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We propose a new theoretical model for metal pad roll instability in idealized
cylindrical reduction cells. In addition to the usual destabilizing effects, we model
viscous and Joule dissipation and some capillary effects. The resulting explicit
formulas are used as theoretical benchmarks for two multiphase magnetohydrodynamic
solvers, OpenFOAM and SFEMaNS. Our explicit formula for the viscous damping
rate of gravity waves in cylinders with two fluid layers compares excellently to
experimental measurements. We use our model to locate the viscously controlled
instability threshold in cylindrical shallow reduction cells but also in Mg–Sb liquid
metal batteries with decoupled interfaces.

Key words: multiphase flow

1. Introduction
When passing intense electrical currents through two superposed layers of

electrically conducting fluids and in the presence of a weak ambient magnetic field,
gravity waves may spontaneously appear at the interface between the two fluids. This
phenomenon is known as the metal pad roll instability and it needs to be avoided
or controlled in Hall–Héroult aluminium reduction cells since it can cause undesired
short circuits.

In approximately forty years of research on the topic, much progress has been
made. Most initial studies were done using the tools of linear stability analysis
(Urata, Mori & Ikeuchi 1976; Sele 1977; Sneyd 1985; Moreau & Ziegler 1986;
Descloux & Romerio 1989; Descloux, Flueck & Romerio 1991, 1994; Davidson
& Boivin 1992; Ziegler 1993; Bojarevics & Romerio 1994; Davidson & Lindsay
1998; Antille et al. 1999; Romerio & Antille 2000; Lukyanov, El & Molokov 2001;
Molokov, El & Lukyanov 2011). Although there are some rival ideas about the
origin of the instability, it is commonly accepted that (i) wavy deformations of
the interface between both fluids cause a redistribution of the electrolysis current;

† Email address for correspondence: wietze@limsi.fr
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Metal pad roll instability in cylindrical reduction cells 599

(ii) weak ambient vertical magnetic fields (due to the power lines that run through the
factories) may interact with the deviated current through the Lorentz force and cause
a destabilizing electromagnetic coupling between transverse waves; (iii) often it is
rotating waves that are destabilized, but other wave forms are possible. Most theories
adopt a shallow fluid layer approximation, well adapted to realistic Hall–Héroult cells
(typically 3 by 10 m in lateral extent and with cryolite and aluminium layers that
are 5 and 30 cm high). Most theories also ignore viscous and Joule dissipation. This
drastically simplifies the analysis and still allows us to capture the backbone of the
metal pad roll instability. Stability criteria in shallow cells often involve only one
non-dimensional parameter,

β =
IBz

1ρgH1H2
<βc, (1.1)

sometimes referred to as the Sele number (Sele 1977). Here Bz is the vertical magnetic
field magnitude, I the total electrolysis current, 1ρ the density difference between the
two fluid layers, g gravity and H1,H2 the heights of the two layers. The critical value
βc defining the onset of instability mainly depends on the lateral geometry of the cell.
Without dissipation, cells with square or circular cross-section are always unstable
βc= 0, with rectangular cross-section, we can find finite thresholds βc 6= 0. Dissipation
is not often modelled but will always increase βc. Once a cell has become unstable,
we can still want to track the nonlinear evolution of the metal pad roll instability
to find, for example, estimates of the maximal interface deformation. This can be
done with nonlinear shallow models (Bojarevics & Romerio 1994; Zikanov et al.
2000; Zikanov, Sun & Ziegler 2004; Sun, Zikanov & Ziegler 2004; Bojarevics
& Pericleous 2006, 2008) which are quite economical to run (two-dimensional)
or with direct numerical simulations of the full multiphase (three-dimensional)
magnetohydrodynamics (Potocnik 1988; Gerbeau, Lelièvre & Le Bris 2003, 2004;
Severo et al. 2005, 2008; Gerbeau, Le Bris & Lelièvre 2006; Munger & Vincent
2006a,c; Flueck et al. 2009; Steiner 2009; Flueck et al. 2010) that are numerically
much more demanding. Experimental studies have been done to some extent in
Hall–Héroult cells (Banerjee & Evans 1990; Potocnik & Laroche 2001) but due
to the high temperatures and chemical aggressiveness of the cryolite, this is not
simple. Cleverly designed small-scale demonstrators such as those of Pedchenko et al.
(2009), Pedchenko, Molokov & Bardet (2017) (numerically simulated in Renaudier
et al. (2016)) can then be easier to handle. Recently, metal pad roll instability has
revived in the related context of liquid metal batteries (Zikanov 2015; Bojarevics &
Tucs 2017; Weber et al. 2017a,b; Horstmann, Weber & Weier 2018; Molokov 2018;
Zikanov 2018). In such batteries we find not two, but three (possibly shallow) layers
of superposed conducting fluids (see Bradwell et al. 2012; Kim et al. 2013; Wang
et al. 2014). Metal pad instability is very similar to what was found in Hall–Héroult
cells except that two interfaces can be moving in strongly coupled or uncoupled ways
(see for example Horstmann et al. 2018).

Easily twenty years after the culminus of metal pad roll instability theory, we
present in this article a new linear instability model. The main novelty is that we
will precisely model both viscous and Joule dissipation next to the more usual,
destabilizing terms. This will allow us to quantitatively compare our linear stability
model to numerically measured growth rates, an exercise that is rarely done in the
available metal pad roll literature. Previous numerical simulations in square cells
(Gerbeau et al. 2006; Munger & Vincent 2006a) and cylindrical cells (Gerbeau
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600 W. Herreman and others

et al. 2003; Flueck et al. 2009; Steiner 2009) suggest finite instability thresholds
βc > 0 which cannot be explained with dissipationless stability models. Simulations
in cylindrical liquid metal batteries (Weber et al. 2017a,b; Horstmann et al. 2018)
also suggest that dissipation is not always small. Experiments in the small set-up of
Pedchenko et al. (2009) have not been compared to the existing dissipationless
stability theories, probably because both viscous and Joule dissipation are too
important there. To us, this suggested that the metal pad roll problem could perhaps
benefit from a stability theory that includes a precise description of the dissipation.
Quantitative theoretical predictions are also very useful to benchmark numerical
solvers and this is precisely how we initially intended this study, as a benchmark for
two entirely different multiphase magnetohydrodynamic (MHD) solvers SFEMaNS
(Guermond et al. 2007, 2009; Herreman et al. 2015; Nore et al. 2016; Cappanera
et al. 2018) and OpenFOAM (Weber et al. 2013, 2014, 2017a,b, 2018; Ashour et al.
2018; Horstmann et al. 2018), that here succeed a rather difficult test.

The article is structured as follows. In § 2, we present our linear stability model,
formulated for idealized cylindrical cells and using the analytical tools of perturbation
theory. The choice for cylindrical geometry is deliberately made to simplify the
analysis as much as possible: rotating waves that are typically driven by metal
pad roll instability exist in this geometry as simple exponential eigenmodes, not as
superpositions of standing waves (the case in rectangular cells). The choice for a
perturbative approach is motivated by the fact that, in a limited parameter range, all
physical effects remain analytically tractable. This approach yields explicit formulas
for growth rate, frequency shift and damping rate of different waveforms that are
rarely available in existing metal roll theories. Note that we are not the first to
propose the use of a perturbation method in metal pad roll theory: Descloux &
Romerio (1989) already outlined this approach quite a while ago in rectangular cells,
but explicit, readily applicable formulas were never derived. In § 3, we present the
results of some purely hydrodynamic experiments that serve to test the theoretical
viscous damping rates estimated by our theory. These experimental data points are
by-products of a novel experimental study on orbital sloshing in two and three layer
fluid systems (Horstmann, Wylega & Weier 2019). In § 4, we seek to validate the
theoretical model numerically in the small laboratory-scale cylindrical reduction cell
briefly discussed in Flueck et al. (2009) and Steiner (2009). This allows for a precise
and critical comparison with most aspects of the linear stability theory and, vice versa,
serves as a critical benchmark to both our numerical solvers. In § 5, we apply our
linear stability model to hypothetically large and shallow industrial-scale cells. In this
section, we also provide a formula for the viscously controlled threshold βc of the
metal pad roll instability in a cylindrical geometry. We also show that the proposed
theory can quantitatively reproduce the numerically measured growth rates (Weber
et al. 2017a) of the metal pad roll instability in cylindrical Mg–Sb liquid metal
batteries. We then use our model to estimate the minimal radius Rc below which
no metal pad instability can occur in liquid metal batteries with strongly decoupled
layers. In § 6, we conclude and discuss some perspectives of our study.

2. Linear stability theory
2.1. Equilibrium state and notation

The cylindrical cell under consideration in this paper is sketched in figure 1. We align
the axis of symmetry with the z-axis of a cylindrical coordinate system (r, θ, z) with
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FIGURE 1. (Colour online) Sketch of cylindrical model cell and notation. (a) Two fluid
layers with different densities ρ1, ρ2 and respective heights H1,H2 are stably superposed
in a cylindrical container of radius R due to gravity g. The layers have different electrical
conductivities and kinematic viscosities denoted as σi, νi, i = 1, 2. A vertical electrical
current Jez runs through the cell (red full line) which generates an azimuthal magnetic
field Bθ (red dashed line). We also suppose a homogenous and vertical background
magnetic field Bz (blue dashed line). (b) We use cylindrical coordinates (r, θ, z) and denote
Vi, i= 1, 2 for both fluid regions. Σi, i= 1, 2 refer to the rigid boundaries, S to the free
interface at rest. ni is the external normal on both fluid regions.

unit vectors (er, eθ , ez). At equilibrium, the cryolite and aluminium layers (subscripts
i= 1, 2) occupy the volumes

V1 : (r, θ, z) ∈ [0, R] × [0, 2π)× [0,H1],
V2 : (r, θ, z) ∈ [0, R] × [0, 2π)× [−H2, 0],

}
(2.1)

where R is the radius of the cell and Hi are the heights of the two layers. We denote
δVi the boundary of each fluid domain and split each boundary δVi as follows; δVi=

Σi ∪ S , with Σi the rigid boundary and S the interface at rest. We denote as ni the
outward normal on δVi.

The electrical conductivity, density, kinematic viscosity of both fluids are denoted
by σi, ρi, νi, respectively. The surface tension of the interface between the two fluids is
denoted by γ1|2. We suppose that the interface touches the lateral wall with a contact
angle of 90◦ and that it slides freely.

If the cell is at equilibrium, both fluids are at rest. The fluids are subject to gravity
g=−gez. A homogenous electrical current density J = Jez runs through the cell (in
reduction cells, J< 0 always). This current generates an azimuthal magnetic field Bθ =
µ0Jr/2 and we suppose that a uniform external magnetic field Be

= Bzez is present.
Horizontal components of the external magnetic fields are not considered here because
one can show that they have no impact on the instability, see appendix C. The total
magnetic field is denoted B=Bθeθ +Bzez. The above state is a magnetohydrodynamic
equilibrium configuration if the hydrodynamic pressure is Pi = P∗ − ρigz − µ0J2r2/4
and the electrical potential is Φi = Φ∗ − Jz/σi with P∗, Φ∗ arbitrary and constant
offsets.

Although it appears as a detail, the hypothesis on the contact angle is in fact
rather crucial to our stability theory. A more realistic contact angle, possibly different

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

N
RS

 - 
LI

M
SI

, o
n 

18
 S

ep
 2

01
9 

at
 1

8:
34

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
64

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.642


602 W. Herreman and others
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FIGURE 2. (Colour online) Illustration of a metal pad roll instability mechanism in an
idealized cylindrical reduction cell. (a) Equilibrium cell with electrolysis current J and
external vertical magnetic field Be

=Bzez. (b) Snapshot of a small amplitude rotating wave
with rotation speed ω and accompanying flow u in top and bottom layers. (c) Due to the
wave, current density redistributes to preferentially pass through the shallower parts of the
cryolite. (d) The current excess j is horizontal in the aluminium and interacts there with
Be to create a Lorentz force j×Be that pushes in the direction of the flow u, amplifying
the rotating wave as a result.

from 90◦, may result in a very different base state (such as figure 6 of Flueck et al.
(2009)) with a deformed interface, inhomogeneous current density and possibly even
capillary induced electro-vortex flows. The stability analysis of this kind of base state
is evidently much more difficult, and this explains why we have limited our model
to the simplified case of a freely sliding contact angle of 90◦. This configuration
admits a simple base state with a flat interface, homogenous current and no flow.
This implies that we only deal with some possible effects of capillarity but certainly
not all.

2.2. The instability mechanism that we model
In figure 2, we illustrate the instability mechanism that is captured by our model.
Overall, it is very similar to Sele’s mechanism (Sele 1977), but the cylindrical
geometry allows an essential, simplifying difference in presentation. Rather than
finding the amplification as a consequence of a coupling between transverse standing
waves, we can, in a cylindrical geometry, more simply show that rotating waves
amplify themselves.

Let us start with figure 2(a), that shows the equilibrium configuration: cryolite
in the top layer, aluminium in the bottom layer and the reduction current flowing
from top to bottom (J < 0). We choose the external vertical magnetic field Be to
be upward. In (b), we perturb this equilibrium with a small rotating wave, rotating
clockwise when seen from above, as suggested by the figure. Along with this wave
comes the instantaneous fluid flow u, pointing as sketched, either towards (top) or
away from (bottom) the observer. Through time, this entire pattern will rotate, and,
in the absence of electromagnetic forces, slowly decay in magnitude because of
viscous dissipation. In (c,d), we explain how the Lorentz force associated with this
wave necessarily amplifies this wave. Since cryolite is a much worse conductor than
aluminium, the current density J will deviate due to a current excess j, in order to
preferentially pass through the shallower part of the cryolite. This is suggested by the
thin and thick arrows of (c). (d) Shows how the current excess j typically loops in
reduction cells, being mainly horizontal in the aluminium and mainly vertical in the
cryolite. In the aluminium layer, this horizontal j interacts with the external vertical
field Be to create a Lorentz force j×Be which pushes exactly in the direction of the
instantaneous flow u. Precisely the same picture can be made at any rotated interface
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Metal pad roll instability in cylindrical reduction cells 603

position and this means that positive power is permanently being injected into the
rotating wave by the Lorentz force: u · ( j×Be)> 0. Initially small rotating waves can
therefore be electromagnetically amplified. Notice that the direction of rotation of the
wave is a crucial element in the destabilization process: inverting ω, inverts the flow
u and with u · ( j× Be) < 0, the wave rotating in the opposite sense will be damped
rather than magnified. Only waves rotating in one direction will be amplified and this
direction obviously depends on the sign of JBz. In our theory, this amplification is
captured in the growth rate denoted λv.

With the same kind of physical reasoning, one can understand why the azimuthal
magnetic field, Bθeθ , cannot amplify rotating waves (nor standing waves). The Lorentz
force j× (Bθeθ) is radial in the cryolite and vertical in the aluminium layer, i.e. always
perpendicular to the instantaneous flow u. The azimuthal field can therefore not cause
an amplification nor a damping. In our theory we find that the azimuthal field causes
a shift in the frequency of the wave (denoted by δh), in agreement with the theoretical
predictions of Sneyd (1985) and Sneyd & Wang (1994).

2.3. Linearized problem in the quasi-static limit
Now that we know how the equilibrium state can become unstable, we want to
perform the linear stability analysis that takes into account viscous dissipation,
magnetic dissipation and surface tension, and without making the shallow layer
approximation. We start by linearizing the governing equations about the equilibrium
state. Denoting B = max(µ0JR, Bz) the typical scale for the magnetic field strength,
we suppose that the Lundquist numbers Lui in both layers i= 1, 2 remain very low,

Lui = σiµ0BR/
√
ρiµ0� 1. (2.2)

This hypothesis allows us to use the quasi-static approximation of MHD, in which
the electrical field derives from the electrical potential. Denoting by (ui, pi, bi, ji, ϕi)

perturbations for the velocity, the pressure, the magnetic induction, the current
density and the electrical potential, we find the linearized perturbation equations of
the magnetohydrodynamic stability problem to be

ρi∂tui +∇pi = J× bi + ji ×B+ ρiνi∇
2ui, (2.3a)

∇ · ui = 0, (2.3b)
ji = σi(−∇ϕi + ui ×B), ∇ · ji = 0, (2.3c)

∇× bi = µ0 ji, ∇ · bi = 0. (2.3d)

The essential inviscid hydrodynamic boundary condition on the rigid boundaries Σi is
that of impermeability

ui · ni = 0|Σi, (2.4)

to which we must add ui×ni=0|Σi when the viscous effects are accounted for. On the
interface S , which we locate at z=η(r, θ, t), the essential inviscid boundary conditions
are

∂tη = u1,z|z=0, (2.5a)
∂tη = u2,z|z=0, (2.5b)

−γ1|2∇
2η+ (ρ2 − ρ1)gη = p2|z=0 − p1|z=0. (2.5c)
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604 W. Herreman and others

When the viscous effects are accounted for we must add the continuity of the
tangential components of the velocity and the continuity of the tangential viscous
stresses (explicit formulas are not required in the article). For the electrical boundary
conditions on the rigid boundaries Σi, we suppose

j1,r|r=R = 0, (2.6a)
j2,r|r=R = 0, (2.6b)
ϕ1|z=H1 = 0, (2.6c)

j2,z|z=−H2 = 0. (2.6d)

The cylindrical wall is always insulating. The top boundary is treated as an electrical
contact with a perfect conductor (iso-potential surface), mimicking the fact that the
carbon anode is a very good conductor compared to cryolite. The bottom boundary is
treated as an electrical contact with an insulating material, mimicking the fact that the
steel cathode is weakly conducting compared to the liquid aluminium. These idealized
boundary conditions have been used by many authors and are relevant to reduction
cells. On the free interface S , the total normal current density (n · (J+ ji)) and total
electrical potential (Φi+ ϕi) are continuous. Taylor expanding these conditions around
z= 0, we find the linearized version of the continuity conditions as

0 = j1,z|z=0 − j2,z|z=0, (2.7a)
J(σ−1

2 − σ
−1
1 )η = ϕ2|z=0 − ϕ1|z=0. (2.7b)

Equation (2.7b) plays an essential role for the metal pad roll instability, since it
expresses how electrical potential perturbations ϕi (and so currents ji) relate to
the motion of the interface. Without a significant jump in conductivity, there is
no potential difference directly caused by interface motions and no metal pad roll
instability, as we will see.

Finally, for the magnetic induction driven by the electrical currents, we suppose the
following boundary condition on the cylindrical boundary:

er × bi|r=R = 0. (2.8)

Magnetic field behaviour at other boundaries is not specified, because it has no
influence in the theoretical model that we develop. This boundary condition is
obviously artificial but it avoids us having to explicitly calculate the magnetic field
perturbation, which is never an easy task. The magnetic field perturbation bi is
anyway of secondary importance: it only appears through the term J× bi that is not
destabilizing according to our model. Many previous metal pad roll theories have
directly ignored this term and according to Sun et al. (2004), this seems justified.

The linearized problem is now completely defined and so we can look for linear
eigenmodes. Due to the stationarity of the equilibrium state, we look for fundamental
solutions with a simple exponential time dependence. More precisely, if f represents
any of the relevant fields or components, we propose the ansatz

f = f̂ est, (2.9)

and try to find the admissible (complex) eigenfunctions f̂ and (complex) eigenvalues
s ∈ C. We call Re(s) the growth rate and Im(s) the frequency. If Re(s) > 0, the
eigenmode is linearly unstable and if Im(s) 6= 0 the solution is wave like. Using
a numerical approach it is possible to solve this linear eigenvalue problem. In
the following sections we rather use a perturbative approach to find a suitable
approximation to s, valid in some parameter range.
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Metal pad roll instability in cylindrical reduction cells 605

2.4. Free inviscid gravito-capillary waves
Our perturbative approach is based on the free inviscid gravito-capillary waves that
form a family of eigensolutions in the absence of an electrolysis current (J = 0),
vertical magnetic field (Bz = 0) and without viscosity (ν = 0). In that case, the
following hydrodynamic field

[ui, pi, η] = [ûi, p̂i, η̂]eiωt, (2.10)

is a solution to the linearized problem defined above. The hydrodynamic fields ûi, p̂i, η̂
correspond to the classical potential wave solution (see Lamb 1945),ûi

p̂i
η̂

=
 ∇φ̂i

−ρi(iω)φ̂i

∂zφ̂i/(iω)

 , (2.11)

with φ̂1

φ̂2
η̂

= A R

 (ω/k) cosh(k(z−H1))/ sinh(kH1)

−(ω/k) cosh(k(z+H2))/ sinh(kH2)
i

 Jm(kr)eimθ . (2.12)

The non-dimensional amplitude A is arbitrary here. The functions Jm are Bessel
functions, m ∈ Z is the azimuthal wavenumber and k is a radial wavenumber that
takes the discrete values

k= κmn/R, J′m(κmn)= 0, (2.13a,b)

to ensure that the boundary condition ur|r=R = 0 is satisfied. We note by κmn the nth
zero of the derivative of the Bessel function Jm (κ11 ≈ 1.84, κ21 ≈ 3.05, κ31 ≈ 4.20).
The natural frequency ω of the (free) waves is

ω=±

√√√√ (ρ2 − ρ1)gk+ γ1|2k3

ρ2

tanh(kH2)
+

ρ1

tanh(kH1)

, (2.14)

and may be either positive or negative for a fixed m. The solution presented here
(see (2.10)) has a simple harmonic form, but the real flow is always real valued.
Taking the real part of (2.10), one finds rotating waves with positive rotation speed
if mω < 0 (anti-clockwise when seen from above) and negative rotation speed if
mω > 0 (clockwise when seen from above). Two oppositely rotating waves can also
be superposed to give standing waves.

2.5. Sufficient conditions to apply perturbation methods
Perturbation methods may only be used when the Lorentz force and the viscous forces
appear as small perturbations in the momentum balance. Symbolically, this means that

[J× bi], [ ji ×B], [ρiνi∇
2ui]� [ρi∂tui], [∇pi], (2.15)

in terms of orders of magnitude (denoted using square brackets). This limits the
parameter space that can be explored and we want to estimate these limits here.

For simplicity, we assume J, B, ω> 0 to avoid the use of absolute values. We use
[x] = R as the space scale rather than k−1 since this is more explicit (and anyway
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606 W. Herreman and others

similar to k−1 for long-wavelength waves). We denote [ui] = U the velocity scale,
which is arbitrary in this linear approach. For hydrodynamic waves, we can estimate

[ρi∂tui] ∼ ρiωU, [pi] ∼ ρiωRU. (2.16a,b)

The viscous term has the following order of magnitude:

[ρiνi∇
2ui] ∼ ρiνiU/R2. (2.17)

We introduce B as the order of magnitude of the imposed magnetic field

[B] ∼ B=
{
µ0JR −→ azimuthal,

Bz −→ vertical. (2.18)

We can use two independent estimates related to either the azimuthal or to the
vertical magnetic field. From Ohm’s law (2.3c), we then estimate the magnitude of
the induction term as

[σiui ×B] ∼ σiUB. (2.19)

Still in Ohm’s law (2.3c), the electrical potential term may have the same order of
magnitude as ui × B, but the interface deformations caused by the waves can also
lead to a different magnitude which can be estimated from the boundary conditions
(2.5a), (2.5b) and (2.7b). This yields the following two different estimates

[−σi∇ϕi] ∼

{
JU/(ωR) −→ interface deformations,

σiUB −→ induction by the flow. (2.20)

Using Ampère’s law (2.3d), we can calculate the associated magnetic field perturbation
magnitudes

[bi] ∼

{
µ0JU/ω,
µ0σiURB. (2.21)

All the orders of magnitude of the different fields have been estimated so we can
now reformulate the inequalities (2.15). The trivial but sufficient condition to model
viscous effects perturbatively is

[ρiνi∇
2ui]� [ρi∂tui] ⇔ Rei =

ωR2

νi
� 1, (2.22)

which we recognize as a constraint on Reynolds numbers based on the properties of
the wave. A set of sufficient conditions that allows us to model the effects of the
Lorentz force using perturbation methods is then

[J× bi]� [ρi∂tui] ⇔


µ0J2

ρiω2
� 1,

µ0σiJRB
ρiω

� 1,
(2.23a)

[ ji ×B]� [ρi∂tui] ⇔


JB
ρiω2R

� 1,

σiB2

ρiω
� 1.

(2.23b)

Each inequality provides two conditions that are related to the two choices (2.20) that
can be made. We will suppose that these a priori sufficient conditions (2.22) and
(2.23) are verified, but it is impossible at this stage to evaluate how necessary they are.
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Metal pad roll instability in cylindrical reduction cells 607

2.6. Perturbative calculation of growth rates and frequency shifts
In this technical section, we calculate the theoretical expression for the complex
eigenvalue s that characterizes the exponential behaviour (∼exp(st)) of the linear
eigenmode. Since the perturbation methods that we are going to use are rather
involved, we first give a brief overview of the methodology. The theoretical expression
for s will be split as

s= iω+ (λ+ iδ)︸ ︷︷ ︸
α

. (2.24)

Here ω is the inviscid gravity wave frequency and α is a small complex shift induced
by the Lorentz and the viscous forces. We define λ= Re(α), the growth rate of the
gravity wave, and δ= Im(α), the frequency shift. The growth rate is decomposed into
several independent terms as follows:

λ= λv︸︷︷︸
destab.

+ λvv + λhh︸ ︷︷ ︸
quasi-static

+ λvisc︸︷︷︸
visc.damping

. (2.25)

The first term λv ≶ 0 is the potentially destabilizing term and directly relates to the
instability mechanism sketched in figure 2, where the external vertical magnetic field
Bz (hence the suffix v) plays an important role in destabilizing a rotating wave. The
terms λvv, λhh are negative in general. These corrections are quadratic in the vertical
and horizontal magnetic field magnitudes (hence the suffixes vv and hh) and are often
ignored in metal pad roll theory. They relate to the inductive terms σiui×B that exist
in the quasi-static version of Ohm’s law and that in general cause a magnetic damping.
The term λvisc < 0 captures the viscous damping of the gravity waves. We similarly
decompose the frequency shift as follows:

δ = δh + δvh + δvisc. (2.26)

The term δh is the result of the Lorentz force interaction of ji, caused by the interface
deformation, with the background horizontal (azimuthal) magnetic field Bθ = µ0Jr/2
(hence the suffix h). The term δvh is a small quasi-static correction related to both Bθ
and Bz, and δvisc is a frequency shift caused by viscous effects.

Above, we have provided sufficient conditions to apply a perturbation method.
Necessary conditions can be derived a posteriori by verifying that∣∣∣∣λvω

∣∣∣∣ , ∣∣∣∣λvvω
∣∣∣∣ , ∣∣∣∣λhh

ω

∣∣∣∣ , ∣∣∣∣λvisc

ω

∣∣∣∣ , ∣∣∣∣δh

ω

∣∣∣∣ , ∣∣∣∣δvh

ω

∣∣∣∣ , ∣∣∣∣δvisc

ω

∣∣∣∣� 1. (2.27)

When these conditions are not met, the theoretical formulas we deduce in the
following sections may not be accurate or may even be wrong. This observation must
be kept in mind.

2.6.1. Metal pad roll instability in the magneto-static and inviscid limit: λv and δh

In this section, we focus on the leading terms in the growth rate and frequency shift
formulas, λv and δh. This can be done in the inviscid limit νi= 0, and, assuming that
the magnetostatic approximation of Ohm’s law

ji ≈−σi∇ϕi (2.28)
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can be used. This a common supplementary assumption in most metal pad roll theory.
Using [σi∇ϕi]= JU/(ωR) and [σiui×B]=σiUB, from our order of magnitude analysis
we find a sufficient condition

[σiui ×B]� [−σi∇ϕi] ⇔ σiωRB/J� 1, (2.29)

which we suppose valid in this first section. As a result of the inviscid and
magneto-static hypothesis, both viscous and Joule dissipation will be absent in
this entire section.

We propose the following ansatz to the inviscid and magneto-static limit of the
linearized problem defined in § 2.3:

[ui, pi, η, ji, ϕi, bi] =

([
ûi, p̂i, η̂, ĵi, ϕ̂i, b̂i

]
+

[
ũi, p̃i, η̃, j̃i, ϕ̃i, b̃i

])
eiωteαt. (2.30)

In this notation, the tilded variables are small perturbations with respect to the hatted
variables, and the complex shift α is small with respect to ω. Here ω is the frequency
of the gravity waves. We inject this ansatz into the governing equations and we treat
the Lorentz force term perturbatively. At leading order, we find the following balance
equations:

ρi(iω)ûi +∇p̂i = 0, ∇ · ûi = 0,
ĵi =−σi∇ϕ̂i, ∇ · ĵi = 0,
∇× b̂i =µ0 ĵi, ∇ · b̂i = 0.

 (2.31)

Notice that the Lorentz force is absent in the momentum equation. The boundary
conditions for the hatted fields can be copied from ((2.4) → (2.8)) after replacing
∂t→ iω. We have to solve this problem in order to specify all the first-order quantities.
The hydrodynamic fields ûi, p̂i, η̂ and the frequency ω have already been given above.
The electrical potential ϕ̂i is harmonic (∇2ϕ̂i=0) and is related to the surface elevation
η̂ by the jump condition (2.7b). After some computations we find that[

ϕ̂1
ϕ̂2

]
= JRA

σ−1
1 − σ

−1
2

σ−1
1 tanh(kH1)+ (σ2 tanh(kH2))−1

×

[
−i sinh(k(z−H1))/(σ1 cosh(kH1))
−i cosh(k(z+H2))/(σ2 sinh(kH2))

]
Jm(kr)eimθ . (2.32)

The insulating side wall condition is automatically satisfied since J′m(kR) = 0 by
definition (see (2.13)). The electrical top and bottom boundary conditions are satisfied
as well. The electrical currents, ĵi = −σi∇ϕi are easily deduced from the potentials.
The magnetic field perturbations b̂i can be calculated by using for example the
Biot–Savart law. This computation is very technical, but it is not necessary here: b̂i
is not explicitly required to evaluate the complex shift α, provided that the boundary
condition (2.8) applies.

It is instructive to notice the systematic real or purely imaginary character of the
different leading-order fields after dividing by A exp(imθ),

{φ̂i, ûi,r, ûi,z, ĵi,θ , b̂i,r, b̂i,z}

A exp(imθ)
∈R,

{η̂i, ûi,θ , ϕ̂i, ĵi,r, ĵi,z, b̂i,θ }

A exp(imθ)
∈ iR. (2.33a,b)
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Metal pad roll instability in cylindrical reduction cells 609

All the leading-order fields that are needed for the calculation of the shift α are
now specified. We are now ready to write the next order in the perturbation problem.
From the balance of momentum and mass, we have

αρiûi + iωρiũi +∇p̃i = ĵi ×B+ J× b̂i, (2.34a)
∇ · ũi = 0. (2.34b)

Note that the (small) Lorentz force is now present on the right-hand side of the
momentum balance equation, and it can be calculated by using the first-order fields
ĵi and b̂i. We are not considering the corrections j̃i, ϕ̃i, b̃i at this stage as they do
not affect the eigenvalue shift α. The hydrodynamic boundary conditions for the
tilded variables can be copied from (2.4) and (2.5) except for the kinematic boundary
conditions which now reads

αη̂+ iωη̃= ũi,z|z=0. (2.35)

Next to iωη̃, we find the term αη̂ that is proportional to the small shift α. To find
an equation for α, we express the solvability condition (also known as the Fredholm
alternative). This condition is obtained by summing over the two fluid regions, i= 1, 2,
the linear combination

∫
Vi
[û∗i · (2.34a)+ p̂∗i (2.34b)] dV . We obtain

∑
i=1,2

∫
Vi

[û∗i · (αρiûi + iωρiũi +∇p̃i)+ p̂∗i∇ · ũi] dV

=

∑
i=1,2

∫
Vi

û∗i · ( ĵi ×B+ J× b̂i) dV. (2.36)

Through quite a number of simplifications, involving integration by parts, use of
leading-order balances and the boundary conditions for the hatted and tilded variables,
we end up with a formula for the complex frequency shift

α =
Pv

2K︸︷︷︸
λv

+
Ph

2K︸︷︷︸
iδv

, (2.37)

where
K= [(ρ2 − ρ1)g+ γ1|2k2

]

∫
S
|η̂|2 dS (2.38a)

is proportional to the kinetic energy and

Pv =

∑
i=1,2

∫
Vi

û∗i · ( ĵi × Bzez) dV, (2.38b)

Ph =
∑
i=1,2

∫
Vi

{
û∗i ·

[
ĵi × (µ0Jr/2)eθ

]
+µ0Jφ̂∗i ĵi,z

}
dV, (2.38c)

to the power injected by the Lorentz force. The condition expressed by this solvability
condition is in fact very similar to what the mechanical energy equation would yield
at leading order. The mathematical operations behind these simplifications are detailed
in appendix A. Partial integration and the artificial magnetic boundary condition (2.8)
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were necessary to rewrite the power density û∗i · (J× b̂i) as the second term µ0Jφ̂∗i ĵi,z

in the integrandum of Ph.
Let us give a first interpretation of these formulas. Using the real or purely

imaginary nature of the different field components (2.33), we immediately deduce that
K,Pv are real and Ph imaginary, explaining why we can split α= λv + iδv. Physically
this implies that at this order of the expansion, only the externally imposed, vertical
magnetic field component Bz can destabilize the gravity waves and the corresponding
growth rate is λv. The self-generated, azimuthal magnetic field Bθ = µ0Jr/2 is not
destabilizing but shifts the frequency of the wave by δh. This result is coherent with
the analysis of Sneyd (1985) and Sneyd & Wang (1994) who also found that the
self-generated field is not destabilizing. We further note that the artificial magnetic
boundary condition (2.8) has no impact on λv but it may affect δh.

A few pages of calculations are necessary to evaluate all the integrals in K, Pv and
Ph analytically, and this allows us to arrive at the following explicit formulas for the
inviscid and magneto-static growth rate and frequency shift:

λv =
ω

2
JBz

(ρ2 − ρ1)g+ γ1|2k2

m
(kR)2 −m2

(
tanh(kH1)+

kH2

sinh2(kH2)
+

1
tanh(kH2)

)
Λ,

(2.39a)

δh =
ω

4
µ0J2k−1

(ρ2 − ρ1)g+ γ1|2k2

(kR)2 − 2m2

(kR)2 −m2

(
kH1

sinh(kH1) cosh(kH1)

)
Λ, (2.39b)

where

Λ=
σ−1

1 − σ
−1
2

σ−1
1 tanh(kH1)+ (σ2 tanh(kH2))−1

. (2.39c)

In both the growth rate λv and frequency shift δh, we see dimensionless factors that
balance the typical strength of the Lorentz force (JBz in λv, µ0J2k−1 in δh) with respect
to gravitational and capillary restoring forces ((ρ2 − ρ1)g + γ1|2k2). We see that the
growth rate λv ∼m, so axisymmetric waves with m= 0 can never be destabilized. The
number Λ is a conductivity-dependent factor that is not often seen in the metal pad
literature. It clearly shows that a jump in electrical conductivity σ1 6= σ2 is essential
for instability. Note that we have verified the exactness of the formulas (2.39) by
comparing them with numerical evaluations of the integrals of Pv, Ph, K computed
using a simple quadrature rule on a two-dimensional r− z grid.

We can derive an inviscid instability criterion for the case σ1 � σ2 commonly
considered in the literature and realistic for Hall–Héroult cells. Since (kR)2 −m2 > 0
always (see appendix A), inviscid instability, that is λv > 0, requires

Sgn(JBzmω)> 0 ⇒ wave is MPR-unstable. (2.40)

In reduction cells, we further have J < 0, as the reduction current flows from top to
bottom, and if Bz > 0, this criterion tells us that only rotating waves with mω < 0
can be destabilized. This corresponds to waves rotating in the positive direction, or
anti-clockwise when seen from above, and this coincides with what can be expected
from the Sele mechanism (Sele 1977) or from our presentation of the instability
mechanism. Note also that there is no threshold in this dissipationless limit. Waves
that are unstable always exist, which is coherent with Davidson & Lindsay (1998) and
Lukyanov et al. (2001) who find βc = 0 in cylindrical cells and without dissipation.
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The general formula for the growth rate takes simpler asymptotic forms in the limit
of large conductivity jumps and for both deep fluid layers and shallow fluid layers. In
the deep limit kHi� 1 and with σ1/σ2� 1 we find

λv,deep ≈
JBz

(ρ2 − ρ1)g+ γ1|2k2

mωdeep

(kR)2 −m2
, (2.41a)

δh,deep ≈ 0, (2.41b)

where

ωdeep ≈

√
(ρ2 − ρ1)gk+ γ1|2k3

ρ1 + ρ2
. (2.42)

For shallow layers kHi� 1 and with σ1/σ2� (kH1)(kH2) we have

λv,shallow ≈
JBz

(ρ2 − ρ1)g+ γ1|2k2

mωshallow

(kR)2 −m2

1
(kH1)(kH2)

, (2.43a)

δh,shallow ≈
ωshallow

4
µ0J2k−1

(ρ2 − ρ1)g+ γ1|2k2

(kR)2 − 2m2

(kR)2 −m2

1
kH1

, (2.43b)

where

ωshallow ≈

√
(ρ2 − ρ1)gk2 + γ1|2k4

ρ1H−1
1 + ρ2H−1

2

. (2.44)

The shallow approximation is commonly adopted in the metal pad roll literature. For
long-wavelength waves, the surface tension is also usually ignored. In this limit, the
growth rate can be approximated as follows:

λv,shallow ≈
JBz√

(ρ2 − ρ1)g(ρ1H−1
1 + ρ2H−1

2 )

R
H1H2

m
κmn(κmn −m2)

. (2.45)

In this formula, we have separated a wave-dependent factor that only depends on κmn
and m, from a factor that groups all other physical and geometrical parameters. This
allows us to emphasize that the growth rate increases proportionally to the lateral
extent R of the shallow cell if current density J is held fixed. Alternatively, we can
also write

λv,shallow ≈
mωshallow

κ2
mn −m2

β

πκ2
mn

, β =
IBz

(ρ2 − ρ1)gH1H2
, (2.46a,b)

with I = JπR2 the total current running through the cell. The shallow-limit growth
rate is proportional to the non-dimensional group β that appeared in many previous
studies on the metal pad roll instability and that we discussed in the Introduction. In
appendix B, we develop further the small gap limit and show that the growth rate
formula (2.46) is compatible with the existing dissipationless shallow layer models. In
the double limit of asymptotically small kHi� 1 and β� 1 and without dissipation,
our formula and the models of Davidson & Lindsay (1998) and Lukyanov et al.
(2001) yield precisely the same growth rates.

In the supplementary material to this article (available online at
https://doi.org/10.1017/jfm.2019.642), we explore the effect on the metal pad roll
instability of having symmetric boundary conditions at the top and the bottom of the
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612 W. Herreman and others

cell (fixed potential or fixed normal current), as investigated in Munger & Vincent
(2006b). In the shallow limit, the mixed electrical boundary conditions we use in
the present paper (fixed potential at the top and fixed normal current at the bottom)
always yield growth rates that are larger than when the boundary conditions are
symmetric. In deep cells, the growth rates naturally depend very little on the nature
of the top and bottom boundary conditions.

2.6.2. Quasi-static corrections: λvv, λhh and δvh

When the magnetic field strength B = µ0JR or Bz is large, the simplifying
assumption σiωRB/J � 1 is no longer satisfied. In this case, the quasi-static
approximation of MHD must include the retroaction of the fluid flow on the electrical
current density through induction. The perturbations on the electrical current density
must take the following form:

ji = σi(−∇ϕi + ui ×B), (2.47)

instead of the static approximation ji ≈−σi∇ϕi used in the previous section, at least
in the aluminium layer where σ2� σ1. The growth rate, λv, and frequency shift, δh,
are then augmented with the quasi-static corrections λvv ∼B2

z , λhh∼B2
θ and δvh∼BθBz

quadratic in magnetic field magnitude.
To find the quasi-static corrections, we modify the perturbation ansatz (2.30)

accordingly,

[ui, pi, η, ji, ϕi] =

([
ûi, p̂i, η̂, ĵi + Ĵ

v

i + Ĵ
h

i , ϕ̂i + Ψ̂
v

i + Ψ̂
h

i , b̂i + B̂
v

i + B̂
h

i

]
+

[
ũi, p̃i, η̃, j̃i, ϕ̃i, b̃i

])
eiωteαt. (2.48)

The fields ûi, p̂i, η̂, ϕ̂i, ĵi, b̂i are identical to those defined in § 2.6.1 and capture all the
magnetohydrodynamic effects related to surface elevation. The quasi-static corrections
for the electrical potential and the current densities are related to either the vertical
(superscripts v) or the horizontal magnetic field (superscript h). That is to say, we
define the current density corrections as follows:

Ĵ
v

i = σi(−∇Ψ̂
v

i + ûi × Bzez), (2.49a)

Ĵ
h

i = σi(−∇Ψ̂
h

i + ûi × (µ0Jr/2)eθ), (2.49b)

with the constraints: ∇ · Ĵ
v

i =∇ · Ĵ
h

i = 0. This in turn implies that electrical potentials
satisfy the following Laplace and Poisson problems:

∇
2Ψ̂ v

i = 0, ∇2Ψ̂ h
i =−µ0Jûz,i, (2.50a,b)

with the following transmission and inhomogeneous boundary conditions:

Ψ̂ v
1 |z=H1 = 0, ∂zΨ̂

v
2 |z=−H2 = 0, ∂rΨ̂

v
i |r=R = Bzûi,θ |r=R,

Ψ̂ v
1 |z=0 = Ψ̂

v
2 |z=0, σ1∂zΨ̂

v
1 |z=0 = σ2∂zΨ̂

v
2 |z=0,

}
(2.51)

and

Ψ̂ h
1 |z=H1 = 0, ∂zΨ̂

h
2 |z=−H2 = (µ0Jr/2)û2,r|z=−H2,

∂rΨ̂
h

i |r=R =−(µ0JR/2)ûi,z|r=R, Ψ̂ h
1 |z=0 = Ψ̂

h
2 |z=0,

σ1(−∂zΨ̂
h

1 + (µ0Jr/2)û1,r)z=0 = σ2(−∂zΨ̂
h

2 + (µ0Jr/2)û2,r)z=0.

 (2.52)
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Metal pad roll instability in cylindrical reduction cells 613

The problems defined here have no simple analytical solution, and below we discuss
how we handle this in practice. Without any numerical calculation, we can deduce

{Ψ̂ h
i , Ĵ h

i,r, Ĵ h
i,z, Ĵ v

i,θ , B̂v
i,r, B̂v

i,z, B̂h
i,θ }

A exp(imθ)
∈R,

{Ψ̂ v
i , Ĵ v

i,r, Ĵ v
i,z, Ĵ h

i,θ , B̂h
i,r, B̂h

i,z, B̂v
i,θ }

A exp(imθ)
∈ iR.

 (2.53)

Let us briefly suppose that the quasi-static field corrections are known and pursue the
calculations to find the impact on α, the complex frequency shift. In this augmented,
quasi-static version of the problem, we find a modified solvability condition,∑

i=1,2

∫
Vi

[û∗i · (αρiûi + iωρiũi +∇p̃i)+ p̂∗i∇ · ũi] dV

=

∑
i=1,2

∫
Vi

û∗i ·
[
( ĵi + Ĵ

v

i + Ĵ
h

i )×B+ J× (b̂i + B̂
v

i + B̂
h

i )
]

dV. (2.54)

Similar simplifications as before lead to a new formula for the complex frequency
shift

α =
Pv

2K︸︷︷︸
λv

+
Qvv

2K︸︷︷︸
λvv

+
Qhh

2K︸︷︷︸
λhh

+
Ph

2K︸︷︷︸
iδv

+
Qvh

2K︸︷︷︸
iδvh

, (2.55)

with K,Pv,Ph as before and

Qvv =

∑
i=1,2

∫
Vi

û∗i ·
(
Ĵ

v

i × Bzez

)
dV, (2.56a)

Qhh =
∑
i=1,2

∫
Vi

{
û∗i ·

[
Ĵ

h

i × (µ0Jr/2)eθ
]
+µ0Jφ̂∗i Ĵ h

i,z

}
dV, (2.56b)

Qvh =
∑
i=1,2

∫
Vi

{
û∗i ·

[
Ĵ

h

i × Bzez + Ĵ
v

i × (µ0Jr/2)eθ
]
+µ0Jφ̂∗i Ĵ v

i,z

}
dV. (2.56c)

The artificial magnetic boundary condition (2.8) was used to write the formulas for
Qhh and Qvh, but does not affect Qvv. Using the real and imaginary character of the
fields (2.53), we readily deduce that Qvv,Qhh are real whereas Qvh is imaginary, thus
yielding the quasi-static corrections λvv, λhh to the growth rate λv and the quasi-static
correction δvh to the frequency shift δh.

In practice, we still need to solve for the fields Ψ̂ v
i and Ψ̂ h

i to be able to evaluate
these integrals and here we have chosen two different approaches. The first approach
is adapted to arbitrary values of σi: we just calculate Ψ̂ v

i and Ψ̂ h
i numerically solving

the mentioned Laplace and Poisson problems. We use a Fourier expansion in the
azimuthal direction; that is, we set Ψ̂ v

i = f vi (r, z) exp(imθ), Ψ̂ h
i = f h

i (r, z) exp(imθ), and
we solve the two-dimensional problems for f vi and f h

i using a standard second-order
finite-difference method on a uniform grid with 2× (M + 1)2 points,{

region 1: (iδr, jδz1),

region 2: (iδr,−jδz2),
∀i, j ∈ {0, 1, . . . ,M}. (2.57)
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Here δr=R/M, δz1=H1/M, δz2=H2/M. Radial and vertical derivatives appearing in
the boundary conditions are discretized using second-order uncentred finite-difference
formulas. At the axis, we enforce the regularity condition Ψ̂ v

i |r=0 = Ψ̂
h

i |r=0 = 0 for
m 6= 0. Qvv, Qhh, Qvh are then calculated numerically using the field profiles provided
by the finite-difference code, using a simple trapezoidal quadrature.

The need to use a numerical approach to find the quasi-static corrections is slightly
unsatisfying. Therefore we also propose a second approach applicable to the realistic
limit where σ1� σ2. In that case, the induction in the top cryolite layer is very weak,
and we can use the approximation

Ĵ
v

1 ≈ Ĵ
h

1 ≈ 0. (2.58)

We then need to solve (2.50) in the bottom aluminium layer only, with the boundary
conditions stated in (2.51), (2.52), and the transmission conditions replaced by

∂zΨ̂
v

2 |z=0 ≈ 0, ∂zΨ̂
h

2 |z=0 ≈ (µ0Jr/2)û2,r|z=0. (2.59a,b)

Analytical solutions can be obtained in terms of a series of harmonic functions.
The calculation for Ψ̂ h

2 is quite tedious and is not presented here for brevity. The
computation for Ψ̂ v

2 is easier and we can propose

Ψ̂ v
2 =

[
C0

( r
R

)m
+

+∞∑
j=1

CjIm( jπr/H2) cos( jπz/H2)

]
eimθ , (2.60)

as a candidate harmonic solution. Here Im is a modified Bessel function. The
coefficients C0, C1, C2, . . . are calculated by projecting the inhomogeneous boundary
condition ∂rΨ̂

v
2 |r=R= ûθ,2|r=RBz onto the set of the basis functions {cos( jπz/H2), j∈N}

using the orthogonality relation∫ 0

−H2

cos
jπz
H2

cos
j′πz
H2
= δj,j′

{
H2, j= 0
H2/2, j 6= 0.

(2.61)

This yields

C0 =−i
ωARBz

k2H2
Jm(kR),

Cj =−i
ωARBz

kjπ
4mJm(kR)

(kR)(Im+1( jπR/H2)+ Im−1( jπR/H2))

k2

k2 + ( jπ/H2)2
sinh(kH2).


(2.62)

With this information we know Ψ̂ v
2 and so we can calculate the integral Qvv ignoring

contributions from the top layer. This integral can be rewritten as

Qvv ≈−σ2

∫
V2

‖û∗2 × Bzez‖
2 dV +

∫
V2

û∗2 ·
(
−σ2∇Ψ̂

v
2 × Bzez

)
dV. (2.63)

In containers with perfectly conducting side walls, we would have Ψ̂ v
2 = 0 and only

the first term would then contribute. Here the side walls are insulating and therefore
Ψ̂ v

2 6=0. This second term can drastically reduce the magnetic damping as explained by
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Metal pad roll instability in cylindrical reduction cells 615

Sreenivasan, Davidson & Etay (2005) and should certainly not be ignored. Analytical
evaluation of all the integrals finally yields the following formula

λvv = Qvv/2K

≈
σ2B2

z
ρ1

tanh(kH1)
+

ρ2

tanh(kH2)

{
−

1
4

(
1

tanh(kH2)
+

kH2

sinh2(kH2)

)
+

(
1

k2R2 −m2

)

×

[
m

kH2
+ 4m2

+∞∑
j=1

(
1
jπ

)
k3

R(k2 + ( jπ/H2)2)2

Im( jπR/H2)

Im+1( jπR/H2)+ Im−1( jπR/H2)

]}
.

(2.64)

In the infinite sum over j, we observe a fast exponential decay of the terms and the
shallower the cell, the faster the decay. All the computations reported in the paper
are done by truncating the sum over j to the first 50 terms. Below we successfully
compare this formula to the numerical finite-difference approach. In the shallow limit,
kHi� 1, a single term is dominant and yields

λvv,shallow ≈
σ2B2

z

ρ1

(
H2

H1

)
+ ρ2

(
−

1
2
+

m
k2R2 −m2

)
(2.65)

for the magnetic damping caused by the vertical magnetic field. No significant
simplification occurs in (2.64) in the deep limit kHi � 1 because the cosine basis
used in the expansion is not adapted to the infinitely deep case.

2.6.3. Viscous corrections: damping λvisc, frequency shift δvisc

We finally include the viscous effects. To leading order we can ignore all
magnetohydrodynamic effects. Viscosity will act on the waves just as in a purely
hydrodynamic set-up. The earliest calculations of viscous damping rates of waves in
cylinders filled with one fluid go back to Case & Parkinson (1957), but no explicit
formula is available for the case of two fluid layers. In appendix D we detail our
calculation of the viscous effects on gravity waves. First, we find the leading-order
spatial structure of the viscous boundary layers (Stokes layers). Near the solid walls,
these boundary layers resemble those we can find in a cylinder filled with one liquid.
Different is that, near the interface between both liquids, a viscous boundary layer is
required to ensure the continuity of the flow field and that of the tangential viscous
stress. By extending the method of Case & Parkinson (1957) to the two-layer case,
we then calculate the viscous damping rates from a perturbative expansion on the
mechanical energy balance. A second, alternative approach, passes by a solvability
condition. It confirms the formula for the viscous damping rate and also provides
access to the frequency shift caused by viscosity. Our formulas are only valid for
a freely sliding contact line making an angle of 90◦ with the solid wall and we
ignore contact line hysteresis (see Viola & Gallaire 2018) and suppose an unpolluted
interface. We find

λvisc = λ
s
visc + λ

i
visc, δvisc = Sgn(ω)λvisc, (2.66a,b)
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with

λs
visc =−

1

2
√

2

∑
i=1,2

√
νi|ω|

R2
ρi

[
k(R−Hi)

sinh2(kHi)
+

(
k2R2
+m2

k2R2 −m2

)
1

tanh(kHi)

]
[

ρ1

tanh(kH1)
+

ρ2

tanh(kH2)

] (2.66c)

and

λi
visc =−

√
|ω|k

2
√

2

[
1

tanh(kH1)
+

1
tanh(kH2)

]2

[
ρ1

tanh(kH1)
+

ρ2

tanh(kH2)

] (
1

ρ1
√
ν1
+

1
ρ2
√
ν2

) . (2.66d)

The term λs
visc relates to viscous dissipation caused in boundary layers near solid

walls, whereas the term λi
visc is caused by the boundary layers at the interface. Both

terms can have comparable magnitudes in liquids with similar densities and kinematic
viscosities. A much weaker higher-order damping term (often referred to as the interior
damping term) is here ignored, but is calculated in appendix D. In the limit of one
fluid layer, ρ1→ 0, we recover the known damping rates (Case & Parkinson 1957;
Ibrahim 2005). In the shallow limit kHi� 1, we can derive the asymptotic form

λs
visc,shallow ≈ −

1

2
√

2

ρ1H−2
1
√
ν1 + ρ2H−2

2
√
ν2

ρ1H−1
1 + ρ2H−1

2

√
|ωshallow|, (2.67a)

λi
visc,shallow ≈ −

1

2
√

2

(H−1
1 +H−1

2 )2

(ρ1H−1
1 + ρ2H−1

2 )

(
1

ρ1
√
ν1
+

1
ρ2
√
ν2

)√|ωshallow|, (2.67b)

and in the deep limit, kHi� 1, we can use

λs
visc,deep ≈ −

1

2
√

2

(
k2R2
+m2

k2R2 −m2

)
1
R
ρ1
√
ν1 + ρ2

√
ν2

ρ1 + ρ2

√
|ωdeep|, (2.68a)

λi
visc,deep ≈ −

√
2k
[
(ρ1 + ρ2)

(
1

ρ1
√
ν1
+

1
ρ2
√
ν2

)]−1 √
|ωdeep| (2.68b)

as an approximation.

3. Experimental validation of viscous damping rate formula
Using the orbital sloshing device fully described in Horstmann et al. (2019), we

have been able to measure viscous damping rates of gravity waves in two-fluid
systems. A sketch of the set-up is shown in figure 3. We use a polished acrylic glass
container with radius R= 5 cm and total height H1 +H2 = 10 cm. Both the top and
bottom caps of the cylinder have ten supply holes uniformly distributed on a circle
at 42 mm from the vertical axis. These holes are used to attach up to ten ultrasound
probes. A small layer of acrylic glass 5 mm thick is kept between the probes and the
observation volume to ensure non-invasive ultrasound measurements of the interfacial
motion. The upper cap additionally contains a small filling hole of diameter 4 mm
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H1

H2

Perliquidum
Paraffinum

Doppler probes

A
fte

r i
m

pu
lsi

ve
 st

op

Silicone oil AK 35

Øt

A(t)
A(t) £ A0e¬tcos(Øt - ≈)

t

ds

FIGURE 3. (Colour online) Experimental set-up used to measure viscous wave damping
and typical signal. A cylinder filled with a layer of Paraffinum Perliquidum and a layer of
silicone oil is put on an orbital shaker. A rotating gravity wave is driven on the interface.
When impulsively stopped, the gravity wave decays and we measure the viscous damping
rates of the wave amplitude in the Doppler probe signals.

to degas the cell and to adjust the position of the interface. The cylinder is placed
on a sample holder to facilitate ultrasound measurements also from below. This
way, up to 20 ultrasound probes can be simultaneously employed making it possible
to precisely reconstruct the motion of the interface. The measurements have been
done with the Ultrasound Doppler Velocimeter DOP 3010 from Signal-Processing.
By directly identifying and tracking the ultrasound echo reflected by the interface,
the interfacial wave motion can be precisely measured for wave amplitudes in the
range (0.15 mm, 10 mm). Finally, the sample holder is mounted onto a Kuhner LS-X
lab-shaking table (420× 420 mm), which can prescribe ideal circular motions to the
vessel, parameterized as follows:

rorbital(t)=
ds

2
(cos(Ωt)ex + sin(Ωt)ey). (3.1)

We denote Ω the shaking frequency and ds the diameter of the circular motion of
the vertical axis of the vessel. The shaker is designed to allow for a continuous
adjustment of the shaking diameter up to ds = 70 mm and to set shaking frequencies
from Ω=20 up to Ω=500 min−1 in steps of 1 min−1. The cylinder is filled with two
different transparent fluids. We use a top layer composed of Paraffinum Perliquidum
(ρ1 = 0.846 g cm−3, ν1 = 36 mm2 s−1, γ1|air ≈ 30 mN m−1), and the bottom layer
is composed of Wackerr silicone oil AK 35 (ρ2 = 0.955 g cm−3, ν2 = 35 mm2 s−1,
γ2|air = 20.7 mN m−1). This combination of fluids realizes a very good approximation
of the idealized boundary condition that are used in this study: no meniscus was
visible and we observed an almost free-sliding contact line. We measured a surface
tension γ1|2 6 25 mN m−1 at the interface between both liquids and this implies that
capillary effects may be ignored in this experiment.

Orbital motion causes a large-scale rotating wave (m, n)= (1, 1), which also is the
wave that is most frequently associated with the metal pad roll instability. We used the
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¬visc,shallow
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Measurements

FIGURE 4. (Colour online) Measured damping rates λ are compared with the theoretical
viscous damping rates from (2.66) for different interfacial heights H2 keeping H1 +H2 =

10 cm. The theoretical damping rates in the shallow limit (2.67) and the theoretical
damping rates in the deep limit (2.68) are also shown.

following strict protocol to measure the experimental damping rate of this wave. Pre-
measurements were conducted to find the experimental eigenfrequency Ω of the mode
(m, n)= (1, 1) for each choice of H2, since it is known from Reclari et al. (2014) that
at resonance the forced wave motion is close to that of free gravity waves. We then
drive the rotating wave at the resonant frequency, and adjust the shaking diameter ds

so that the wave is large enough to allow measurements of the damping rate but is
small enough to remain in the linear, non-breaking wave regime (amplitudes between
3 mm and 5 mm in practice). The table is turned off after the wave has settled in a
saturated state. Subsequently, we give the wave some time (approximately one up to
two periods) to become a ‘free’ gravity wave. Then the exponential decay rate −λ is
determined by fitting the measured wave amplitude with the ansatz

A(t)≈ A0eλt cos(Ωt− ξ). (3.2)

Here A0 and ξ denote the initial wave amplitude and phase that also need to be fitted,
which introduces some uncertainty.

In figure 4 we compare the measured damping rates to the theoretical formulas
(2.66)–(2.68), for varying H2 and H1 = 10 cm − H2. Error bars were estimated by
using different fitting time intervals. The measured decay rates are in very good
agreement with the theoretical viscous damping rate, although the theory seems to
underestimate slightly the measured damping rates. Figure 4 also shows the theoretical
damping rates in the shallow and deep limits. The measurements coincide with the
deep limit when H1 = H2 = 5 cm, and they coincide with the shallow limit when
either H1 � H2 or H1 � H2. In conclusion we have compared the damping rates
in the full transitional regime between these simplified asymptotic limits which are
frequently analysed in the literature. Our theory suitably predicts the viscous damping
rates of gravity waves of two-layer systems when the simplified boundary conditions
at the contact line are fulfilled.
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Metal pad roll instability in cylindrical reduction cells 619

(m, n) k λvv/B2
z ω

(a) λ(a)v /JBz λ(a)visc ω(b) λ(b)v /JBz λ(b)visc λi
visc/λvisc

(%)

(1, 1) 52.6 −66.3 4.17 1.19× 10−3
−6.74× 10−2 5.80 8.54× 10−4

−7.95× 10−2 49.4
(2, 1) 87.3 −78.7 5.37 1.37× 10−3

−1.15× 10−1 10.2 7.23× 10−4
−1.59× 10−1 54.2

(3, 1) 120 −86.6 6.30 1.48× 10−3
−1.64× 10−1 15.3 6.11× 10−4

−2.55× 10−1 56.9

(1, 2) 152 −189 7.09 1.76× 10−4
−1.52× 10−1 21.1 5.90× 10−5

−2.62× 10−2 82.8
(2, 2) 192 −185 7.96 2.64× 10−4

−1.98× 10−1 29.2 7.19× 10−5
−3.80× 10−1 84.5

(3, 2) 229 −183 8.70 3.21× 10−4
−2.45× 10−1 37.8 7.40× 10−5

−5.09× 10−1 85.4

TABLE 1. Theoretical values for all the quantities characterizing the growth rate and
frequency of various waves (m,n) in the small cell. Superscript (a), without surface tension
γ1|2= 0, superscript (b) with surface tension γ1|2= 0.5 N m−1. λvv and the ratio λi

visc/λvisc
are independent of γ1|2. All the quantities are in MKS units: k in m−1, J in A m−2, Bz
in T, ω, λv , λvv , λvisc in s−1.

4. Numerical validation of the theory in a small-scale reduction cell
Flueck et al. (2009) and Steiner (2009) numerically simulate the metal pad roll

instability in a small cylindrical reduction cell with dimensions

R= 0.035 m, (H1,H2)= (0.075 m, 0.075 m). (4.1a,b)

Compared to industrial Hall–Héroult cells, this cell is non-shallow and tiny but it
has the advantage that high accuracy numerical simulations are feasible. Such direct
simulations are done here and from them, we can obtain numerical measurements that
allow a detailed comparison with our theoretical model. We use the material properties
of the cryolite and aluminium

(ρ1, ρ2)= (2150, 2300) kg m−3,

(σ1, σ2)= (250, 3.5× 106) S m−1,

(ν1, ν2)= (1.2, 0.52)× 10−6 m2 s−1.

 (4.2)

We keep J ∈ [0, 15] × 104 A m−2 within realistic levels but for the external field Bz,
we take the liberty of imposing very high magnetic fields Bz up to 16 mT, just as
Flueck et al. (2009), Steiner (2009) or similar to what was done in the experimental
devices of Pedchenko et al. (2009, 2017). Surface tension will be absent γ1|2 = 0 or
present γ1|2 = 0.5 N m−1 (value from Steiner (2009)).

4.1. Theoretical predictions
Due to its small radius, limited J and relatively high Bz, the horizontal magnetic field
is negligible: Bθ =µ0Jr/2�Bz. As a result, we obtain a very good approximation for
the growth rate and frequency shift with

λ≈ λv + λvv + λvisc, δ ≈ δvisc. (4.3a,b)

Table 1 provides numerical values obtained from our theory (in SI units) for the
wavenumbers k and the frequencies ω of several waves (m, n) together with λv/JBz,
λvv/B2

z , λvisc(= δvisc) and the ratio λi
visc/λvisc that characterizes how much of the

damping is caused by dissipation near the interface. Some quantities in this table
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J (A m-2)
0.5 1.0 1.5 2.0

(÷ 104)

0.10(a)
0.09
0.08
0.07
0.06
0.05

B z
(T

)

0.04
0.03
0.02
0.01

0

Stable

Unstable

Without surface tension ©1|2 = 0
J (A m-2)

0.5 1.0 1.5 2.0

0.10(b)
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

Stable

Unstable

With surface tension ©1|2 = 0.5 N m-1

(÷ 104)

Figure 9(a)

(1, 1)
(2, 1)
(3, 1)
(4, 1)
(5, 1)

(1, 1)
(2, 1)
(3, 1)

FIGURE 5. (Colour online) Small cell. Marginal stability curves in the J–Bz plane for
metal pad roll instability of waves (m, n) without surface tension (a) or with surface
tension (b). In the regions shaded in grey the cell is stable. Surface tension has stabilizing
effects. The fundamental wave (m, n)= (1, 1) always becomes unstable first.

depend on surface tension, the superscript (a) corresponds to the case without surface
tension, the superscript (b) to the case with surface tension. By inspecting the
columns λv/JBz we see that the large-scale sloshing mode (m, n)= (1, 1) is not the
only wave that is unstable without dissipation. In absence of surface tension, the
higher m modes are even more unstable, but with surface tension, the mode (1, 1) is
the most unstable. Waves with smaller radial structures, i.e. n> 2 will always be less
destabilized. The magnetic damping λvv/B2

z is independent of the surface tension and
increases with m and n. Viscous damping λvisc increases with m and n and surface
tension always increases the viscous dissipation, mainly because the frequency of the
wave increases. In the last column of table 1, we show the percentage of damping
that is caused by viscous dissipation near the interface. For the large-scale waves with
n = 1, dissipation near the interface and near the solid walls are grossly equivalent,
λi
visc ≈ λ

s
visc, but for small-scale waves with n = 2, dissipation in interfacial layers

clearly dominates.
In figure 5, we show curves of marginal instability in the J–Bz plane calculated

using the data of table 1. The first mode that becomes unstable is the large-scale
sloshing wave, (m, n) = (1, 1), followed by the other waves (m, 1) with m > 2. In
absence of surface tension, the marginal stability curves for the different waves are
very close to each other: many different waves quickly destabilize, one after the other.
When the surface tension is active, the (1, 1) mode will be dominant in the shown
part of parameter space. The horizontal dashed line in figure 5(a), shows the path that
is followed in figure 9(a), where we show the growth rate λ of the (most unstable)
(1, 1)-mode as a function of J with fixed Bz = 16 mT. The theoretical line λ= λv +
λvv+λvisc, grows linearly in J because λv∼|JBz|. This figure will be further discussed
below.

In figure 6(a), we show the currents ĵi, Ĵ
v

i that are associated with the fundamental
wave (1, 1) for an equilibrium electrolysis current J flowing from the top to the
bottom. The deformed interface is represented by the black line. The current lines ĵi,
due to the interface motion, loop in a symmetrical way in both fluid layers. This is
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0.06
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0.6

0.4

0.2

0

-0.2

-0.4

-0.6
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FIGURE 6. (Colour online) The fundamental wave (1, 1) in the small cell (suggested
by the thick black line) causes current perturbations. In (a) we show streamlines of the
current perturbation ĵi related to the interface motion (magneto-static part) and Ĵ

v

i related
to induction by the flow in the bottom layer. In (b), we show normalized plots of the
power densities that occur in the integrands of Pv and Qvv .

(m, n) Model ω λv/JBz λvv/B2
z λvisc

(1, 1) Exact 4.169 1.189× 10−3
−66.3 −0.0674

(1, 1) Deep 4.171 1.185× 10−3 — −0.0674
(1, 1) Shallow 8.284 1.513× 10−4

−64.2 −0.0241

(2, 1) Exact 5.372 1.370× 10−3
−78.7 −0.1154

(2, 1) Deep 5.372 1.370× 10−3 — −0.1154
(2, 1) Shallow 13.740 8.184× 10−3

−98.0 −0.0311

TABLE 2. Comparisons between the theoretical formulas in (2.39) and the deep and
shallow limits for inviscid frequencies ω (in s−1), relative growth rates λv/JBz (in
s m2 kg−1), relative damping term λvv/B2

z (in s−1 T−2) and viscous damping rates λvisc

(in s−1). Surface tension is ignored. The deep limit is an excellent approximation in the
small cell.

very different from what we usually see in shallow cells. As expected, the quasi-static
correction Ĵ

v

i is mainly confined inside the aluminium, where induction by the flow
takes place. In figure 6(b), we show the normalized power densities that appear in
the integrands of Pv, Qvv. This allows us to visually locate where the instability is
powered and where Joule damping takes place. We see that both the cryolite and
the aluminium participate in a symmetric way in the destabilization through Pv. The
density of Qvv is negative in the bottom aluminium layer, where the induced current
Ĵ

v

i is ohmically dissipated.
In table 2, we show that the deep-limit formulas apply very well to this cell. We

focus our attention on the two waves (m, n) = (1, 1), (2, 1). Shallow-limit formulas
(2.43) are also shown, only to illustrate that they are not adapted here: no existing
shallow theory would be able to accurately model the metal pad roll instability in
this small cell.
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FIGURE 7. (Colour online) Variation of the relative growth rate λv/JBz (a) and magnetic
damping term λvv/B2

z (b) when σ1 is artificially increased. From σ1 = 250 S m−1 to σ1 =

σ2/100 there is only a weak modification of the growth rate and magnetic damping. At
σ1 = σ2, the instability vanishes: a strong difference in conductivity is essential for the
metal pad roll instability.

(m, n) Num (100) Num (200) Num (400) Num (800) Theoretical

(1, 1) −66.47 −66.37 −66.34 −66.33 −66.31
(2, 1) −79.08 −78.82 −78.76 −78.75 −78.71
(3, 1) −87.19 −86.77 −86.66 −86.63 −86.60

TABLE 3. The relative magnetic damping rates λvv/B2
z (in s−1 T−2) are calculated

numerically for different waves (m, n) using a finite-difference solver with variable spatial
resolution M=100, 200, 400, 800 and compared to the theoretical estimate (2.64) obtained
by assuming σ1� σ2. The numerical values converge towards the theoretical estimate.

In table 3 we compare the theoretical estimation of λvv/B2
z given by formula (2.64)

to numerically calculated values, obtained using numerical quadrature and the field
profiles Ψ̂ v

i that result from the finite-difference code. Increasing the spatial resolution
M = 100, 200, 400, 800 in the code, we observe that the values of the damping
rates converge towards the theoretical prediction of (2.64). This validates our finite
difference solver, and also suggests that our theoretical formula (2.64) for the magnetic
damping rate is correct.

In figure 7, we inspect how the rates λv/JBz and λvv/B2
z of the fundamental

wave (m, n) = (1, 1) may vary with the electrical conductivity of the top layer. In
reality, we obviously cannot choose the conductivity of the cryolite, but we want to
know how important it is to use the exact value for σ1. We investigate the range
σ1 ∈ [250 S m−1, σ2]. We use the numerical approach to calculate λvv/B2

z , since the
theoretical approximation (2.64) is not valid when σ1 6� σ2. For σ1 in the range
[250 S m−1, σ2/100], we observe little change in both λv/JBz and λvv/B2

z . Increasing
further σ1 does lower the growth rate λv significantly and when σ1=σ2, we ultimately
get λv = 0. Magnetic damping only gets stronger with increasing σ1, since ohmic
dissipation may then also occur in the top layer. We conclude here that the low
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Metal pad roll instability in cylindrical reduction cells 623

conductivity of the electrolyte σ1 can be significantly increased without quantitively
modifying the instability, but that a true jump in conductivity is crucial for the metal
pad roll instability.

4.2. Numerically solved problem
The numerical methods used in SFEMaNS and OpenFOAM were previously described
in Guermond et al. (2007, 2009), Weber et al. (2013, 2014, 2017a,b, 2018), Nore
et al. (2016), Ashour et al. (2018), Cappanera et al. (2018) and Horstmann et al.
(2018). SFEMaNS (for spectral finite element code for Maxwell and Navier–Stokes
equations) is a hybrid finite element–spectral solver that can handle axisymmetric
fluid domains, OpenFOAM is a public library that uses a finite volume method. Both
codes are used here to solve the nonlinear momentum equation and mass balance

ρ(∂tU+ (U · ∇)U)=−∇P+∇ · (ρν(∇U+∇UT))+ J×B,
∇ ·U= 0,

}
(4.4)

in a cylindrical fluid domain. The fields U, P, B, J = µ−1
0 ∇ × B correspond here

to the total flow, pressure, magnetic induction and current density. To deal with the
multi-phase character, the material parameters ρ, ν are considered as space- and time-
dependent functions that may be reconstructed using a scalar field f ∈ [0, 1] that
sharply varies from 0 to 1 on the interface. This function allows us to reconstruct
the material parameters of the different liquid phases, e.g. ρ = ρ1f + ρ2(1− f ) for the
density in the two-phase system. By materially advecting the indicator function f , that
is, solving

∂tf + (U · ∇)f ≈ 0, (4.5)

we keep track of the different phases as time evolves. This is done in SFEMaNS
by using a level set method. OpenFOAM uses a volume of fluid method. Surface
tension may be dealt with in both codes, but SFEMaNS nor OpenFOAM use particular
numerical models for the contact line motion. As a result no realistic contact angle
other than 90◦ can be used. Therefore, we limit all the direct numerical simulations
to the case without surface tension: γ1|2 = 0. On the side wall and top and bottom
surfaces, we impose the no-slip condition.

U= 0|Σ1∪Σ2 . (4.6)

This no-slip condition is imposed in a weak way and, as a result, the ‘contact line’
(region where f changes from 0 to 1 near r=R) can still freely slide on the cylindrical
wall. The magnetic problem is solved differently in both codes. SFEMaNS solves the
full induction equation and Gauss’ law

∂tB=∇× (U×B)−∇× (σ−1∇× (µ−1
0 B)),

0=∇ ·B,

}
(4.7)

together with the boundary conditions

Bz|r=R = Bz, Bθ |r=R =
µ0JR

2
, (4.8a)

Jr|z=H1 = 0, Jθ |z=H1 = 0, (4.8b)

Br|z=−H2 = 0, Bθ |z=−H2 =
µ0Jr

2
, (4.8c)
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624 W. Herreman and others

on the solid walls. Jump conditions on the interface are dealt with automatically,
since the spatially and time-dependent σ−1 is reconstructed using the indicator
field f . In OpenFOAM, a quasi-static MHD approach is used. The electrical field is
approximated as E≈−∇Φ and Ohm’s law as

J≈ σ
(
−∇Φ +U×

(
µ0Jr

2
eθ + Bzez

))
. (4.9)

Combining this with ∇ · J = 0, we find a Poisson problem for the total electrical
potential Φ, that can be solved with the boundary conditions

Jr = 0|r=R, Φ|z=H1 = 0, Jz|z=−H2 = J. (4.10a−c)

Once the current density is known, the total magnetic field B can be calculated using
the Biot–Savart integral. In this B, the base state magnetic field (µ0Jr/2)eθ + Bzez

always dominates in the quasi-static limit, but the small deviations in the magnetic
field still need to be calculated in order to have a consistent approximation of the
Lorentz force J×B (this correction was crucial for the Tayler instability (Weber et al.
2013, 2014) but is likely less important here).

In both codes, we have varied the grid size to assess the numerical convergence.
We introduce the non-dimensional measure h= δx/R to characterize the grid size. In
SFEMaNS the mesh size δx is non-uniform in the plane (r, z) and the mesh cells
are refined near the interface. Therefore we provide intervals h = (hmin → hmax) to
characterize the SFEMaNS grid. All the simulations reported in the paper have been
done with 30 real Fourier modes in the azimuthal direction. In SFEMaNS, we relax
the conductivity jump by taking σ1=σ2/100. This stabilizes the numerical calculations
and, as explained above, should not modify the linear instability mechanism. In
OpenFOAM only purely orthogonal cells are used with h = 0.05 or smaller. The
cells are flattened towards the interface with an aspect ratio of 5 at most. Interface
compression ensures that the interface is typically smeared over 2–3 cells. Information
on the initialization of both codes is provided below.

4.3. Numerical results and comparison with theory
4.3.1. Viscously damped gravity waves

In a first series of tests, we set J = 0, Bz = 0, initialize the numerical simulations
with low amplitude gravity wave profiles for (m, n)= (1, 1), (2, 1) and let these waves
decay in time. We measure numerical values for the frequency and viscous damping
rates of these waves and compare these measures with the viscously corrected
frequency ω + δvisc and damping rate λvisc of the theoretical model. All the results
are gathered in table 4. Both solvers OpenFOAM and SFEMaNS clearly show
convergence on the gravity wave frequency ω + δvisc as the grid is refined, and the
measured frequencies closely match the theoretical value. For the fundamental wave
(1, 1), the absolute error between the theory and the numerical values is of order
0.01 s−1 on the finest grid, and the relative errors is of the order of 2.4× 10−3. For
the wave (m,n)= (2,1) there is a larger mismatch but the agreement is still very good.
For the viscous damping rates λvisc, we also observe convergence in both codes as
the grid is refined. The waves are slightly more damped in the numerical simulations
than predicted by the theory and there is a noticeable difference between both codes:
the same waves are more viscously damped in SFEMaNS than in OpenFOAM.
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Wave (1, 1) h ω+ δvisc λvisc λvv (10 mT) λvv (25 mT) λvv (50 mT)

SFEMaNS (0.86→ 5)× 10−2 4.086 −0.0773 −0.1032 −0.1375 −0.2480
(0.43→ 5)× 10−2 4.101 −0.0805 −0.0066 −0.0412 −0.1533
(0.2→ 5)× 10−2 4.096 −0.0805 −0.0069 −0.0421 −0.1539

OpenFOAM 5.00× 10−2 4.078 −0.0519 −0.0071 −0.0404 −0.1527
4.00× 10−2 4.078 −0.0590 −0.0053 −0.0401 −0.1511
3.33× 10−2 4.105 −0.0646 −0.0056 −0.0387 −0.1507
2.50× 10−2 4.102 −0.0678 — — —
2.00× 10−2 4.107 −0.0717 — — —
1.539× 10−2 4.104 −0.0724 — — —

Theory 4.103 −0.0674 −0.0066 −0.0414 −0.1658

Wave (2, 1) h ω+ δvisc λvisc λvv (10 mT) λvv (25 mT) λvv (50 mT)
SFEMaNS (0.86→ 10.7)× 10−2 5.087 −0.1981 −0.0039 −0.0331 −0.1290

(0.43→ 5)× 10−2 5.150 −0.1251 −0.0084 −0.0478 −0.1807
(0.2→ 5)× 10−2 5.084 −0.1236 −0.0085 −0.0473 −0.1804

Theory 5.255 −0.115 −0.0079 −0.0492 −0.1968

TABLE 4. Using both SFEMaNS and OpenFOAM, we simulate the decay of large-scale
gravity waves (m, n)= (1, 1), (2, 1) with or without an imposed magnetic field Bz= 0, 10,
25, 50 mT and using different grids with typical mesh sizes h = δx/R. We measure the
frequency ω + δvisc (s−1), the viscous damping rate λvisc (s−1) and the magnetic damping
rates λvv (s−1) of the waves and we compare with the theoretical estimates provided by
the perturbative analysis.

4.3.2. Viscous and magnetically damped gravity waves
In a second series of tests, we measure the damping rates of gravity waves in

the presence of non-zero external magnetic fields Bz 6= 0, but without an electrolysis
current (J = 0). We perform simulations for increasing magnetic field Bz = 10, 25,
50 mT. Denoting by λ the growth rate of the waves in the numerical simulations
using a mesh with cell size h and λvisc the viscous growth rate measured for this
mesh, we then calculate the numerical values λvv = λ − λvisc in order to filter the
code- and grid-dependent viscous damping that was considered in the previous section.
Table 4 gathers the numerical measures for λvv. These measures are compared with the
theoretical estimates for waves (1, 1) and (2, 1). The agreement with the theoretical
value is very good on sufficiently fine grids and excellent for the small values of
Bz = 10, 25 mT. For the largest value Bz = 50 mT there is a small mismatch, which
we suspect is due to the fact that we leave the asymptotic regime of validity of the
theoretical model. We notice that the magnetic damping rates −λvv are slightly lower
in OpenFOAM than in the simulations done with SFEMaNS.

4.3.3. Metal pad roll instability
In a third series of tests, we perform simulations of the metal pad roll instability

with both J and Bz active. We fix the magnetic field strength to Bz = 16 mT
which is used in Steiner (2009). We increase the current density in the interval
J ∈ −[7795, 25 984] A m−2 which corresponds to electrolysis currents in the range
I = [30, 100] A. The current runs downwards through the cell. From the theory,
we estimate that the metal pad roll instability should occur when |J| is above the
threshold Jc = 4430 A m−2.
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0 T/8 2T/8 3T/8

4T/8 5T/8
Weakly nonlinear regime (OpenFOAM)

Weakly nonlinear regime (SFEMaNS)

Strongly nonlinear regime (SFEMaNS)

6T/8 7T/8

0 T/8 2T/8 3T/8

4T/8 5T/8 6T/8 7T/8

(a)

(b)

(c)

FIGURE 8. (Colour online) Visualization of the interface between the cryolite and the
aluminium in the numerical simulations. (a,b) Eight snapshots over one period T in the
saturated regime for J =−7795 A m−2, Bz = 16 mT. (c) Far from the stability threshold,
the interface violently destabilizes and develops large deformations, J =−20 000 A m−2,
Bz = 16 mT.

Figure 8 shows snapshots from simulations at |J|= 7795 A m−2> Jc. The metal pad
roll instability is clearly visible. We observe a saturated wave similar in shape to the
fundamental wave (m, n)= (1, 1), and this wave rotates in the anti-clockwise direction
(mω < 0) when seen from above. This behaviour corresponds to what we expect
from the theory. In a more systematic series of computations we have measured the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

N
RS

 - 
LI

M
SI

, o
n 

18
 S

ep
 2

01
9 

at
 1

8:
34

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
64

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.642


Metal pad roll instability in cylindrical reduction cells 627
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Theory
OpenFOAM (h = 0.033)
SFEMaNS (h = 0.002 → 0.05)

Weakly nonlinear fit
OpenFOAM (h = 0.05)
OpenFOAM (h = 0.033)
SFEMaNS (h = 0.0043 → 0.05)
SFEMaNS (h = 0.002 → 0.05)

FIGURE 9. (Colour online) (a) Comparison of theoretical and numerical growth rates for
the large-scale sloshing wave (m, n)= (1, 1) as a function of |J|. (b) Saturation amplitudes
of rotating wave as a function of |J|. Small cell configuration with Bz = 16 mT and
ignoring surface tension.

growth rate of the metal pad roll instability as a function of J. The results are shown
in figure 9(a). We observe an excellent agreement with theory. The fact that both
SFEMaNS and OpenFOAM find straight lines with the same slope is an indication
that both codes capture the destabilizing mechanism at the origin of λv very well. The
growth rates from SFEMaNS are slightly beneath those from OpenFOAM, which is
not unexpected owing to the small difference in viscous and magnetic damping rates
we have observed before.

The numerical simulations further provide insights in the nonlinear regime, but since
this regime is not modelled by the proposed theory we will not study it in detail here.
In figure 9(b), we show a diagram that gathers the maximal amplitude ηmax of the
saturated rotating gravity wave as a function of current density. This curve suggests a
supercritical bifurcation. We propose a weakly nonlinear fit ηmax≈ 1.5× 10−4√

|J| − Jc
in MKS units (based on the OpenFOAM data). In non-dimensional form and using the
theoretical formula for the growth rate λ, we rewrite this fit as follows:

If λ> 0 :
ηmax

R
≈ 2

√
λ

|ω|
. (4.11)

It is likely that this non-dimensional relation is more generally applicable to estimate
the weakly nonlinear saturation amplitude of the fundamental wave (1, 1) in deep
reduction cells, but we certainly do not expect it to be valid for shallow cells.

The weakly nonlinear regime exists only in a small parameter range. Above |J| ∼
15 000 A m−2, violent secondary instabilities are observed with both numerical solvers.
The interface undergoes strong deformations which ultimately lead to a blow up of
the numerical calculations. To illustrate this phenomenon, we show in figure 8(c) the
interface obtained with J = −20 000 A m−2 using SFEMaNS, right before the blow-
up. The precise origin of this secondary instability is unknown, but in this strongly
nonlinear regime we do find the ‘explosive’ combination of

‖JNL − Jez‖ ∼ 1,
|JBz|

(ρ2 − ρ1)g
> 1. (4.12a,b)
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R

R(a)

(b)

FIGURE 10. To-scale side view of the two reduction cell configurations studied in the
article. (a) Small experimental cell with radius R = 0.035 m used for the validation of
the theory. (b) Large industrial-scale cell (in this plot R= 1 m).

(m, n) k ω λv/JBz δh/J2 λvv/B2
z λhh/J2 δvh/JBz λvisc

(1, 1) 1.84 0.31 1.79× 10−3 2.27× 10−10
−18.8 8.06× 10−14

−0.45× 10−6
−5.93× 10−3

(2, 1) 3.05 0.51 1.01× 10−3 0.58× 10−10
−28.8 −0.11× 10−11

−0.94× 10−6
−7.67× 10−3

(3, 1) 4.20 0.69 0.73× 10−3
−0.07× 10−10

−36.2 −0.31× 10−11
−1.38× 10−6

−8.98× 10−3

(1, 2) 5.33 0.85 0.07× 10−3 1.21× 10−10
−104 −0.08× 10−11

−0.20× 10−6
−9.22× 10−3

(2, 2) 6.71 1.05 0.08× 10−3 0.86× 10−10
−105 −0.27× 10−11

−0.32× 10−6
−1.01× 10−2

(3, 2) 8.02 1.22 0.09× 10−3 0.64× 10−10
−109 −0.51× 10−11

−0.39× 10−6
−1.08× 10−2

TABLE 5. Theoretical values for all the relevant quantities characterizing the stability and
frequency of various waves (m, n) in the large cell with radius R= 1 m. Interfacial tension
is ignored, γ1|2 = 0. Units are in the MKS system.

The total electrical current density (JNL) may significantly differ from the equilibrium
state and it is quite likely that the resulting Lorentz force can then no longer be
equilibrated by pressure forces alone. If this local Lorentz force may, in addition,
strongly overpower gravitational restoring forces, there is little reason for the cell
to remain in a stably stratified state. Note that similar explosive behaviour was also
observed in a liquid metal battery geometry (Weber et al. 2017a,b).

5. Application to large cells and liquid metal batteries
We further apply our theoretical model to make some linear stability predictions

for large-scale, shallow reduction cells and also for a particular type of liquid metal
batteries with strongly decoupled interfaces.

5.1. Large, industrial-scale cells
Industrial reduction cells are very large in lateral extent and each fluid layer is
extremely shallow. As such, they are very different from the small reduction cell
studied in the previous section (see the to-scale sketch of figure 10). We inspect how
our theory behaves in these more realistic conditions and consider large cells, with
dimensions

R ∈ [0.5, 5] m, H1 = 0.05 m, H2 = 0.30 m. (5.1a−c)

All the material parameters are taken the same as in (4.2). We ignore surface tension
since the focus will be on long-wavelength waves.

In table 5 we give the numerical values for all the relevant theoretical quantities
determining the stability and frequency shifts for different waves (m, n) in a cell of
radius R= 1 m. In the column for λv/JBz, we see that the fundamental wave (1, 1) is
always the most unstable. Since the viscous dissipation is also the lowest for this wave,
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FIGURE 11. (Colour online) Growth rate λ and shifted frequency ω+ δ for various gravity
waves (m, n) in large cells with dimensions R ∈ [0.5, 2.5] m, H1 = 0.05 m, H2 = 0.35 m.
We take realistic values for the current density J = 1.5 × 104 A m−2 and the vertical
magnetic field Bz = 1 mT. The dashed lines in (b) correspond to the unperturbed gravity
wave frequency ω; the solid lines correspond to ω+ δ.

(m, n) Model ω λv/JBz λvv/B2
z λvisc δh/J2

(1, 1) Exact 0.311 1.79× 10−3
−18.83 −5.93× 10−3 2.27× 10−10

(1, 1) Shallow 0.314 1.75× 10−3
−18.79 −5.83× 10−3 2.30× 10−10

(2, 1) Exact 0.508 1.01× 10−3
−28.78 −7.67× 10−3 0.58× 10−10

(2, 1) Shallow 0.521 0.95× 10−3
−28.70 −7.50× 10−3 0.59× 10−10

TABLE 6. Comparison of the exact theoretical formulas with shallow limits for inviscid
frequencies ω (in s−1) and relative growth rates λv/JBz (in s−1 A−1 m2 T−1), relative
magnetic damping term λvv/B2

z (in s−1 T−2), viscous damping term λvisc (in s−1) and
relative frequency shift δh/J2 (in s−1 A−2 m4). In the large cell under study, the
shallow-limit formulas provide a very accurate description.

we expect this mode to be dominant in an unstable cell. The relative frequency shift
δh/J2 can be either positive or negative and it decays as m or n increases. Although
the numbers are small, this effect is no longer negligible for current densities of the
order J ∼ 104 A m−2. A noteworthy detail is the positive value of λhh/J2

= 8.06 ×
10−14 s−1 m2 A−2 for the wave (1, 1): for large enough J, this wave may be unstable
even without an external magnetic field Bz= 0. However, it seems that this possibility
is anecdotal: electrical currents would need to be so large that δh/ω� 1 so that our
perturbation method would no longer be trustworthy. In table 6, we show that the
shallow-limit formulas (see equations (2.43), (2.44), (2.65), (2.67)) apply very well to
this shallow cell. Deep-limit formulas are not shown here but are not adapted.

We now fix J= 1.5× 104 A m−2 and Bz= 1 mT, which we consider to be realistic
values. Due to the low strength of the magnetic field, we can just neglect all the quasi-
static MHD effects in the large cell as is done usually in the metal pad roll theory
for shallow cells. The following approximation applies well:

λ≈ λv + λvisc, δ ≈ δh + δvisc. (5.2a,b)
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ĵi û*
i · ( ĵi ÷ Bzez)

1
0
-1

p√

FIGURE 12. (Colour online) Large cell geometry R= 1 m. (a) Streamlines of the current
perturbation ĵi for a downward base state electrolysis current density J. The interface
deformation is suggested by the thicker black line. (b) Normalized power density for the
fundamental wave (1, 1).

In figure 11(a) we show how the theoretical growth rate λ increases almost linearly
with R in agreement with what was indicated by the shallow-limit formula (2.45). The
large-scale sloshing mode (1, 1) is the most unstable mode over the entire R-span
and should be the selected mode in this cell. In figure 11(b), the dashed lines show
the inviscid frequency ω and need to be compared with the solid lines that show the
shifted frequency, ω + δ. The frequency shift is clearly visible and mostly due to
the contribution δh, i.e. it is caused by the Lorentz force interaction of the electrical
currents ĵi with the horizontal magnetic field µ0Jr/2 eθ .

In figure 12, we show the current perturbation ĵi together with the power density
in the integrand of Pv. Comparison with figure 6 allows us to highlight some crucial
differences between deep and shallow cells. In the shallow cell, ĵi is mainly vertical in
the electrolyte and horizontal in the aluminium. The very low Pv-power density in the
electrolyte layer indicates that no significant mechanical power transfer occurs in the
thin electrolyte layer. This is all well known for shallow cells but noticeably different
from what we had in the small (deep) cell of figure 6 (symmetrical ĵi, mechanical
power transfer in both the cryolite and the aluminium).

A common statement in metal pad roll theory is that cylindrical cells are always
unstable, often expressed in terms of the critical β number as βc = 0 (β defined in
(1.1)). This statement obviously only holds when all dissipation is ignored, which is
not the case in our theory. Focussing on large shallow cells, ignoring surface tension
and magnetic damping (small), we can rearrange the equation λv,shallow+ λvisc,shallow≈ 0
for the onset of instability into an equation for the critical β number in the presence
of viscous damping,

βc,mn ≈
π

2
√

2

κ3/2
mn (κ

2
mn −m2)

m

×

H−2
1

(
2+

ρ1
√
ν1

ρ2
√
ν2

)
+ 2(H1H2)

−1
+H−2

2

(
2+

ρ2
√
ν2

ρ1
√
ν1

)
((ρ2 − ρ1)g)1/4(ρ1H−1

1 + ρ2H−1
2 )3/4

(
1

ρ1
√
ν1
+

1
ρ2
√
ν2

)R1/2. (5.3)

This notation is to be interpreted as follows: when β > βc,mn the wave (m, n) is
destabilized. It is evident from this formula that the critical β numbers increase with
radius R, which is further visualized in figure 13. This figure also shows that we can
define the critical β number as βc =minmn(βc,mn)= βc,11 since the fundamental wave
(1, 1) always is the first to be destabilized. With the present geometrical choices and
material parameters, we calculate βc ∈ [0.33,1.06] for R∈ [0.5,5] m. The values found
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FIGURE 13. (Colour online) In the presence of viscous damping, the critical β-number
for the onset of metal pad roll instability is non-zero. Using realistic material properties
and fluid layer heights, we show here how critical β numbers βc,mn for the destabilization
of different waves (m, n), vary with radius R.

here for βc are not so small and so it is best that we check if these high values of β
still remain accessible to our perturbation theory. Using (2.46) with m= 1, κ11≈ 1.84,
we find λv/ω= 0.0394β. Even with β ∼ 1, the necessary condition λv/ω� 1 remains
fulfilled so we are confident about our prediction of βc.

The formula for βc and figure 13 give the impression that larger cells are more
stable, but this is without taking into account the fact that the total current I appearing
in β can still depend on R. In electrolysis cells, just as in liquid metal batteries, it
is likely that an upper bound exists for the current density J which is of the order
104 A m−2. Replacing I = JπR2 in the definition (1.1) of β, we can then rewrite the
condition β >βc for the onset of instability as a more practical condition on the radius
of a cylindrical cell: R>Rc. Using the material properties and the typical layer heights
of our modelled reduction cell, J = 1.5 × 104 A m−2 and Bz = 1 mT, we find Rc =

0.37 m. This is below the dimensions of actual reduction cells, but it is not so small
either: viscosity would be rather efficient in keeping moderate-scale reduction cells
stable.

5.2. Mg–Sb liquid metal battery
The references Weber et al. (2017a,b) numerically investigate the metal pad roll
instability in a Mg|NaCl−KCl−MgCl2|Sb liquid metal battery (LMB) of cylindrical
shape. These batteries are structurally similar to reduction cells, except that they are
composed of three layers of conducting fluid (top, middle, bottom = indices 1, 2, 3)
instead of two. The cell studied in the above references has dimensions

R= 0.05 m, (H1,H2,H3)= (0.045, 0.01, 0.045) m. (5.4a,b)

The material properties are

(ρ1, ρ2, ρ3)= (1577, 1715, 6270) kg m−3,

(σ1, σ2, σ3)= (3.6× 106, 80, 8.7× 105) S m−1,

(ν1, ν2, ν3)= (6.7, 6.8, 2.0)× 10−7 m2 s−1,

 (5.5)
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2-layer theory
OpenFOAM (NW et al. 2017)

Simulation of the metal pad roll
instability in a Mg-Sb LMB Growth rate comparison

65

h 
(m

m
)

60

55

50 100
I (A)

150 200

0.45(b)(a)
0.40
0.35
0.30
0.25

¬ 
(s

-
1 )

0.20
0.15
0.10
0.05

0

FIGURE 14. (Colour online) (a) Snapshot of a numerical simulation of the metal pad
roll instability in a Mg–Sb liquid metal battery. J = 104 A m−2, Bz = 10 mT. (b) Growth
rate of the metal pad roll instability in the numerical simulations and according to our
two-layer theory.

with the surface tensions

(γ1|2, γ2|3)= (0.19, 0.095) N m−1. (5.6)

The top (Mg) and bottom (Sb) layers are very good conductors, but the middle layer,
composed of molten salt (NaCl−KCl−MgCl2), is a badly conducting electrolyte. The
numerical simulations performed in Weber et al. (2017a) are done with Bz = 10 mT
and varying electrical currents I= JπR2. The metal pad roll instability is observed and
growth rates are reported therein. Due to the large density ratio between the second
and third layers, the instability mainly deforms the upper interface, separating the first
and the second layers. This phenomenon is visible in figure 14(a), showing a snapshot
of a saturated rotating wave. The lower interface only slightly deforms and the whole
bottom layer does not really participate in the dynamics. Actually, closer inspection
reveals that the frequency of the wave matches very closely that of the two-layer
system composed of the first and the second layer. This observation has motivated
us to try to apply our two-layer reduction cell theory to this three-layer LMB.

The following ‘technical’ operations are necessary in order to apply the theory. We
entirely ignore region 3 and all that may occur there. At the interface of regions 2
and 3, the electrical boundary condition, as seen from the electrolyte is very similar
to the one we had on the top cap of our cylindrical Hall–Héroult cell: the electrolyte
meets there a much better conductor which we henceforth assume to be perfect. This
means that if we exchange regions 1 and 2 and invert the sense of gravity i.e. g→
−g, the theory and the formulas developed in the previous sections apply. The only
difference is that the sense of rotation of the unstable wave has to be inverted. Finally,
all the horizontal field effects are negligible here, just as in the small reduction cell
model.

In figure 14, we compare the theoretical growth rates with simulations done with
OpenFOAM for various values of the current. The dashed line corresponds to our
theoretical estimate λ = λv + λvv + λvisc. The data points are those from figure 9
in Weber et al. (2017a). The agreement is surprisingly good. The fact that we find
the right slope with our two-layer theory implies that λv is correctly calculated.
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The threshold also seems approximatively right, which suggests that the combined
magnetic and viscous damping rates λvv + λvisc are also more or less correct.

Since our model does quite a decent job in predicting the onset of instability,
we want to use it to make some estimates for a much larger, more realistic battery
system. We imagine a cell with shallow layers, keeping, for simplicity, the same fluid
heights Hi and material properties ρi, σi, νi as in the cell of Weber et al. (2017a,b)
but greatly increasing its radius R. We limit the current density to the realistic value
of (i) J = 3 kAm−2 for Mg–Sb cells or to a more optimistic one (ii) J = 10 kAm−2

(both scenarios were also considered in Herreman et al. (2015)). We also suppose
a weak external magnetic field Bz ≈ 1 mT that is more realistic. Using the formula
(5.3) (invert 1↔ 2 and change g→−g) we find the critical β number

βc ≈ 2.81R1/2 (R in units of m), (5.7)

which yields
(i) Rc = 0.32 m, (ii) Rc = 0.14 m (5.8a,b)

as critical radii in the two current density scenarios. These values suggest that metal
pad roll instability can indeed appear in liquid metal batteries with relatively moderate
sizes, approximatively in the same range as the critical radii for the Tayler instability
(Herreman et al. 2015). A more detailed nonlinear study is required to be able to find
the critical sizes at which the interface motion becomes too large and potentially is
detrimental for the liquid metal battery’s integrity.

6. Conclusion
Using a regular perturbation method, we have derived analytical formulas for the

destabilization, the magnetic damping and the viscous damping of gravity waves in
cylindrical reduction cells with layers of arbitrary heights. From the general formulas,
we have derived asymptotic expressions for the deep and the shallow limits. In
appendix B, we demonstrated that the model overlaps with available metal pad roll
theories in the inviscid, magneto-static and small β-limit.

The theoretical expressions for the viscous damping rates of gravity waves in
cylinders in two-fluid systems are new, and to test their validity, we have conducted
some hydrodynamic experiments using the orbital sloshing device described in
Horstmann et al. (2019). The measured viscous damping rates are in excellent
agreement with the theoretical formulas. Improvements of the theory are still possible
by taking into account damping caused by viscous dissipation near the free interface
or by using a better boundary layer model near the moving contact line (see Viola
& Gallaire (2018) for example).

We have applied the theoretical model to a small reduction cell that is directly
inspired by the numerical study of Flueck et al. (2009) and Steiner (2009). In this
small cell, we have been able to do a very critical comparison with direct numerical
simulations, here done using SFEMaNS and OpenFOAM. This shows that our theory
captures all the stabilizing and destabilizing effects correctly and it also validates both
solvers that pass here a not so simple, physical benchmark.

We further applied the theoretical model to large industrial-scale cells. Viscous
effects and quasi-static corrections always remain small in large cells, in agreement
with what is frequently assumed, but this does not imply that βc = 0 for the metal
pad roll instability. Using the viscous damping rate formula, we precisely estimate
the critical threshold βc for the metal pad roll instability in shallow cylindrical cells.
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Finally we also showed that the proposed model can quantitively describe the metal
pad roll instability in Mg–Sb liquid metal batteries. In these three-layered cells, the
bottom layer is so heavy that it does not participate actively. With some well justified
minor technical modifications we have shown that the model reproduces very well
the growth rates numerically obtained in Weber et al. (2017a). The theoretical model
allows us to make some estimates on more realistic battery systems. Using typical
values for material parameters and fluid layer heights, we estimate that the metal pad
roll instability may occur in cells that have moderate sizes, say R> 0.32 m.

The present study opens a few perspectives. First of all, we think that the proposed
theory can be used to benchmark multiphase MHD codes. We have found that
the codes SFEMaNS and OpenFOAM yield somewhat similar results and are in
agreement with the theory. We invite other groups to try to reproduce these results to
test the accuracy and performance of their solvers on this small cell set-up. Second,
it is possible to apply the proposed perturbation method to cells with a rectangular
geometry in order to derive a theoretical model for the experiments reported in
Pedchenko et al. (2009, 2017). Or alternatively, perhaps these experiments could
be done in a cylindrical geometry to make comparisons with the present model.
Third, we plan to extend the two-layer model to three layers of fluid to be able to
model the metal pad roll instability in arbitrary liquid metal batteries. As shown by
several authors (Horstmann et al. 2018; Molokov 2018; Zikanov 2018), the waves
on the two interfaces may interact more or less depending on the density differences
between the three layers. In the uncoupled regime the present two-layer theory should
be adequate, but in the strongly coupled regime (similar density jumps on top and
bottom interfaces) one must model how pairs of rotating waves interact. Finally, we
also need to assess the nonlinear regime of the metal pad roll instability in more
detail, preferentially in shallow cell geometries which are more challenging to direct
numerical simulations.
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Appendix A. Details on the analytical calculation of λv and δh

We explain how the solvability condition (2.36)∑
i=1,2

∫
Vi

[û∗i · (αρiûi + iωρiũi +∇p̃i)+ p̂∗i∇ · ũi] dV =
∑
i=1,2

∫
Vi

û∗i · ( ĵi ×B+ J× b̂i) dV︸ ︷︷ ︸
P

,

(A 1)
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Metal pad roll instability in cylindrical reduction cells 635

is simplified in order to find the formulas for λv and λh. We introduce the notation P
for the ‘power’ injected by the Lorentz force. On the left-hand side, we use integration
by parts to bring all the partial derivatives in space on the hatted variables. Using the
leading-order balances (2.31), we then find that

α

2∑
i=1

∫
Vi

ρi|ûi|
2 dV︸ ︷︷ ︸

T1

+

2∑
i=1

∮
δVi

(p̂∗i ũi + p̃iû
∗

i ) · ni dS︸ ︷︷ ︸
T2

=P . (A 2)

The first group of terms T1 is proportional to kinetic energy. Using the boundary
conditions for the hatted and tilded variables, we reduce the second group T2 to

T2 = α

∫
S
(p̂∗2 − p̂∗1)|z=0η̂ dS= α

∫
S
(−γ1|2∇

2η̂∗ + (ρ2 − ρ1)gη̂∗)η̂ dS

= α

∫
S
(γ1|2|∇η̂|

2
+ (ρ2 − ρ1)g|η̂|2)|z=0 dS

= α [(ρ2 − ρ1)g+ γ1|2k2
]

∫
S
|η̂|2 dS︸ ︷︷ ︸

K

. (A 3)

Notice that in the integration by parts we have used the boundary condition
∂rη̂|r=R = 0, which is always satisfied by the inviscid gravity waves if the contact
angle is 90◦. This reformulation allows us to see that T2 is proportional to the
potential energy and so that T1 + T2 is proportional to the mechanical energy. Using
again integration by parts, the fact that the waves derive from harmonic potentials,
see (2.11), and the hydrodynamic boundary conditions, one can further demonstrate
that T1 = T2, for the simple harmonic wave under study,

T1 = α

[
ρ1

∮
δV1

φ̂∗1∇φ̂1 · n1 dS+ ρ2

∮
δV2

φ̂∗2∇φ̂2 · n2 dS
]

= α

∫
S
(−iρ1ωφ̂

∗

1 + iρ2ωφ̂
∗

2)|z=0η̂ dS

= α

∫
S
(p̂∗2 − p̂∗1)|z=0η̂ dS= T2. (A 4)

The immediate consequence of this identity is that the solvability condition (2.36)
reduces to 2αK=P . Then the equation for the eigenvalue shift is α=P/2K. In the
article, we further split P =Pv +Ph with

Pv =

∑
i=1,2

∫
Vi

û∗i · ( ĵi × Bzez) dV, (A 5a)

Ph =
∑
i=1,2

∫
Vi

û∗i · [ ĵi × (µ0Jr/2)eθ + Jez × b̂i] dV. (A 5b)

The formula for Ph is different from that in the article and involves the magnetic
field b̂i which is undesirable, the magnetic field is too difficult to calculate. Using the
potential nature of the flow and ∇× (Jez)= 0, we can transform this term as follows:

û∗i · (Jez × b̂i)=∇ · (φ̂
∗

i (Jez × b̂i))+ φ̂
∗

i Jez · (∇× b̂i). (A 6)
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Using Ampère’s law ∇ × b̂i = µ0 ĵi and after integrating over the volume this then
yields

Ph =
∑
i=1,2

∫
Vi

{û∗i · [ ĵi × (µ0Jr/2)eθ ] +µ0Jφ̂∗i ĵi,z} dV + J
∮
δVi

φ̂∗i (b̂i × ni) · ez dS︸ ︷︷ ︸
=0

. (A 7)

The underbraced boundary term indeed vanishes. On the top and bottom surfaces
and at the interface we have ni =±ez; on the side wall we supposed that (2.8) was
assumed as a boundary condition. In conclusion, with the hypothesis (2.8), we do not
need to calculate the magnetic field b̂i to get access to Ph and δh.

To calculate the integrals appearing in K, Pv analytically, we use the following
formula ∫ R

0
J2

m(kr)r dr=
1

2k2
(k2R2

−m2)J2
m(kR), (A 8)

that derives from Watson (1995), p. 135, combined with the identity J′m(kR) = 0
that applies to our gravity waves. Note here that the first formula also suggests
(k2R2

−m2) > 0 for all of the gravity waves under study, which is a property that we
have used in the paper. With the definition (A 3) for K and the expression for η̂, we
find

K= [(ρ2 − ρ1)g+ γ1|2k2
]
π|A|2R2

k2
(k2R2

−m2)J2
m(kR). (A 9)

The volume integrals in the expression (A 5a) that defines Pv, are transformed into
surface integrals by remarking that the two integrands can be written in conserved
form: ∇φ̂∗i · (−σi∇ϕ̂i × Bzez)=∇ · [−σiφ̂

∗

i ∇ϕ̂i × Bzez]. This yields

Pv = 2π(−im)Bz

(
σ1

∫ H1

0
φ̂∗1 ϕ̂1|r=R dz+ σ2

∫ 0

−H2

φ̂∗2 ϕ̂2|r=R dz
)

=
πmJBz|A|2ωR2Λ

k2

[
tanh(kH1)+

(kH2)

sinh2(kH2)
+

1
tanh(kH2)

]
J2

m(kR), (A 10)

with Λ defined in (2.39c). The ratio Pv/2K yields the growth rate λv given in the
text. The calculation of Ph is straightforward but lengthy and not fully presented here.
A useful identity is ∫ R

0
Jm(kr)∂r[Jm(kr)]r2 dr=

m2

2k2
J2

m(kR). (A 11)

Appendix B. Linking λv to existing shallow models
Both Davidson & Lindsay (1998) and Lukyanov et al. (2001) provide shallow

models for the metal pad roll instability in a cylindrical geometry in the inviscid and
magnetostatic limit and without surface tension. Here we show that our expression of
the growth rate (2.39) coincides with the above models when passing to the limit.

We start from the model of Lukyanov et al. (2001) and to avoid conflicts of
notation, we adapt the formulas therein to our setting. The two-dimensional problem
to be solved in the shallow approximation is

∂2
ttη− c2

∇
2η= 0, ∇2χ = βη. (B 1a,b)
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Here η(r, θ, t) is the perturbation of the surface elevation, and χ(r, θ, t) is the
perturbation on the electrical potential. The wave speed c and the parameter β are
defined by

c2
=

(ρ2 − ρ1)g
ρ1H−1

1 + ρ1H−1
2

, β =
JBz

(ρ2 − ρ1)gH1H2
. (B 2a,b)

Note that the quantity β used here is not a non-dimensional number. On the right-
hand side of the equation for χ in (B 1), we find +βη (instead of −βη in Lukyanov
et al. (2001)), because in the present article we use the convention that the electrolysis
current density is J = Jez (instead of J = −Jez in Lukyanov et al. (2001)). On the
lateral side wall r= R, the following conditions must be met:

∂rχ |r=R = 0, ∂rη|r=R =−R−1∂θχ |r=R. (B 3a,b)

The solutions to (B 1) take the form

η= AJm(kr) ei(mθ+ωt), χ = (−Aβk−2Jm(kr)+Crm) ei(mθ+ωt), (B 4a,b)

with k2
= ω2/c2 and A, C are arbitrary constants. Note that for the exponential

factors we have chosen the convention exp(i(mθ + ωt)) (instead of exp(i(mθ − ωt))
in Lukyanov et al. (2001)). By enforcing the boundary conditions, we find the
non-dimensional dispersion relation,

βJm+1(κ)=−iπκ2J′m(κ), (B 5)

with κ = kR and β as defined in (1.1). We now derive an approximate solution of
(B 5) in the limit β� 1. We start with the expansion

κ = κ (0) + βκ (1) +O(β2), (B 6)

which we insert into (B 5). Then we expand the dispersion relation using Taylor series
in powers of β. At the order O(β0), we find the constraint

0=−iπ(κ (0))2J′m(κ
(0)) ⇒ κ (0) = κmn. (B 7)

Hence, for any m the leading order of the non-dimensional radial wavenumber is the
same as the one we have obtained in our model (see (2.13)). At order the O(β1), we
have the constraint

Jm+1(κmn)=−iπ[κ (1)(κmn)
2J′′m(κmn)+ 2κ (1)κmnJ′m(κmn)]. (B 8)

Using J′m(κmn) = 0 together with the recurrence relations and the Bessel differential
equation, we have

Jm+1(κmn)=
m
κmn

Jm(κmn), J′′m(κmn)=−

(
κ2

mn −m2

κ2
mn

)
Jm(κmn). (B 9a,b)

This in turn yields the following simplified expression for κ (1):

iκ (1) =
m

πκmn(κ2
mn −m2)

. (B 10)
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The small shift in wavenumber κ (1) is equivalent to a small shift in the complex
frequency ω of the waves, since by definition ω = ±(cκ/R) in the context of the
shallow layer approximation. Using the expansion

ω=ω(0) + βω(1) +O(β2), (B 11)

we obtain

ω(0) =ωshallow =±
cκmn

R
, ω(1) =±β

cκ (1)

R
. (B 12a,b)

We recognize ω(0) as the eigenfrequency ωshallow of the non-dispersive gravity waves
in the shallow layer limit. The complex frequency shift α of our model is

α = iω(1) = β
mω(0)

κ2
mn −m2

1
πκ2

mn

. (B 13)

This is exactly the shallow limit of the growth rate λv with γ1|2= 0 as stated in (2.46);
recall that κmn := kR. In conclusion, our results coincide with those of Davidson &
Lindsay (1998) and Lukyanov et al. (2001) in the inviscid, magnetostatic, shallow,
zero surface tension, and small β approximation.

Appendix C. Uniform horizontal external fields are not destabilizing

In the theory, we assumed a purely vertical external magnetic field, Be
= Bzez, but

external magnetic fields may also have horizontal components. We briefly explain why
uniform horizontal external fields, such as Be

= Bxex should have no impact on the
instability, in the perturbative limit.

With Bx replacing Bz we need to modify the base state pressure, adding JBxy
to the previous Pi, to counter the Lorentz force J × (Bxex). Apart from that, the
interface will remain flat and no flow will be driven. Small waves perturbing this
new base state are not affected by this new pressure term and in the perturbative
limit, essentially remain the same gravity waves. Unlike with Bz, it seems that this
Bx cannot electromagnetically couple waves with themselves. This can be understood
by imaging how our perturbation theory would be changed. With horizontal external
field and a one-wave ansatz (2.30), the solvability condition would yield the complex
frequency shift

α =

∑
i=1,2

∫
Vi

û∗i · ( ĵi × Bxex) dV

2K︸ ︷︷ ︸
=0

+iδh. (C 1)

The interaction integral is zero because the integrandum only has terms varying as
∼cosθ or ∼sinθ (due to ex= cos θer − sin θeθ ). One wave will not be able to amplify
itself.

There still remains the possibility that pairs of waves (1 and 2) electromagnetically
couple to each other though Bx and may destabilize together as a pair. A perturbative
ansatz with two waves would look like

ui = (û
(1)
i eiω1t

+ û(2)i eiω2t
+ ũi)eαt (C 2)
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Metal pad roll instability in cylindrical reduction cells 639

for the flow field and similar for the other fields. A perturbation theory in the
dissipationless limit, would lead us to the calculation of interaction integrals

ei(−ω1+ω2)t
∑
i=1,2

∫
Vi

û(1)∗i · ( ĵ
(2)
× Bxex) dV, ei(ω1−ω2)t

∑
i=1,2

∫
Vi

û(2)∗i · ( ĵ
(1)

i × Bxex) dV

(C 3a,b)
that need to be non-zero and stationary in order to be potentially destabilizing. This
requires resonance conditions

m1 =m2 ± 1, ω1 =ω2 (C 4a,b)

on the azimuthal wavenumbers and frequencies of both waves. Owing to the
dispersion relation (2.14) of the waves, it is highly unlikely that we can meet these
conditions, because radial wavenumbers are then often very different: κm1n1 6=κm2n2 . For
high m modes, we might have imperfect resonance (ω1≈ω2), but these high-frequency
waves will also be strongly damped by viscosity. All this suggests that uniform
horizontal external magnetic fields are unlikely to cause destabilizing electromagnetic
couplings between gravity waves in reduction cells.

Appendix D. Viscous damping of interfacial waves in cylinders
This appendix gathers technical details of our theoretical calculation of viscous

damping rates in our cylindrical cell. We define the linear viscous problem, calculate
the leading-order boundary layer structure and then find the viscous damping rates
using two different methods that yield the same result.

D.1. Linear viscous wave problem
When viscosity is present, the linearized problem defining free waves is different. We
have to solve

ρi∂tui +∇pi = ρiνi∇
2ui, ∇ · ui = 0, (D 1a,b)

together with no-slip boundary conditions, ui|Σi = 0, on the solid surface and

∂tη= ui,z|S, i= 1, 2, (D 2a)
p2|S − p1|S = (ρ2 − ρ1)gη− γ1|2∇

2η+ 2(ρ2ν2∂zu2,z − ρ1ν1∂zu2,z), (D 2b)
u1,⊥|S = u2,⊥|S, (D 2c)

ρ1ν1(∂zu1,θ + r−1∂θu1,z)|S = ρ2ν2(∂zu2,θ + r−1∂θu2,z)|S, (D 2d)
ρ1ν1(∂ru1,z + ∂zu1,r)|S = ρ2ν2(∂ru2,z + ∂zu2,r)|S (D 2e)

on the unperturbed interface. The notation ⊥ is used to refer to the horizontal
(tangential) flow components at a solid wall or interface.

D.2. Leading-order boundary layers
Far enough away from the contact line regions and for low viscosity, we can propose

[ui, pi] ≈ ([ûi + ûi, p̂i + p̂i] + [ũi + ũi, p̃i + p̃i])e
iωteαt (D 3)

as an approximate solution. Viscosity causes a complex eigenvalue shift, denoted α.
As before, hatted fields capture the leading-order structure associated with the inviscid
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waves, tilded fields are weak corrections caused here by viscosity. A new notation,
barred variables, is used to indicate that the field is a boundary layer correction. These
corrections quickly decay to zero as the wall-normal coordinate ζ increases inwards
the liquid. This coordinate is respectively defined as

ζ =


H1 − z, near z=H1

R− r, near r= R
z, near z= 0

, ζ =


−H2 + z, near z=−H2

R− r, near r= R
−z, near z= 0

(D 4a,b)

in both regions. The fluid domain is split into a boundary layer region, typically
extending a few diffusive lengths

√
νi/|ω| away from the walls, and a bulk region,

where the flow is predominantly inviscid.
We inject the viscous ansatz into (D 1a,b). Treating viscous terms, tilded variables

and α as small, we find the leading-order problem. In the bulk, this is just the inviscid,
gravity wave problem that defines the inviscid wave profiles ûi, p̂i and the frequency ω.
In the boundary layer, we need to find the leading-order corrections ûi, p̂i. Taking
into account the rapid wall-normal variation, mass conservation in the boundary layers
requires

∂ζ (ûi · ni)= 0 ⇔ ûi · ni = 0 (D 5)

at leading order: the normal component of the leading-order boundary layer correction
is everywhere zero. Expressing the leading order of the normal part of the momentum
balance, we similarly find

∂ζ p̂i = 0 ⇔ p̂i = 0. (D 6)

There is no leading-order boundary layer correction for pressure. The tangential part
of the momentum balance further dictates that

iωûi,⊥ ≈ νi∂
2
ζ ζ ûi,⊥ (D 7)

suggesting Stokes boundary layers. The no-slip condition

ûi,⊥ + ûi,⊥|Σi ≈ 0 (D 8)

applies on the solid walls (impermeability ûi · ni= 0 is already satisfied built into the
inviscid solution) and near the interface, we need to meet

û1,⊥ + û1,⊥|S ≈ û2,⊥ + û2,⊥|S,

{
ρ1ν1∂zû1,θ |S ≈ ρ2ν2∂zû2,θ |S
ρ1ν1∂zû1,r|S ≈ ρ2ν2∂zû2,r|S

(D 9a,b)

at leading order. Near the solid walls we find

ûi,⊥ =−ûi,⊥|Σie
−Γ
√
|ω|/νiζ , (D 10)

with Γ = (1+ i Sgn(ω))/
√

2. At the interface, we find boundary layer corrections

û1,⊥ = −
Λ

ρ1
√
ν1

(
J′m(kr)er +

im
kr

Jm(kr)eθ
)

eimθe−Γ
√
|ω|/ν1ζ , (D 11a)

û2,⊥ =
Λ

ρ2
√
ν2

(
J′m(kr)er +

im
kr

Jm(kr)eθ
)

eimθe−Γ
√
|ω|/ν2ζ , (D 11b)
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Metal pad roll instability in cylindrical reduction cells 641

with

Λ= AωR

(tanh(kH1))
−1
+ (tanh(kH2))

−1

1
ρ1
√
ν1
+

1
ρ2
√
ν2

 . (D 11c)

In the limit of ρ1 → 0, we observe that û2,⊥→ 0, which is coherent with the fact
that no leading-order boundary layers exist under a free surface. The existence of
interfacial boundary layers in the two-layer system is a crucial difference with respect
to the one-layer case.

D.3. Viscous damping rate: first approach using the mechanical energy balance
Following the procedure of Case & Parkinson (1957), we use the mechanical energy
balance to calculate the viscous damping rate in this two-layer system. Here this
balance is

d
dt

(∑
i=1,2

1
2

∫
Vi

ρi‖ui‖
2 dV

)
︸ ︷︷ ︸

Ec

+
d
dt

(∫
S

[
1
2
(ρ2 − ρ1)gη2

+ γ
√

1+ ‖∇η‖2

]
dS
)

︸ ︷︷ ︸
Ep

=−

∑
i=1,2

2ρiνi

∫
Vi

εi : εi dV︸ ︷︷ ︸
D

(D 12)

exactly for a non-pinned interface S that makes a contact angle of 90◦ with the solid
walls and otherwise arbitrary fluid domains Vi. We recognize the kinetic and potential
energy in Ec and Ep, εi =

1
2(∇ui + ∇uT

i ) is the strain rate tensor. Using elementary
vector calculus, one can show that

2εi : εi = ‖∇× u‖2
+ 2∇ · ((u · ∇)u). (D 13)

Injected in the integral and making use of the divergence theorem, this yields

D=−
∑
i=1,2

ρiνi

∫
Vi

‖∇× ui‖
2 dV︸ ︷︷ ︸

D′

−2
∑
i=1,2

ρiνi

∮
δVi

[(ui · ∇)ui] · dS︸ ︷︷ ︸
D′′

. (D 14)

With (u ·∇)u= (∇×u)×u−∇‖u‖2/2, we find the usual form of Lamb’s dissipation
integral (Lamb 1945), here extended to two-layer systems.

We inject in the mechanical energy balance (D 12) the flow profiles of a viscously
decaying rotating gravity wave

ui ≈ [(ûi + ûi)ei(ω+δvisc)t + c.c.]eλvisct, η≈ [η̂ei(ω+δvisc)t + c.c.]eλvisct. (D 15a,b)

We include a harmonic wave and its complex conjugate part (denoted c.c.), as it is
best to use real-valued fields in this energetic approach. In the integrals, we also
approximate Vi≈Vi and S≈S as the equilibrium fluid domains and interface. First we
calculate the leading-order mechanical energy and this can be done by ignoring the
boundary layer corrections. We find Ec+Ep≈ 2K exp(2λvisct) where K was previously
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used in the article (see (A 3)). In D′ only the boundary layer corrections contribute.
Integrating over the boundary layer region (meaning ζ ∈ [ 0, +∞ [), we find D′ =
D′ exp(2λvisct) with

D′ ≈−
2
√

2

(∑
i=1,2

e2λvisctρi

√
νi|ω|

∫
δVi

‖ûi,⊥|ζ=0‖
2 dS

)
. (D 16)

We can further split this surface integral into two parts, D′ = D′s + D′i, representing
dissipation in boundary layers near solid walls (hence index s) or on both sides of
the interface (hence index i). The second contribution to the dissipation integral is
D′′ =D′′ exp(2λvisct) with

D′′ ≈ 8
(∫

S
[ρ2ν2û∗2,z∇⊥ · (û2,⊥ + û2,⊥)− ρ1ν1û∗1,z∇⊥ · (û1,⊥ + û1,⊥)]|z=0 dS

)
. (D 17)

We used incompressibility of the flow, the two-dimensional divergence theorem and
impermeability on the solid walls to get this formula. Expressing the mechanical
energy balance to leading order we find the algebraic equation 4Kλvisc=D that fixes
the viscous damping rate. We separate

λvisc ≈
D′s
4K︸︷︷︸
λs
visc

+
D′i
4K︸︷︷︸
λi
visc

+
D′′

4K︸︷︷︸
λextra
visc

. (D 18)

Both λs
visc and λi

visc are given in the text, see (2.66), and define the dominant
contribution to the viscous damping. The dissipation D′′ defines an extra damping
term

λextra
visc =−

2(ρ2ν2 − ρ1ν1)k2

ρ1

tanh(kH1)
+

ρ2

tanh(kH2)


1

ρ1
√
ν1 tanh(kH2)

−
1

ρ2
√
ν2 tanh(kH1)

1
ρ1
√
ν1
+

1
ρ2
√
ν2

 (D 19)

but for all waves studied in the article, this damping is negligible. Other higher-order
corrections have been ignored in this leading-order calculation and may compete with
this term.

In the limit of one fluid layer, when ρ1→ 0, we find that λi
visc→ 0. This is coherent

with the fact that the interfacial boundary layer vanishes at leading order, under a free
surface. In this limit, λs

visc degenerates to the leading-order damping due to friction on
solid walls. For λextra

visc →−2ν2k2, we find the so-called interior damping of waves, see
Case & Parkinson (1957) and Ibrahim (2005).

D.4. Viscous damping and frequency shift: solvability condition
Rather than passing by the mechanical energy equation, we can also write the next
order of the viscous problem and adopt the perturbative procedure that was used to
model the magnetohydrodynamic effects. In the viscous ansatz (D 3), we already know
the leading-order structure, i.e. all the hatted variables and ω. Equations for the tilded
fields are

∇ · ũi = 0, (D 20a)
αûi + iωũi +∇p̃i = ρiνi ∇

2ûi︸︷︷︸
0

. (D 20b)
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Metal pad roll instability in cylindrical reduction cells 643

Without viscous damping in the bulk, there is no immediate indication of a
viscous effect in the bulk. However, when we express the solvability condition∑

i=1,2

∫
Vi
(p̂∗i (D 20a))+ (û∗i (D 20b)) dV , we find that

α

2∑
i=1

∫
Vi

ρi|ûi|
2 dV︸ ︷︷ ︸

K

+

2∑
i=1

∮
δVi

(p̂∗i ũi + p̃iû
∗

i ) · ni dS︸ ︷︷ ︸
T2

= 0 (D 21)

just as we encountered in (A 2) and it is through the second term T2, that we can get
subtle inputs from viscosity. To see how, we need to consider the phenomenon that is
usually called ‘boundary layer pumping’: due to mass conservation, the leading-order
tangential boundary layer corrections cause a small flow normal to the boundary. Let
us calculate this pumping flow, i.e. the term ũi · ni. Everywhere in the boundary layer
region, mass conservation requires

∂ζ (ũi · ni)=∇⊥ · ûi,⊥. (D 22)

This is easily integrated in ζ and allows us to find a small wall-normal boundary
layer flow ũi · ni On the solid walls, we need to meet the condition of impenetrability,
ũi · ni|Σi + ũi · ni|ζ=0 = 0 and so we find

ũi · ni|Σi =
1
Γ

√
νi

|ω|
∇⊥ · ûi,⊥|S, (D 23)

in the vicinity of solid walls. At the interface, we express the next order of the
kinematic boundary conditions, here

αη̂+ iωη̃= ũi,z|z=0 + ũi,z|ζ=0 (D 24)

and we can rearrange this into

ũ1 · n1|S =−αη̂− iωη̃+
1
Γ

√
ν1

|ω|
∇⊥ · û1,⊥|ζ=0,

ũ2 · n2|S = αη̂+ iωη̃+
1
Γ

√
ν2

|ω|
∇⊥ · û2,⊥|ζ=0.

 (D 25)

Noteworthy is that the smaller ‘interior’ damping may be captured through a
modification of the boundary conditions for pressure

p̃2 − p̃1|S = (ρ2 − ρ1)gη̃− γ1|2∇
2η̃+ 2(ρ2ν2 ∂z(û2,z + û2,z)− ρ1ν1∂z(û1,z + û1,z))|S︸ ︷︷ ︸

ignore

(D 26)
that will also enter in T2, but since this damping is very small, we will further ignore
this. Injecting these boundary conditions for ũi ·ni|S into the term T2, we can simplify
it to

T2 = αK+
1
Γ

∑
i=1,2

∫
δVi

p̂∗i∇⊥ · ûi,⊥|ζ=0 dS (D 27a)

= αK−
1
Γ

∑
i=1,2

∫
δVi

∇⊥p̂∗i · ûi,⊥|ζ=0 dS. (D 27b)

Here we have used the two-dimensional divergence theorem and supposed that
the boundary δVi is a smoothly varying surface with ûi,⊥|ζ=0 a continuous function.
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At first sight, these assumptions do not hold in the present case and for the calculated
boundary layer profiles. However, this is a physically relevant hypothesis: although
the boundary layer structure near the contact line was not specified it should indeed
be such that both boundary layer regions, near the solid wall and near the interface,
smoothly interconnect. In practice, it is really advisable to use (D 27b) rather than
(D 27a), since (D 27a) can produce unphysical contributions that relate to the badly
modelled boundary layer structure at the contact line. When we finally re-express the
solvability condition (D 21) we get

α = λvisc + iδvisc =
1

2KΓ
∑
i=1,2

∫
δVi

∇⊥p̂∗i · ûi,⊥|ζ=0 dS. (D 28)

An explicit evaluation of this formula yields the same damping rate λvisc as the one we
have found using the first method. A small advantage of this second approach is that
it further allows us to specify the viscous frequency detuning as δvisc = Sgn(ω)λvisc.
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