is 50 cells, the axial 60 cells. The electrolyte layer
is refined: shallow cells with a maximum aspect ratio of 3 are
used here. Although discretised by a continuous field, the inter-
faces remain sharp. They are usually smeared over not more
than 2 cells.

Currently, our model is validated by comparing the wave
period of metal pad rolling with the theoretical value and by a
grid refinement study of the final interface deformation. Fur-
ther verification by comparison with results from the spectral
code SFEMaNS68 and experimental data69 is planned for the
near future.

III. RESULTS

In order to illustrate metal pad rolling in LMBs,
we model a simple cylindrical Mg| |Sb cell of diame-
ter d = 10 cm. The electrolyte used is NaCl–KCl–MgCl2
(30-20-50 mol. %).11,13,32 If not otherwise stated, we use
the dimensions and physical properties of Table I; the cur-
rent density is 1 A/cm2 and the assumed magnetic back-
ground field B0,z = 10 mT. This high value (approximately
200 times the magnetic field of the earth) is chosen in
order to evidence clearly the effect of metal pad rolling. The
interface tensions are estimated using the surface tensions
as70

γ1 |2 = γ1 + γ2 − 2.0φ
√
γ1γ2, (23)

with φ denoting an empirical parameter in the order of 0 . . . 1.
We assume here (without further justification) φ = 1 and find
γ1 |2 = 0.19 N/m, γ1 |3 = 0.016 N/m, and γ2 |3 = 0.095 N/m; the

TABLE I. Physical dimensions and properties of an Mg |NaCl–KCl–
MgCl2 |Sb cell.11,71,72

h (cm) ρ (kg/m3) ν (m2/s) σ (S/m) γ (N/m)

Top layer (1) 4.5 1577 6.7 ·10−7 3.62 · 106 0.54
Electrolyte (2) 1 1715 6.8 ·10−7 80 0.09
Bottom layer (3) 4.5 6270 1.96 ·10−7 8.66 · 105 0.37

indices 1, 2, and 3 are referring to upper electrode, electrolyte,
and lower electrode, respectively. The capillary length

λ =

√
γ1 |2

∆ρg
= 12 mm (24)

is approximately 10% of the cell diameter and 100% of the
electrolyte thickness. We expect therefore no big influence of
surface tension on the onset of sloshing, but it may be relevant
for a localised short-circuit.

In the initial state of the system, both interfaces are flat;
gravity, hydrostatic pressure, an axial magnetic field B0,z, and
a current I from bottom to top are applied. The initial per-
turbation is generated by spurious velocities at the interface
(in the order of 10 µm/s). Such a parasitic flow is typical for
the volume of fluid method;73,74 it is caused by a smeared
dynamic pressure jump at the interface and by modelling the
surface tension as a volumetric force (CSF model67) instead
of a surface force.

A. Driving mechanism of the instability

Figure 5 illustrates a typical saturated sloshing instability
in an LMB. The blue crest of electrolyte is locally concen-
trated, has steep flanks and rotates anticlockwise. The trough
is vast, flat and smooth. Crest and trough are not symmetric.
The principal flow matches well to the displacement of the
wave crest. The streamlines in the upper metal close directly
above the crest, or in a long azimuthal flow.

In order to explain the instability mechanism, we plot
several features on a plane indicated by the black line in
Figure 5. The cell current J concentrates on the pinched side
of the electrolyte (Figure 6(b)). Subtracting the current of the
unperturbed cell (J0), we obtain the compensation current j in
Figure 6(c). This current distribution is not surprising; it
strongly resembles the simple model described in the Intro-
duction. Please note that we force the perturbed current

FIG. 5. Streamlines of velocity, surface
elevation and direction of rotation for a
saturated sloshing instability in a liquid
metal battery (I = 120 A, B0,z = 10 mT,
h1 = h3 = 4.5 cm, h2 = 1 cm).
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FIG. 6. Conductivity (a), complete cur-
rent J (b), and compensation or per-
turbation current j (c) for a deformed
interface between upper metal and elec-
trolyte layer (I = 120 A, B0,z = 10 mT, h1
= h3 = 4.5 cm, h2 = 1 cm). The location
of the plane is indicated in Figure 5.

to close within the cell by applying Neumann boundary
conditions for the electric potential.

Applying a constant vertical magnetic field B0,z and denot-
ing the unperturbed magnetic field as B0,ϕ and the perturbed
one as b, the Lorentz force can be expressed by four relevant
summands,

fL = J0 × b + j × B0,ϕ + j × B0,z + j × b. (25)

Please note that J0 ×B0,ϕ is a pure gradient that drives no flow
and B0,z is parallel to J0.

In Figure 7, we illustrate the four relevant force com-
ponents in the same plane as before. First, we notice that

the perturbed magnetic field b always stabilises the interface
(Figures 7(a) and 7(b)). However, the interaction of a hori-
zontal current and the azimuthal field (j × B0,ϕ) destabilises
the electrolyte (Figure 7(c)). This was already suggested by
Zikanov,28 but without considering the two damping forces.

Finally, we show in Figure 7(d) the interaction of a hor-
izontal current and B0,z. This force is by far the largest and
considered as the main source of the sloshing instability.38

We observe almost no force in the electrolyte; the upper metal
is driven anti-clockwise, the lower clockwise, and both forces
are equally large. Considering that B0,z points upwards, the
observed Lorentz force can already be deduced easily from
the current distribution in Figure 6(c). The force in the upper

FIG. 7. Different Lorentz forces for a
sloshing instability. The prescribed cur-
rent of I = 120 A flows upwards, and the
background magnetic field B0,z = 10 mT
points upwards (h1 = h3 = 4.5 cm, h2
= 1 cm). The location of the plane is
indicated in Figure 5. The forces are
parallel to the plane in (a) to (c) and
perpendicular to it in (d).
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FIG. 8. Temporal evolution of the min-
imal salt layer thickness for different
magnetic background fields (a), and of
the corresponding angle (b) for B0,z
= 6 mT (I = 78.5 A, h1 = h3 = 4.5 cm,
h2 = 1 cm).

metal will lead to a rotating flow (Figure 5), pushing the crest
of electrolyte in the counter-clockwise direction.

B. Characterisation of the instability
and parameter studies

In this section, we will study the influence of several
parameters on the sloshing instability in liquid metal batter-
ies. We simulate the same Mg| |Sb cell as in the preceding
case and vary the cell current I, the background field B0,z,
the heights of the top layer h1, electrolyte h2, and bottom
metal h3, as well as the electrolyte conductivity σ2, the top
metal density ρ1, and the viscosity ν. Note that a change of
a layer thickness implies also a change of the cells’ aspect
ratio. We start our simulation with plane interfaces and track
the minimal salt layer thickness hE over time until reach-
ing a saturated state (see Figure 8(a)). The period of rolling
(Figure 8(b)) is determined, too. It is expected to deviate only
slightly from the period of the gravity wave.38,39 Further we
expect that the natural sloshing frequencies in LMBs can be
suitably approximated by wave solutions of two-layer systems
due to the high density of the bottom alloy. To check this pre-
sumption, we deduce dispersion relations of the two-phase and
the three-phase systems for cylindrical vessels using potential
theory. For the angular frequencyω in a two-phase system, we
receive

ω2
mn =

(ρ2 − ρ1)g εmn
R + γ1 |2

(
εmn
R

)3

ρ1 coth( εmn
R h1) + ρ2 coth( εmn

R h2)
, (26)

where R and g denote the radius and gravitational
acceleration. The wave number εmn corresponds to the
nth roots of the first derivative J

′

m(εmn)= 0 of the
mth-order Bessel function of the first kind with valid
modes m= 0, 1, 2, . . . and n= 1, 2, . . ., respectively. Within

a three-layer system, natural frequencies can be expressed
by

ω2
1 |2,mn =

(ρ2 − ρ1)g εmn
R + γ1 |2

(
εmn
R

)3

ρ1 coth( εmn
R h1) + ρ2

(
coth( εmn

R h2) − A2
mn

A1
mn

1
sinh( εmn

R h2)

) ,

(27)

ω2
2 |3,mn =

(ρ3 − ρ2)g εmn
R + γ2 |3

(
εmn
R

)3

ρ3 coth( εmn
R h3) + ρ2

(
coth( εmn

R h2) − A1
mn

A2
mn

1
sinh( εmn

R h2)

) ,

(28)

with A1
mn and A2

mn denoting the amplitudes of the upper and
lower interface. The deviation of the frequency ω2

12mn of the
upper surface, which is expected to be mainly excited by
the sloshing instability, from the two-layer frequency is only
manifested in the term

A2
mn

A1
mn

1
sinh( εmn

R h2)
. (29)

Hence, expression (29) can be exploited to analyse the valid-
ity of the two-layer approximation. From there, the two-layer
relation is suitable if, e.g., the lower amplitude becomes small
enough, A2

mn � 1, or if the aspect ratio of the electrolyte
becomes sufficiently large h2/R � 1. In order to be able to
calculate the three-layer frequencies, the amplitude ratios in
both relations (27) and (28) must be eliminated yielding the
secular equation

aω4 + bω2 + c = 0

with

a = −
ρ2

2

sinh( εmn
R h2)2

+
(
ρ2 coth

(
εmn

R
h2

)
+ ρ3 coth

(
εmn

R
h3

)) (
ρ2 coth

(
εmn

R
h2

)
+ ρ1 coth

(
εmn

R
h1

))
b = −

(
(ρ2 − ρ1)g

εmn

R
+ γ1 |2

(
εmn

R

)3
) (
ρ2 coth

(
εmn

R
h2

)
+ ρ3 coth

(
εmn

R
h3

))
−

(
(ρ3 − ρ2)g

εmn

R
+ γ2 |3

(
εmn

R

)3
)

×

(
ρ2 coth

(
εmn

R
h2

)
+ ρ1 coth

(
εmn

R
h1

))
c =

(
(ρ2 − ρ1)g

εmn

R
+ γ1 |2

(
εmn

R

)3
) (

(ρ3 − ρ2)g
εmn

R
+ γ2 |3

(
εmn

R

)3
)

. (30)
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FIG. 9. Theoretical and simulated period of metal pad rolling with changing
density ρ1 (I = 78.5 A, B0,z = 10 mT, h1 = h3 = 4.5 cm, h2 = 1 cm, ρ2
= 1715 kg/m3, ρ3 = 6270 kg/m3).

For the first mode that has the wave number ε11 = 1.841, we
find the period T1|2 = 2.09 s with the two-layer formula and
T1|2 = 2.11 s and T2|3 = 0.45 s with the three-layer formula. The
values for the upper interface (T1|2) are almost equal for both
formulas; the value obtained in the simulation of our standard
case is T1|2 = 2.18 s. Figure 9 shows the periods for various
simulations with changing density compared to both the theo-
retical 2-layer (27) and 3-layer (28) formula. While both agree
suitably with the numerical data, the three-layer dispersion

relation matches slightly better for the large density differ-
ences. All in all, the two-layer relation has been confirmed as
a suitable approximation for our liquid battery model. Never-
theless, the dynamics of the lower interface plays a certain role
for the evolution of short-circuits, as outlined in Section III C,
and therefore may not be fully neglected.

In a first step of our parameter study, we characterise the
influence of cell current and magnetic field: both are ampli-
fying the instability. Figure 10(a) shows the height of the salt
layer hE (divided by its initial height hE0) depending on the cell
current. Until 30 A we do not observe any deformation of the
interface, the cell is stable. Later on, the electrolyte’s minimal
height decreases with the current. This behaviour represents a
bifurcation. At 170 A we observe a sudden rupture of the inter-
face. Changing the magnetic background field (Figure 10(b))
gives a very similar result, with bifurcation points at 2 and
15 mT.

In a second step, we examine the influence of the ini-
tial heights of the upper metal and the electrolyte layer.
A shallow electrode and/or electrolyte is more unstable—
see Figures 10(c) and 10(d). A fully stable cell cannot
be observed; even very high layers suffer some deforma-
tion. However, the short circuit again appears very suddenly
when reaching an electrolyte layer thickness of 7 mm or an
aspect ratio of the top layer of 0.2. In real cells, the electrolyte

FIG. 10. Minimal relative height of the
salt layer depending on the cell current
(a), the vertical magnetic background
field (b), the initial height of the salt
(c) and the height of the upper metal
layer divided by the diameter (d), the
density difference between upper metal
and electrolyte (e), and the ratio of salt
to upper metal conductivity (f). If not
being the variable quantity, the follow-
ing values are used: I = 78.5 A, B0,z
= 10 mT, h1 = h3 = 4.5 cm, h2 = 1 cm.
For the material parameters, see Table I.
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FIG. 11. Minimal relative height of the salt layer for changing viscosity of
the fluids. The same viscosity is assumed for all phases (I = 78.5 A, B0,z
= 10 mT, h1 = h3 = 4.5 cm, h2 = 1 cm).

layer is supposed to be between 4 and 10 mm thick; the height
of the upper electrode depends on the required capacity of the
cell.

In a third step, we explore the influence of density and
electric conductivity. In Figure 10(e) we show the minimal salt
layer thickness depending on the density difference between
top metal and salt ∆ρ. As for current and magnetic field, a
bifurcation appears at∆ρ = 515 kg/m3. The cell fails suddenly
below ∆ρ = 60 kg/m3. Note that the density gap between
electrolyte and bottom metal is always very high—we never
observed a considerable deformation of the lower interface.
Decreasing the ratio of electric conductivity (Figure 10(f)) only
one bifurcation occurs while no short-circuit can be observed.
Real LMBs usually have a conductivity ratio of 10�5. As the
interface deformation does not change much for a conductivity
ratio between 10�6 and 10�3, it might be possible to simulate
with a higher conductivity of the salt layer in order to avoid
numerical problems.

Finally, we study the influence of viscosity, assum-
ing the same viscosity for all phases. Typical viscosities
in the order of (10−7 . . . 10−6 m2/s) considerably dampen
the instability (Figure 11). Viscosity should therefore be
included in a dimensionless number describing the sloshing in
LMBs.

In order to compare better the influence of the various
parameters on metal pad rolling, we use Equations (1), (3),
and (5) to define three different dimensionless parameters,

βSele =
IB0,z

g(ρ2 − ρ1)h1h2
, (31)

FIG. 12. Remaining minimal salt layer thickness depending on the dimen-
sionless parameter β as defined by Sele.38,40 Only the value of the cell current
I, the vertical field B0,z , the height of upper metal, and electrolyte layer h1
and h2 as well as the electrolyte’s density are varied for each curve; the other
parameters (Table I) stay constant, respectively (I = 78.5 A, B0,z = 10 mT, h1
= 4.5 cm, h2 = 1 cm, ρ1 = 1577 kg/m3).

βDavidson =
J0B0,zd

g(ρ1h2 + ρ2h1)
, (32)

βZikanov, thick layers =
J0B0,zd2

12gρ1h1h2
+

J0B0,zd2

12gρ3h2h3
. (33)

In its original meaning, these parameters describe only the
onset, but not the nonlinear part of the instability. While the
first and second ones were developed for only two phases,
the last should work for three phases of a real LMB. All but
the last parameter were developed using the shallow water
approximation, i.e., for shallow layers; it is therefore not
straightforward to apply them to our cell.

In Figures 12 and 13 we illustrate the final height of the
salt layer depending on β. The five different curves repre-
sent a change of the cell current, magnetic field, initial height
of the upper metal or electrolyte, and density of the elec-
trolyte. In all diagrams, we observe a good coincidence of
the curves for varying I and B0,z. A certain deviation can be
explained by the different damping nature of an increasing I or
B0,z.58

The curves for changing the height of the anode or
electrolyte layer already deviate significantly. For small β

FIG. 13. Remaining minimal salt layer thickness depending on the dimensionless parameter β as deduced from Davidson and Lindsay41 (a) and Zikanov28 (b).
Only the value of the cell current I, the vertical field B0,z , the height of upper metal and electrolyte layer h1 and h2, and the electrolyte’s density are varied for
each curve; the other parameters (Table I) stay constant, respectively (I = 78.5 A, B0,z = 10 mT, h1 = 4.5 cm, h2 = 1 cm, ρ1 = 1577 kg/m3).
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especially the anode curve will not converge to one, i.e.,
metal pad rolling can appear in infinitely high cells. None
of the dimensionless parameters can correctly describe the
onset of metal pad rolling depending on the layer height;
this is not surprising as almost all parameters were devel-
oped for shallow layers only. However, the region of short
circuit still seems to be described quite well, especially by
βSele.

Finally, βDavidson and βZikanov do not describe the influence
of density acceptably, while βSele yields a good coincidence
with the curves for I and B0,z. This discrepancy between the
results is most likely due to the different nature of the models.
Sele considers linearised fluid systems, while Davidson41 and
Zikanov28 base their predictions on a mechanical analogue.
Due to the better representation, we will focus on the origi-
nal Sele criterion in the following. At βcr ≈ 0.35, metal pad
rolling appears for the first time; for lower values of β the
cell is stable (for our aspect ratio). In contrast to linear sta-
bility analysis which suggests that cylindrical cells are always
unstable44 (βcr = 0), our result indicates that viscosity, induc-
tion, and/or surface tension effects can shift the threshold for
onset of sloshing.

A second remarkable region in Figure 12 is β = 2.0 . . . 3.2
—here the cell is short-circuited very suddenly. This happens
typically at a remaining salt layer thickness of about 50%
of the initial value. It is not clear whether β > 2 or a cer-
tain salt layer thickness is responsible for the sudden short-
circuit.

In summary, the Sele criterion β allows quite well defining
the onset of metal pad rolling in LMBs—but only for our fixed
aspect ratio. It is even possible to estimate the critical value for

a short-circuit of the cell (for any aspect ratio). An improved
dimensionless parameter should be developed for deep layers
to better model the influence of the layer thicknesses. It should
further include viscosity, surface tension as well as induction
effects.

C. Wave equation and short-circuit

In this section, we explore the shape of the interface as well
as the sudden short-circuit. Figure 14(a) shows the minimal
and maximal height of both interfaces—depending on time.
We observe after 50 s a stationary sloshing; the interfaces do
not touch each other. Figure 14(b) now illustrates the shape of
the upper metal-electrolyte interface around the circumference
of the cylinder. We assess here the hypothesis that this shape
can be described as a solitary wave.75 Similar to the solution
of the Korteweg-de Vries equation, we describe the interface
height as

hI = h0 + a sech2 (kr(α − ωt)) (34)

with its minimal height h0, amplitude a, and angle α. The
wave number k defines the width of the crest, and the angular
frequency ω its speed. This equation nicely fits the observed
interface shape (Figure 14(b)); however, it allows only sym-
metrical crests. Especially for high currents, the real wave front
is very steep, but the tail quite smooth.

In Figure 15(a) we show the dependence of the wave
amplitude a on the cell current I. As the relation between both
quantities appears to be a square root curve, the Ginzburg-
Landau theory may apply here.76 However, the latter is usually
used to describe weakly nonlinear regimes, while solitons are
strongly nonlinear solutions.

FIG. 14. Temporal evolution of the
electrolyte layer thickness (hE ), mini-
mal height of the lower interface (h−1|2)

and upper interface (h−2|3), and maximal

elevation of the lower (h+
1|2) and upper

(h+
2|3) interface (a) and maximal eleva-

tion of the upper interface over the cir-
cumference (b) (I = 100 A, B0,z = 10 mT,
h1 = h3 = 4.5 cm, h2 = 1 cm).

FIG. 15. Amplitude of the elevation of
the upper interface depending on the cell
current (a) and dependence of the wave
number on the amplitude of the wave
(b) (B0,z = 10 mT, h1 = h3 = 4.5 cm, h2
= 1 cm).
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FIG. 16. Temporal evolution of the electrolyte layer thickness (hE ), minimal
height of the lower interface (h−1|2) and upper interface (h−2|3), and maximal

elevation of the lower (h+
1|2) and upper (h+

2|3) interface for I = 200 A (B0,z

= 10 mT, h1 = h3 = 4.5 cm, h2 = 1 cm).

Further, we study the relation of width and amplitude
of the wave crest by comparing k and a in Figure 15(b).
The relation is linear, which does not match well the solu-
tion of the Korteweg-de Vries equation. Its solution usu-
ally suggests a quadratic amplitude compared to the wave
number.75

In Figure 16 we show a simulation of a sloshing insta-
bility leading to a short-circuit. The trough decreases quite

slowly and short-circuits then suddenly. At the same time, the
lower interface is deformed and starts to oscillate; the crest
of the upper interface decreases again. This sudden interface
deformation can be caused by three phenomena: surface ten-
sion, electromagnetic force, or velocity. Surface tension rather
dampens waves; the Lorentz force at the short-circuit will point
to the cell axis and decrease pressure at the wall. Both do not
provide a clear explanation of the short-circuit. We show there-
fore in Figure 17 three different plots of the velocity on the
circumference of the cell. With a rising crest, the slope of the
wave front increases. This leads to a considerable flow in front
of it in the anti-clockwise direction (Figure 17(b)). We assume
that this flow decreases the local pressure leading to a sudden
pinching of the electrolyte layer (Figure 17(c)), maybe in con-
cert with the locally concentrated Lorentz force. The lowered
pressure may also explain the waves appearing at the lower
interface.

D. Conclusion and application to real cells

Today’s liquid metal batteries (LMB) are rather shallow,
having a diameter in the order of 20 cm. Next generation
LMBs may hopefully be considerably larger in size, with the
height depending on the desired capacity of the cell. For small
as well as for large cells, the electrolyte layer must be as
thin as possible due to its high resistance. A typical value77

FIG. 17. Interface deformation, vφ and flow field (line
integral convolution) at a circumferential section at
r = 44 mm (I = 200 A, B0,z = 10 mT, h1 = h3 = 4.5 cm,
h2 = 1 cm). Red color indicates motion to the right (anti-
clockwise), and blue color a flow to the left (clockwise).
ϕ′ is the angular coordinate shifted for each image so that
the wave crest is always at 180◦.
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TABLE II. Properties of liquid metal batteries: operating temperature, open
circuit voltage, maximum current density, and density difference upper metal-
electrolyte.

Top U0 Jmax ∆ρ

cell Electrolyte (◦C) (V) (A/cm2) (kg/m3) Literature

K | |Hg KBr–KI–KOH 250 1.1 0.1 1759 72,78–81

Li | |Bi LiCl–LiF–LiI 485 1.4 6.1 2202 82–84

Li | |Pb LiCl–LiF–LiI 483 0.6 0.4 2202 17,84–86

Li | |Se LiCl–LiF–LiI 375 2.4 13 2192 9,72,84

Li | |Sn LiCl–LiF 400 0.75 1 1149 8,10,72,84,87

Li | |Te LiCl–LiF–LiI 475 1.9 12.7 2201 8,72,84,88

Li | |Zn KCl–LiCl 486 0.64 0.3 1140 72,84,85

Mg | |Sb KCl–MgCl2–NaCl 700 0.6 0.2 138 13,32,72,89

Na | |Bi NaCl–NaI–NaF 550 0.7 2.2 1729 8,80,83

Na | |Hg NaI–NaOH 275 0.78 0.36 29,72,80,90

Na | |Pb NaCl–NaF–NaI 575 0.5 0.2 1713 80,83,85,86

Na | |Sn NaCl–NaI 625 0.55 0.77 1554 4,72,80,83,91

is 4-10 mm. Current densities can strongly vary:77 from
100 mA/cm2 for energy-efficient discharge and high rate capa-
bilities to 1 A/cm2 for fast (dis-)charge. Li| |Te and Li| |Se cells
even reached values of 13 A/cm2. The value of the magnetic
background field for very large cells may approach values
between 1 and 10 mT as they are typically found in aluminium
reduction cells.38 Using small batteries together with large
magnetic fields, our simulations may not be entirely realis-
tic. However, they easily allow us to transfer the results to
larger and more realistic cells. Using the Sele criterion

βSele =
Jd2πb

4g(ρ2 − ρ1)h1h2
< βcr (35)

and knowing the critical (Sele) parameter for the onset
of sloshing β = 0.35 and the short-circuit β = 2, we can
estimate whether a certain LMB will be stable, unsta-
ble, or even short-circuited. The necessary physical quan-
tities of the most common LMBs are listed in Table II.
Note that strictly speaking β = 0.35 for the onset of slosh-
ing holds only for our aspect ratios (h1/d = 0.45, h2/d
= 0.1). Only to get a first impression we assume βcr to be
the same also for shallower electrolyte layers. We show in

FIG. 18. Onset of sloshing (β = 0.35) depending on current density J0 and
magnetic background field B0,z . The aspect ratio of the anode h1/d = 0.45 is
constant, and the electrolyte layer is 4 mm thick.

FIG. 19. Short circuit (β = 2) of an LMB depending on the height of the top
metal layer h1, the cell diameter d and magnetic field B0,z for a Mg | |Sb cell.
The height of the electrolyte layer is assumed to be 4 mm, the current density
1 A/cm2.

Figure 18 the onset of sloshing depending on current den-
sity and B0,z for different cells of diameter 20 and 50 cm.
Obviously, metal pad rolling can already set in rather small
cells with a diameter of a few decimetres. Due to its small
density difference, the Mg| |Sb cell is the most vulnerable
one.

In Figure 19 we illustrate the short-circuit of our exem-
plary Mg| |Sb cell in dependence on B0,z, the diameter d, and
upper metal height h1. We use an electrolyte thickness of
4 mm and a current density of 1 A/cm2. A small 10 cm Mg| |Sb
cell, using a 5 cm high upper metal layer can already be short-
circuited by the presence of a 6 mT strong vertical background
field.

IV. SUMMARY AND OUTLOOK

The main purpose of this paper was to show that the
presence of a vertical magnetic field can spark the metal pad
roll instability in liquid metal batteries (LMBs). This inter-
face instability can appear in any cell as long as the current
and magnetic background field are strong enough; it may
finally short-circuit an LMB. In real cells (with a limited
current density), the appearance of sloshing must be taken
into account if the diameter is larger than some centimetres,
especially for Mg| |Sb cells. Metal pad rolling can therefore
be considered as one of the most important instabilities in
the operation of LMBs. Yet, it can be prevented by choos-
ing high (upper metal) layers, by an appropriate design of the
bus system (minimising vertical magnetic fields) and by using
a rectangular cross section instead of cylindrical or square
cells.

Metal pad rolling is already well known from aluminium
reduction cells. We have identified a Sele mechanism explain-
ing the wave propagation. The wave period is well described by
the dispersion relation for gravity waves, if accounting also for
surface tension. We have further studied a wide range of param-
eters influencing onset and intensity of sloshing: besides of
strong vertical fields, also high cell currents lead to instability.
Consequently, large cells are particularly vulnerable. The den-
sity difference between alkaline metal and salt should be high
for stable LMBs; shallow (upper metal and electrolyte) layers
promote instability. High viscosities again stabilise the cell.
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Many of these parameters can be combined to a dimension-
less number (Sele criterion, Equation (35)) characterising the
onset and intensity of sloshing. While the Sele criterion mod-
els well the influence of current, magnetic field, and density,
it partially fails describing the influence of the layer thick-
ness of typical LMBs. It can be equally applied to cylindrical
and square cells, but does not generally hold for rectangular
cells.

With an increasing cell current, the electrolyte layer is
pinched more and more (Figure 5). We have proposed to
describe the influence of several parameters on this salt layer
thickness by the Ginzburg-Landau theory. For small and mod-
erate deformation of the electrolyte layer, we suggest to
describe the shape of the upper metal-electrolyte interface as
some kind of solitary wave. The sudden short-circuit of the
salt layer is attributed to a strong flow in front of the wave
crest.

Our simulation can only give a first rough overview on
the sloshing instability in LMBs. Maybe the most important
step would be the experimental evidence of the instability in
a three layer system. Although metal pad rolling was inten-
sively studied in (the two-layer layer system of) aluminium
reduction cells, the dimensionless parameter defining its onset
is imperfect. Most importantly, the Sele criterion should be
extended to cells of high aspect ratio to describe the influ-
ence of the layer heights better. It could further be comple-
mented by the influence of induction, surface tension, and

viscosity and maybe adapted to our three layer system. The
very sudden short-circuit will need further and more detailed
studies. For this purpose, it may be necessary to improve
the mixture model for conductivity as well as the imple-
mentation of surface tension in our solver. A comparison of
the OpenFOAM solver with the spectral code SFEMaNS68

and experimental data69 is planned for further validating the
code.
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APPENDIX: NUMERICAL MODEL

FIG. 20. Flowchart for multiphase
simulation.
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2008.

43N. Weber, P. Beckstein, V. Galindo, W. Herreman, C. Nore, F. Stefani,
and T. Weier, “Metal pad roll instability in liquid metal batteries,”
Magnetohydrodynamics (to be published).

44V. Bojarevics and M. V. Romerio, “Long waves instability of liquid metal-
electrolyte interface in aluminium electrolysis cell: A generalization of
Sele’s criterion,” Eur. J. Mech. B/Fluids 13, 33–56 (1994).

45A. D. Sneyd, “Interfacial instabilities in aluminium reduction cells,” J. Fluid
Mech. 236, 111–126 (1992).

46A. D. Sneyd and A. Wang, “Interfacial instability due to MHD mode
coupling in aluminium reduction cells,” J. Fluid Mech. 263, 343–359 (1994).

47M. Segatz and C. Droste, “Analysis of magnetohydrodynamic instabilities
in aluminium reduction cells,” Light Met. 313–322 (1994).

48R. Moreau and D. Ziegler, “Stability of aluminum cells: A new approach,”
Light Met. 359–364 (1986).

49F. Moisy, O. Doar, T. Pasutto, O. Daube, and M. Rabaud, “Experimental and
numerical study of the shear layer instability between two counter-rotating
disks,” J. Fluid Mech. 507, 175–202 (2004).

50C. Nore, M. Tartar, O. Daube, and L. S. Tuckerman, “Survey of instability
thresholds of flow between exactly counter-rotating disks,” J. Fluid Mech.
511, 45–65 (2004).

51V. Bojarevics, “Non-linear waves with electromagnetic interaction in
aluminium electrolysis cells,” Prog. Astronaut. Aeronaut. 182, 833–848
(1998).

52O. Zikanov, A. Thess, P. A. Davidson, and D. P. Ziegler, “A new approach to
numerical simulation of melt flows and interface instability in Hall-Heroult
cells,” Metall. Mater. Trans. B 31, 1541–1550 (2000).

http://dx.doi.org/10.1109/jproc.2012.2190170
http://dx.doi.org/10.1140/epjst/e2014-02219-6
http://dx.doi.org/10.1140/epjst/e2014-02219-6
http://dx.doi.org/10.1149/1.2425523
http://dx.doi.org/10.1149/1.2425597
http://dx.doi.org/10.1149/1.2425597
http://dx.doi.org/10.1126/science.164.3886.1347
http://dx.doi.org/10.1021/cr300205k
http://dx.doi.org/10.1021/ja209759s
http://dx.doi.org/10.1021/ja209759s
http://dx.doi.org/10.1016/j.jpowsour.2013.04.052
http://dx.doi.org/10.1149/2.0801412jes
http://dx.doi.org/10.1038/ncomms10999
http://dx.doi.org/10.1038/nature13700
http://dx.doi.org/10.1149/2.0441514jes
http://dx.doi.org/10.1016/j.enconman.2011.03.003
http://dx.doi.org/10.1016/j.enconman.2011.03.003
http://dx.doi.org/10.1016/j.jpowsour.2014.03.055
http://dx.doi.org/10.1016/j.jpowsour.2014.03.055
http://dx.doi.org/10.1017/jfm.2015.159
http://dx.doi.org/10.1007/s00162-015-0378-1
http://dx.doi.org/10.3791/52622
http://dx.doi.org/10.1016/j.applthermaleng.2016.09.006
http://dx.doi.org/10.1063/1.4875815
http://dx.doi.org/10.1063/1.4875815
http://dx.doi.org/10.1063/1.4905325
http://dx.doi.org/10.1088/1757-899x/143/1/012024
http://dx.doi.org/10.1103/physreve.92.063021
http://dx.doi.org/10.1016/j.electacta.2011.11.023
http://dx.doi.org/10.1179/026708300101508027
http://dx.doi.org/10.1007/s00162-010-0201-y
http://dx.doi.org/10.1209/0295-5075/88/24001
http://dx.doi.org/10.1007/bf02669338
http://dx.doi.org/10.1017/s0022112098001025
http://dx.doi.org/10.1017/s0022112092001368
http://dx.doi.org/10.1017/s0022112092001368
http://dx.doi.org/10.1017/s0022112094004143
http://dx.doi.org/10.1017/s0022112004008833
http://dx.doi.org/10.1017/s0022112004008559
http://dx.doi.org/10.2514/5.9781600866531.0833.0848
http://dx.doi.org/10.1007/s11663-000-0039-6


054101-15 Weber et al. Phys. Fluids 29, 054101 (2017)

53M. Flueck, A. Janka, C. Laurent, M. Picasso, J. Rappaz, and G. Steiner,
“Some mathematical and numerical aspects in aluminum production,”
J. Sci. Comput. 43, 313–325 (2010).

54M. C. Dube, “Extraction and refining of aluminium,” in Proceeding Sym-
posium Non-Ferrous Metal Industry in India, edited by B. Nijhawan and
A. Chatterjee (National Metallurgical Laboratory, Jamshedpur, India, 1954),
pp. 127–138.

55S. J. Lindsay, “Very high purity aluminum: An historical perspective,” JOM
66, 217–222 (2014).

56A. D. Sneyd, “Stability of fluid layers carrying a normal electric current,”
J. Fluid Mech. 156, 223–236 (1985).

57J. Descloux, M. Flueck, and M. Romerio, “Stability in aluminium reduction
cells: A spectral problem solved by an iterative procedure,” Light Met.
275–281 (1994).

58J. Descloux, M. Flueck, and M. V. Romerio, “Modelling for instabilities in
Hall–Heroult cells: Mathematical and numerical aspects,” in Magnetohy-
drodynamics in Process Metallurgy, edited by J. Szekely and J. W. Evans
(The Minerals, Metals & Materials Society, 1991), pp. 107–110.

59N. Weber, V. Galindo, F. Stefani, T. Weier, and T. Wondrak, “Numerical sim-
ulation of the Tayler instability in liquid metals,” New J. Phys. 15, 043034
(2013).

60O. Ubbink, “Numerical prediction of two fluid systems with sharp inter-
faces,” Ph.D. thesis, University of London, 1997.

61H. Rusche, “Computational fluid dynamics of dispersed two-phase flows at
high phase fractions,” Ph.D. thesis, Imperial College London, 2002.

62S. S. Deshpande, L. Anumolu, and M. F. Trujillo, “Evaluating the perfor-
mance of the two-phase flow solver interFoam,” Comput. Sci. Discovery 5,
014016 (2012).

63N. Weber, V. Galindo, F. Stefani, and T. Weier, “The Tayler instability at low
magnetic Prandtl numbers: Between chiral symmetry breaking and helicity
oscillations,” New J. Phys. 17, 113013 (2015).

64V. Bandaru, T. Boeck, D. Krasnov, and J. Schumacher, “A hybrid finite
difference–boundary element procedure for the simulation of turbulent
MHD duct flow at finite magnetic Reynolds number,” J. Comput. Phys.
304, 320–339 (2016).

65L. A. Santalo, Vectores Y Tensores Con Sus Aplicaciones (Universidad de
Buenos Aires, Buenos Aires, 1993).

66J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, “Thermal con-
ductivity bounds for isotropic, porous materials,” Int. J. Heat Mass Transfer
48, 2150–2158 (2005).

67J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for
modeling surface tension,” J. Comput. Phys. 100, 335–354 (1992).

68J.-L. Guermond, R. Laguerre, J. Léorat, and C. Nore, “Nonlinear mag-
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