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Elongated floaters drifting in propagating water waves slowly rotate 
towards a preferential state of orientation. Short and heavy floaters 
 align longitudinally, along the direction of wave propagation, whereas 
long and light floaters align transversely, parallel to the wave crests and 
troughs. We investigate this phenomenon for homogeneous 
parallelepiped floaters by combining laboratory experiments with 
numerical simulations and asymptotic theory. For floaters small with 
respect to wavelength and for low amplitude waves, we show that the 
floater orientation is controlled by the non-dimensional number $F = k 
L_x^2 / \beta L_z$, with $k$ is the wavenumber, $\beta$  the floater-
to-water density ratio, and $L_x$ and $L_z$ the floater length and 
thickness. Theory places the longitudinal-transverse transition at the 
critical value $F_c = 60$, in fair agreement with the experiments. Using 
a simplified physical model, we elucidate the physical origin of the 
preferential orientation. Through its motion, the floater probes the 
velocity gradients along its surface. Next to a small mean displacement 
(Stokes drift), this results in a net torque which, for short floaters, 
always favors the longitudinal orientation. This net torque arises from a 
phase correlation between the instantaneous buoyancy torque and the 
instantaneous yaw angle of the floater, a mechanism analogous to the 
Kapitza pendulum.  The transverse equilibrium of longer floaters has a 
different origin and arises from the variation of the submersion depth 
along their long axis. This varying submersion increases the torque in 
trough positions, when the tips are more submersed, and always pushes 
towards the transverse orientation.
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Elongated floaters drifting in propagating water waves slowly rotate towards a preferential
state of orientation. Short and heavy floaters align longitudinally, along the direction
of wave propagation, whereas long and light floaters align transversely, parallel to the
wave crests and troughs. We investigate this phenomenon for homogeneous parallelepiped
floaters by combining laboratory experiments with numerical simulations and asymptotic
theory. For floaters small with respect to wavelength and for low amplitude waves, we
show that the floater orientation is controlled by the non-dimensional number F =
kL2

x/βLz, with k is the wavenumber, β the floater-to-water density ratio, and Lx and
Lz the floater length and thickness. Theory places the longitudinal-transverse transition
at the critical value Fc = 60, in fair agreement with the experiments. Using a simplified
physical model, we elucidate the physical origin of the preferential orientation. Through
its motion, the floater probes the velocity gradients along its surface. Next to a small
mean displacement (Stokes drift), this results in a net torque which, for short floaters,
always favors the longitudinal orientation. This net torque arises from a phase correlation
between the instantaneous buoyancy torque and the instantaneous yaw angle of the
floater, a mechanism analogous to the Kapitza pendulum. The transverse equilibrium of
longer floaters has a different origin and arises from the variation of the submersion depth
along their long axis. This varying submersion increases the torque in trough positions,
when the tips are more submersed, and always pushes towards the transverse orientation.

Key words:

1. Introduction

The motion of a floating body in gravity waves is a classical problem in fluid mechanics
with evident applications in the domain of naval engineering (Faltinsen 1993; Newman
2018; Falnes & Kurniawan 2020). At first order in wave magnitude, waves cause harmonic
oscillations of the floating body in all six degrees of freedom, both linear (heave, surge,
sway) and angular (pitch, roll, yaw). At second order, waves also cause a mean drift force
and yaw moment on the body that affect surge, sway and yaw angle on long time-scales.
For small isotropic floaters, this mean motion reduces to the classical Stokes drift in the
direction of the wave propagation (Stokes 1847; van den Bremer & Breivik 2018; Calvert
et al. 2021), a problem that received considerable interest for the modeling of pollutant
transport in the oceans (Suaria et al. 2021; Yang et al. 2023; Sutherland et al. 2023).
For larger floaters of arbitrary shape, such as ships and floating structures, an angular

† Email address for correspondence: wietze.herreman@universite-paris-saclay.fr

Page 1 of 33

Cambridge University Press

Journal of Fluid Mechanics



2 W. Herreman, B. Dhote, L. Danion, F. Moisy

Figure 1. Experimental setup and chronophotographies. (a) Side view. Waves are generated in
a water channel, of length 3 m and filled at height H = 10 cm. (b) Top View. Floater of length
Lx, making an angle ψ with the direction of wave propagation. (c-d) Chronophotographies,
obtained by superimposing images acquired every wave period, for a wave length λ = 29 cm
and wave slope ε = ak = 0.16. The short floater (length Lx = 60 mm) gradually aligns in the
direction of wave propagation (c), while the long floater (Lx = 100 mm) aligns parallel to the
wave crests (d).

drift can change the floater’s orientation with respect to the wave incidence and this slow
reorientation can in turn modify its linear drift. The combined linear and angular drifts
are key features in sea keeping and maneuvering, and their modeling has been the subject
of numerous works (Faltinsen 1993; Skejic & Faltinsen 2008; Newman 2018). In this paper,
we are interested in the slow, second order yaw motion of elongated floaters drifting in
gravity waves and how a preferential state of orientation spontaneously emerges.

Research on this topic started more than a century ago, with Suyehiro (1921) who first
reported how small boat models displaced by propagating gravity waves rotate towards
a preferential state of orientation with respect to the direction of incidence. Suheyiro
believed that this was due to gyrostatic torques and hence of purely solid-mechanical
origin. Newman disagreed with this and proposed in 1967 his famous article on the
mean drift force and yaw moment due to waves (Newman 1967). Starting from a global
momentum and torque balance, he expresses the second order drift force and yaw moment
in terms of the far-field hydrodynamic wave potential (Kochin functions). Using slender
body theory, he was able to calculate this far-field potential and hence to derive the
first explicit formula for the second order yaw moment. This mean torque compared
reasonably well with the experimental data of Spens & Lalangas (1962) (reproduced in
Newman (1967)).

A key prediction of Newman’s theory is that slender floating structures of length
shorter than the wave-length should always be stable in beam seas, meaning that they
will prefer to have their long axis parallel to the wave crests. In figure 1 we show two
chronophotographs from our laboratory experiments that disagree with this prediction.
Here, small homogeneous parallelepipeds of centimer scale are left adrift in a propagating
wave in a 3-m long water tank, and pictures synchronized with the wave period are taken
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from above (details are given in section 2). In just a few wave periods, we observe that
long floaters align parallel to the wave crests (‘beam sea’, ψ → 90o), in agreement with
Newman’s prediction, but shorter floaters align along the direction of wave propagation
(‘head sea’, ψ → 0o); here ψ is the yaw angle between the floater long axis and the
direction of wave propagation. Hence, it seems that preferential orientation, and by
extension the mean second order yaw moment, may depend more subtly on the floater
length and density. The main objective of this article is to clarify what physically governs
this preference and to locate where the longitudinal-transverse transition occurs for
floaters small with respect to the wavelength.

Since Newman’s pioneering work, other groups have studied the second order yaw
moment acting on floating bodies. The work of Salvesen (1974) is a simplification of
Newman’s model in which the floater is considered as a weak scatterer of the incoming
wave. In Kashiwagi (1992) and Kashiwagi & Ohkusu (1993), Parseval’s theorem is used
to evaluate the mean drift force and yaw moment, instead of the method of stationary
phase used by Newman. An entirely different, near-field approach, of direct pressure
integration was proposed by Faltinsen (1980). These different methods are compared
in Skejic & Faltinsen (2008), and show consistent results. Chen (2007) proposed a
third method, the so-called middle field formulation, to compute mean wave loads on
structures. This method, in which the potential is determined using a boundary element
method, is implemented in the software pack Hydrostar (Bureau-Veritas 2016) that is
commonly used in naval engineering applications. The experimental study of Le Boulluec
et al. (2008) on drifting cargo containers briefly mentions the fact that containers can
drift either in longitudinal positions (head-seas) or transverse position (beam-seas).
Recently, Yasukawa et al. (2019) compared theory to new experimental measurements
on a particular ship model. According to the authors, it remains difficult to make the
theory and experiments for the mean yaw moment match well.

In this article, we propose a combined experimental, numerical and theoretical study
on the preferential orientation of a model floater (homogeneous parallelepiped) drifting
in a propagating gravity wave. Our model is based on the Froude-Krylov assumption and
hence ignores all wave diffraction and wave radiation effects (no added mass, no radiation
impedance). In spite of this simplicity, this model predicts a mean yaw moment in the
limit of small floater length/wavelength ratio that is fully compatible with Newman’s
classical result (Newman 1967) and nearly in perfect agreement with mean yaw moment
calculations of Chen (2007). Moreover, our simplified model also allows us to provide a
simple physical picture for the origin of this preferential orientation.

The article is structured as follows. In section 2, we present a systematic series of
experiments investigating the preferential orientation of floaters of varying length and
density. In section 3, we define a simplified model in which we calculate the non-linear
motion of the floater using a Froude-Krylov approximation. We show that numerical
solutions of this model reproduce well the observed state of preferential orientation in
our experiments. In section 4, we propose an asymptotic solution to our Froude-Krylov
model in the double limit of small wave and small floater size. This yields the following,
idealized evolution equation for the average yaw angle ψ,

ψ̈ ≈ −ε2 sinψ cos3 ψ

(
1− F

Fc

)
. (1.1)

This equation depends on two non-dimensional numbers: the wave-slope ε = ka (with k
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the wavenumber and a the wave amplitude) and the number F , defined as

F =
kL2

x

βLz
, (1.2)

with Lx, Lz the floater length and thickness and β, the floater-to-water density ratio. We
recognise h̄ = βLz as the equilibrium submersion depth or draft of our parallelepiped
floaters. This idealised, dissipation-less evolution equation certainly does not capture all
the complexity of realistic slow yawing, but it provides insight into the preferential state
of orientation. It shows that, for F < Fc, the longitudinal position ψ = 0o is stable and
hence preferred, whereas for F > Fc, the transverse position ψ = 90o is stable. Our
theory predicts a transition at Fc = 60, in fair agreement with the experimental value
Fc ' 45± 10.

Our theory follows a ’near-field approach’, but different from that of Faltinsen (1980),
in the fact that it uses the Froude-Krylov approximation, which allows more analytical
evaluation. In section 5, we finally derive the same model using a more simple physical
procedure. This allows us to better understand what physically controls the preferential
orientation. The longitudinal equilibrium position is due to an effective torque that
appears as the floater probes low and high pressure regions while going through its
first order motion. We show that this part of the torque creates a motion that is
analogous to that of classical Kapitza pendulum, a pendulum whose anchor point is
rapidly vibrated (Kapitza 1951; Landau & Lifschitz 1960; Butikov 2001). The transverse
state of orientation is on the other hand due to the fact that long floaters have a
variable submersion along their length. This variable submersion significantly enhances
the instantaneous yaw moment in trough positions that always favors the transverse
position. In Newman’s model, only this second part of the torque is present, which
explains why he found elongated structures to be stable in beam seas. Finally, in Sec. 6,
we compare the analytical formula for the mean yaw moment in our theory to previous
results obtained by Newman (1967) and Chen (2007). The agreement is surprisingly good,
in particular when considering that we use a Froude-Krylov assumption in our model.

2. Experiments

A series of laboratory experiments with centimeter-scale floaters of varying size and
density have been performed in a water flume. The experimental setup, sketched in
figure 1(a-b), consists in a tank of length 3 m, width 0.38 m, filled with water at height
H = 0.1 m. Waves are generated by a wavemaker consisting in a paddle oscillating at
frequency ω/2π between 1 and 4 Hz, and are absorbed at the other end of the channel
by a sloping plate.

We determine the wave profile ζ(x, t) by imaging the instantaneous contact line through
the lateral channel wall and using a line detection algorithm. The wave profile is well
described by a simple sinus law, ζ = a cos(kx + ϕ(t)), with ϕ(t) the wave phase, from
which we measure the wave amplitude a and wave number k = 2π/λ with precision ' 5%.
The measured wave number matches the dispersion relation in the gravity regime, ω2 =
gk tanh(kH), with wave lengths λ in the range 10− 82 cm. Experiments for wavelengths
of the order of the channel width are discarded because resonant transverse sloshing
modes are excited. We work in the weakly nonlinear wave regime, for wave slopes ε = ak
between 0.02 and 0.23.

The floaters are homogeneous rectangular parallelepipeds with length Lx between 20
and 140 mm, width Ly = 10 mm and height Lz between 5 and 10 mm, cut from expanded
PVC or polystyrene boards of various densities. We denote M the floater mass, ρs =

Page 4 of 33

Cambridge University Press

Journal of Fluid Mechanics



Preferential orientation of floaters drifting in water waves 5

0 20 40 60 80 100 120
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 10 20 30 40 50
-45o

0o

45o

90o

135o

T
ran

sv
erse

L
on

g
itu

d
in

a
l

30 mm
50 mm
60 mm
80 mm
90 mm
100 mm

(a) (b)

T
ra

n
sv

er
se

L
o
n
gi

tu
d
in

al

Figure 2. (a) Yaw angle ψ as a function of the time normalized by the wave period, for
floaters of various lengths Lx. The time origin is chosen such that ψ(0) = 45o. Wave frequency
f = 2.3 Hz, wavelength λ = 0.29 m, wave slope ak = 0.16, floater waterline depth h̄ = 2.2 mm.
(b) Normalized angular velocity ψ̇/ω of the floater as a function of Lx.

M/(LxLyLz) its density, and β = ρs/ρ the floater-to-water density ratio. The floater size
is large enough for the capillary effects to be negligible: the vertical component of the
capillary force is less than 10% of the floater weight.

For each run, a floater is gently deposited at the surface of water at a distance x0 '
0.8 m from the wave maker, with an initial yaw angle ψ0 of approximately 45o±15o from
the x axis (controlling precisely ψ0 is difficult because the phase of the wave is not known
at the time the floater is released). The floaters are imaged by a camera located above
the wave tank. Using a tracking algorithm (library Tracker in Python), we measure the
center of mass xc(t) and the yaw angle ψ(t) of the floater on each frame. For each run,
the floater is left adrift for about 1 m, and only trajectories staying approximately along
the center line of the channel are retained to discard possible interaction with the side
walls.

At first order, the floater motion is a combination of a back-and-forth oscillation of its
center of mass, of amplitude given by the typical horizontal excursion of the fluid particle
trajectories (∆x = a/ tanh(kH) for waves in finite depth) and angular oscillations.
Superimposed to these fast oscillations are a slow drift of the center of mass in the
direction of the wave propagation (Stokes drift) and a slow drift of the yaw angle, either
towards the longitudinal (ψ = 0o, denoted ‘L’) or transverse (ψ = 90o, denoted ‘T’)
orientation. To filter out the fast oscillations and focus on the slow dynamics of ψ, we
synchronize the image acquisition with the wave maker oscillation, as illustrated in the
chronophotographies of figure 1(c-d).

We first consider a set of floaters with a density ratio β = ρs/ρ = 0.44 and thickness
Lz = 5 mm (expanded PVC foam boards “Forex”), and investigate the influence of the
floater length Lx, for a fixed wavelength λ = 290 mm and wave amplitude a = 7.4 mm
(wave slope ε = ka = 0.16). The time evolution of the yaw angle ψ is shown in figure 2(a).
Because of the uncertainty on the initial angle ψ0, we shift the time origin so that ψ is
45o at t = 0 for each run. The curves clearly separate in two groups, with small floaters
(Lx 6 60 mm) tending to ψ = 0o (longitudinal) and long floaters (Lx > 80 mm) tending
to ψ = 90o (transverse). While short floaters precisely align in the longitudinal direction,
with ψ ' 0± 5o at large time, long floaters show larger variations around ψ ' 90± 30o.
These larger excursions can be due to the fact that long floaters are more subject to
interactions with the side walls and to residual inhomogeneities in the mean flow.

The reorientation dynamics is faster for very short or very long floaters: they reach their
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Figure 3. (a) Asymptotic floater orientation as a function of Lx and wavelength λ, for floaters
with density β = 0.44, width Ly = 10 mm and thickness Lz = 5 mm. Red circles: longitudinal;
Blue triangles: transverse. Black squares indicate erratic oscillations of the floater angle or
non-reproducible experiments. The separation line is Lx =

√
`λ, with ` ' 16 ± 3 mm. (b)

Same data in the plan (F, ε), demonstrating the independence of the orientation with the wave
steepness ε. The long dashed line shows the experimental transition at Fc ' 50, and the short
dashed line the theoretical prediction at Fc = 60.

asymptotic orientation after approximately 5 wave periods only, while the convergence
is much slower (at least 20 wave periods) for intermediate lengths. This convergence rate
is illustrated in figure 2(b) for various floater lengths, showing the angular velocity ψ̇
measured at t = 0 normalized by the wave frequency ω (this ratio measures the fraction
of complete turn performed by the floater during one wave period). For this particular
floater density and thickness, ψ̇/ω crosses zero for Lx ' 75 mm, which defines the
critical length Lxc separating the longitudinal and transverse orientations. Because of
the slow dynamics at the crossover, the orientation is very sensitive to any experimental
uncertainty for Lx close to Lxc, such as the precise choice of the the initial angle ψ0,
inhomogeneities in the streaming flow, or small defects in the wetting line.

We have systematically determined the asymptotic yaw angle for various floater lengths
Lx, wave lengths λ and amplitudes a. The preferential orientation of the floaters is first
summarized in the plan (Lx, λ) in figure 3(a). When the asymptotic angle is ψ ' 0±10o,
floaters are labeled as “longitudinal” (red circles), and when ψ ' 90 ± 30o they are
labeled as “transverse” (blue triangles). Floaters with indistinct orientation are marked
with a black square. This diagram shows a clear separation between the longitudinal
and transverse orientations, with a transition line well described by a square-root law,
Lxc '

√
`λ, with ` ' 16± 3 mm a fitting parameter.

This square-root law nicely conforms to the prediction of the asymptotic theory
presented in the next section, which demonstrates that the preferential orientation is
independent of the wave slope ε = ka and governed by the non-dimensional number
F = kL2

x/βLz, with a longitudinal-transverse transition at Fc = 60. To check these
predictions, we plot in figure 3(b) the same data in the (F, ε) plane. We observe a clear
separation between the longitudinal and transverse orientations, delimited by the line
F ' 50, in fair agreement with the theory.

To further test the theory, we performed additional experiments with different floater
densities β and thicknesses Lz, covering a range of immersion depths h = βLz between
1.8 and 5.3 mm. For each wavelength λ, we determine the critical floater length Lxc
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Figure 4. Critical values of F = kL2
x/βLz for the L-T transition as a function of the wavelength,

for floaters of various densities β and thicknesses Lz. Solid line: average value F ' 45±10. Dashed
line: theoretical prediction Fc = 60.

separating the longitudinal and transverse orientation, defined as the average between the
largest longitudinal and smallest transverse floaters (the uncertainty on Lxc is 10 mm).
Figure 4 summarizes the values of F at the transition as a function of the wavelength,
yielding again a constant value, F ' 45±10. We can conclude that the two key predictions
of the theory (floater orientation governed by F and independent of the wave slope ε)
are well verified by our experiments.

3. Inviscid Froude Krylov model

To model the preferential state of orientation, we could in principle compute the mean
yaw moment using existing models, either using the far-field approach of Newman (1967),
the near-field approach of Faltinsen (1980) or the middle-filed approach of Chen (2007).
Here, we derive a more basic numerical model for idealised floater motion, that is based
on the Froude-Krylov assumption. We demonstrate that this model reproduces well our
experimental observations and hence, that it contains much of the essential physics.

3.1. Simplifying assumptions

The idealised model that we will use to explain preferential orientation relies on the
following simplifying assumptions:

(i) The incoming wave is a linear, inviscid potential gravity wave in deep water – The
linearity assumption is reasonably satisfied in the experiments (maximum wave slope
ε = ka = 0.23); the deep-water assumption is not fully satisfied (tanh(kH) ' 0.65 for
the largest wave-length), but this is not essential to the theory.

(ii) Viscosity is negligible – The viscous stress on the floater is of the order ηaω/δs,
where δs = (ν/ω)1/2 is the thickness of the Stokes boundary layer. This viscous stress is
much smaller than the wave pressure variations, p ∼ ρaω2/k, for νk2/ω � 1, which is
well satisfied in the experiments: νk2/ω < 2× 10−4.

(iii) Capillarity is negligible – The capillary length, `c =
√
ρg/γ ' 2 mm (with γ the

surface tension), is smaller than the characteristic floater size in our experiments. Note
however that the meniscus at the rim of the floater likely creates an effective shape and
may also weakly change the equilibrium immersion depth h.
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Lx
Ly

Lz

Figure 5. (a) Sketch of the floater and notations: laboratory frame (O, x, y, z), moving floater
frame (C, x̃, ỹ, z̃), and Euler angles θ (pitch), φ (rall) and ψ (yaw). In the simulation, we
numerically calculate the pressure force and torque on the submerged surface Ssub using
rectangular meshes on each face and a mask function f that indicates whether the point on the
face is submerged or not. (b) Free vertical oscillations of zc at the bobbing frequency

√
1/βδz

in a numerical test-case without incoming wave

(iv) Steady streaming flows are negligible – The steady streaming flows is a nonlinear,
mean flow correction of order O(ε2) that comes along with the linear wave. This mean
flow can affect reorientation, but only if it is inhomogenous at the scale of the floater.
Steady streaming flows typically vary spatially on the scale k−1. Hence, with δ = kL� 1,
we expect a weak effect of streaming on the floater orientation.

(v) Wave scattering and wave emission are neligible (Froude-Krylov approximation)
– In principle, floaters placed in an incoming wave act as obstacles and scatter this
incoming wave. They can also move differentially with respect to the flow and hence
emit waves. However, we can neglect these effects when the floater is small with respect
to the wavelength and when differential motion is weak:

δ = kL� 1 ,
||u− v||
||u||

� 1, (3.1)

with u the fluid velocity and v floater velocity. We therefore assume that the floater only
moves due to pressure forces and torques associated with the incoming wave.

The Froude-Krylov approximation is the most important assumption in our model. By
neglecting the wave emission, we filter out radiative losses and added mass effects. As a
result, free “bobbing” oscillations of the floater around the equilibrium position are not
damped in our model. In practice, we avoid these free oscillations in our calculations using
a particular initialisation strategy that will be detailed below. Another consequence of the
absence of dissipation is that, as for an undamped pendulum, the equilibrium states must
be either unstable or marginally stable. In our simulations, the yaw angle ψ will oscillate
around the stable fixed point, rather then converging towards it as in the experiments.

3.2. Equations of motion

We derive equations of motion for a small parallepiped floater drifting on a propagating
gravity wave on infinitely deep water. We introduce a laboratory frame of reference
(O, x, y, z), with (ex, ey, ez) basis vectors (figure 5). By convention, the origin O is on
the equilibrium fluid surface and the wave propagates along x and is y-invariant.

We use as incoming gravity wave the classical, linear potential wave solution on
infinitely deep water

ζ = a sin(kx−ωt),
{
ux = aωekz sin(kx− ωt)
uz = −aωekz cos(kx− ωt) , p = p0−ρgz+ρgaekz sin(kx−ωt).

(3.2)
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Preferential orientation of floaters drifting in water waves 9

Here ζ is the surface elevation, ux, uz, p the velocity components and pressure, p0 the
atmospheric pressure, and ω =

√
gk. In the following, we non-dimensionalise space, time,

velocity and pressure using the scales

[r] = k−1 , [t] = (gk)−1/2 , [u] = g1/2k−1/2 , [p] = ρgk−1. (3.3)

In this unit system, Eqs. (3.2) become

ζ = ε sin(x− t),
{
ux = εez sin(x− t)
uz = −εez cos(x− t) , p = p0 − z + εez sin(x− t), (3.4)

and the wave slope ε = ka� 1 is the only remaining parameter. In line with the Froude-
Krylov assumption, we ignore the flow and pressure corrections caused by differential
motion of the floater: only the incoming wave affects the floater motion in this model.

The floater is a rectangular parallelepiped with non-dimensonal density β, non-
dimensional length, width and height (δx, δy, δz) = (kLx, kLy, kLz), and we assume
that δx,y,z � 1. We introduce a material frame (C, x̃, ỹ, z̃) co-moving with the floater,
with C at the center of mass and the unit vectors (ẽx(t), ẽy(t), ẽz(t)) aligned with the
long, medium and short axes (figure 5). The instantaneous position of the floater is
determined by the 3 coordinates xc(t), yc(t), zc(t), with

rc(t) = OC(t) = xc(t)ex + yc(t)ey + zc(t)ez, (3.5)

and its orientation by the three Euler angles of roll ϕ(t), pitch θ(t) and yaw ψ(t). These
Euler angles define the transform that links the laboratory frame to the floater frame,
and in our angle convention (see Appendix A) we have ex

ey
ez

 =

 cψcθ (cψsθsϕ − sψcϕ) (cψsθcϕ + sψsϕ)
sψcθ (sψsθsϕ + cψcϕ) (sψsθcϕ − cψsϕ)
−sθ cθsϕ cθcϕ


︸ ︷︷ ︸

RT

 ẽx
ẽy
ẽz

 . (3.6a)

Here and further we denote in short cψ = cosψ, sψ = sinψ and similar for the other
angles. This transform is easily inverted because R is an orthogonal matrix R−1 = RT .
Components of a vector A and the coordinates of the laboratory and floater frame are
also connected by this matrix, Ax

Ay
Az

 = RT

 Ãx
Ãy
Ãz

 ,

 x− xc
y − yc
z − zc

 = RT

 x̃
ỹ
z̃

 . (3.6b)

By definition, the floater moves as a solid. This means that an arbitrary point r of the
floater has velocity

v = vc(t) +Ω(t)× (r − rc(t)), (3.7)

with vc(t) = ṙc(t) the translation velocity of the center of mass and Ω(t) the instanta-
neous rotation velocity. We decompose vc(t) in the lab-frame andΩ(t) in the floater frame
and kinematically link these components to the derivatives of the coordinate functions
by the relations ẋc

ẏc
żc

 =

 vc,x
vc,y
vc,z

 ,

 ϕ̇

θ̇

ψ̇

 =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0
sinϕ

cos θ

cosϕ

cos θ


 Ω̃x
Ω̃y
Ω̃z

 . (3.8)
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10 W. Herreman, B. Dhote, L. Danion, F. Moisy

The formula for the angles is non-trivial and depends on the convention used to define
the angles (details given in Appendix A).

We now define the floater dynamics. From Newton’s law and the angular momentum
theorem for the floater, we have

mv̇c = F ,
d

dt
(I ·Ω) = K, (3.9)

with m = βδxδyδz the non-dimensional mass of the floater and I the non-dimensional
inertia tensor. The principal moments of inertia of the rectangular parallelepiped are

Ĩxx =
m(δ2y + δ2z)

12
, Ĩyy =

m(δ2z + δ2x)

12
, Ĩzz =

m(δ2x + δ2y)

12
. (3.10)

In our model, the floater is subject to gravity and to pressure forces and torques, given
in non-dimensional form by

F =

∫
Ssub

(p− p0) dS −mez , K =

∫
Ssub

(r − rc)× (p− p0) dS, (3.11)

with dS orientated towards the floater, and Ssub the (time-dependent) submerged surface
of the floater. In the Froude-Krylov approximation, the pressure p is that of equation (3.4)
which contains a hydrostratic part and a dynamical part associated with the purely
hydrodynamic, incoming wave (pressure corrections due to scattered and emitted waves
are ignored in this model).

The previous surface integral formulation is used in the numerical simulations, but in
the theory, we have found it easier to use an alternative, equivalent formulation of F and
K in terms of volume integrals over the submerged volume Vsub. In equation (3.11), we
can replace dS = −dSext so that the surface element is pointing from the floater towards
the fluid. Using then the divergence theorem and the fact that ∂tu+ ez = −∇p for the
incoming linear wave we obtain the alternative formula

F =

∫
Vsub

a dV +

(∫
Vsub

dV −m
)
ez (3.12a)

K =

∫
Vsub

(r − rc)× a dV +

∫
Vsub

(r − rc)× ez dV, (3.12b)

with a = ∂tu the local fluid acceleration. These formulas show better the leading
Archimedes balance that defines the floater equilibrium in absence of waves (a = 0).
Notice also that with ay = 0 for the incoming y-invariant wave, we also have Fy = 0: in
this model, floaters will never be displaced along y and hence yc remains constant.

We decompose Newton’s law in the laboratory frame and the angular momentum
equation in the floater frame. Using the fact that the material frame rotates along with
the floater, i.e. that ˙̃ei(t) = Ω(t)× ẽi(t), we obtain mv̇x,c

mv̇y,c
mv̇z,c

 =

 Fx
Fy
Fz

 ,

 Ĩxx
˙̃
Ωx

Ĩyy
˙̃
Ωy

Ĩzz
˙̃
Ωz

 =

 K̃x + (Ĩyy − Ĩzz)Ω̃yΩ̃z
K̃y + (Ĩzz − Ĩxx)Ω̃zΩ̃x
K̃z + (Ĩxx − Ĩyy)Ω̃xΩ̃y

 . (3.13)

We recognise the Euler equations for the rotation speed. Equations (3.13) combined with
the kinematic relations (3.8) define a first order system of 12 differential equations. If we
provide an initial state for the floater position and speed, we can numerically integrate
this system forward in time.

In the absence of waves, ε = 0, we expect the floaters to be in equilibrium, with F = 0
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Preferential orientation of floaters drifting in water waves 11

and K = 0. Due to symmetry of the floater, we expect the Archimedes torque to vanish
for a perfectly leveled, flat floater. From the Archimedes force balance, we can calculate
the equilibrium submersion depth as h = βδz. The floater center C is exactly δz/2 above
the bottom face of the floater. Hence, at equilibrium, we have floater coordinates

xc, yc , ψ arbitrary , zc =

(
1

2
− β

)
δz , θ = ϕ = 0. (3.14)

Here and further, we use bars to denote equilibrium positions.

3.3. Numerical simulations

To obtain a numerical solution to the specified equations of motion, we use the
standard Runge-Kutta 4th order explicit numerical scheme. The numerical calculation
of the surface integrals (3.11) that define F and K is non-trivial because the submerged
surface Ssub varies in time. We use the following procedure to compute these integrals
(see sketch of figure 5). On each of the six faces of the floater surface, we define
two-dimensional rectangular meshes that contain x̃, ỹ, z̃ coordinates on those faces. To
evaluate the force components Fx, Fy, Fz at a given time t, we use a loop that visits
all six faces. On each face, we then first calculate the lab-frame (x, y, z) coordinates of
the points on that face, using the coordinate transform (3.6b) and the present position
xc(t), yc(t), zc(t), ϕ(t), θ(t), ψ(t). With these lab-frame coordinates, we can then evaluate
the pressure (p − p0) on that face using (3.4). To handle the fact that the faces can
be totally, partially or not submerged, we introduce an indicator function f = (1 +
tanh((ζ(x, t)−z)/l)/2, with l a length over which the interface is smoothed. This function
is equal to 1 in the liquid and 0 in the air and hence, the product (p− p0)f is only non-
zero on the submerged points of that face. Using a two-dimensional quadrature rule and
the numerical values of (p− p0)f on the face, we can then compute the surface integral
on that face. Each face gives a local contribution to the force in the direction of the
local inward normal dS, so after having visited all 6 faces, we obtain the components
F̃x, F̃y, F̃z in the floater frame. Using the transform (3.6a) we then finally obtain the

force components Fx, Fy, Fz in the lab frame. The torque components K̃x, K̃y, K̃z are
calculated in the same way.

We have done several static and dynamical tests in the absence of waves (ε = 0). In the
static tests, we validated the calculation of F andK on floaters that were submerged and
rotated to positions for which we could easily compute the force and torque analytically.
In the dynamical tests, we used the code to reproduce sustained free oscillations of
the floaters. When we release the floater slightly off an equilibrium position (3.14), we
expect free “bobbing” oscillations in the vertical zc or angular θ, ϕ coordinates, of non-
dimensional frequencies (Falnes & Kurniawan 2020)

ωz =

√
1

βδz
, ωθ =

√
1

βδz

(
δ2x + 6β(β − 1)δ2z

δ2x + δ2z

)
, ωϕ =

√
1

βδz

(
δ2y + 6β(β − 1)δ2z

δ2y + δ2z

)
.

(3.15)
Figure 5(b) shows an example of timeseries for free vertical oscillations in zc, for a floater
with β = 0.5 released slightly above its equilibrium position zc = 0. As illustrated in the
figure, the expected oscillatory motion zc = A cos(ωzt) is accurately reproduced by our
code.

The free oscillations in zc, θ, ϕ are useful to test the code but do not reflect the
behavior of the floaters in our experiment. Restricting to floaters much smaller than
the wavelength, δ � 1, implies that the bobbing frequencies (3.15) are much larger than
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12 W. Herreman, B. Dhote, L. Danion, F. Moisy

Figure 6. Time series for yaw angle for numerically simulated floaters with β = 0.44,
Ly = 10 mm, Lz = 5 mm and Lx varying from 30 to 120 mm. The incoming wave has wavelength
λ = 0.29 m and ε = ka = 0.16, as in the experiments of figure 2. The L-T transition occurs near
Lxc ≈ 75 mm, in good agreement with the experiments.

the incoming wave frequency (ω = 1 in non-dimensional units). Accordingly, such fast
bobbing oscillations are never resonant, and are expected to be rapidly damped in the
experiments, either by viscous friction or radiation loss. Since no damping is included
in the simulations, we need to minimize these parasitic bobbing excitations. We use
for this the following strategy: At time t = 0, we place the floater at its equilibrium
position (3.14), and gradually ramp up the wave amplitude in time, by replacing ε by
ε(1 − exp(−t/T )) in the definition of pressure and surface height (3.4). Practice shows
that with T = 15 × 2π, we can keep the fast bobbing oscillations of the floater motion
at low amplitude while capturing the slow dynamics induced by the wave motion.

We now consider numerical solutions for the floater motion in presence of an incoming
wave. In figure 6, we show time series of the yaw angle ψ(t), for the same experimental
conditions used in figure 2: floater size Ly = 10 mm, Lz = 5 mm and Lx varying from 30 to
120 mm, density ratio β = 0.44, wavelength λ = 0.29 m and wave steepness ε = ka = 0.16,
initial yaw angle ψ0 = 45o. After a transient of typically 15 wave periods given by the
ramp in the wave amplitude, the yaw angle ψ shows fast oscillations (of period 2π), that
corresponds to the back and forth motion of the floaters, superimposed to slow oscillations
around either the longitudinal position ψ = 0o for short floaters or the transverse position
ψ = 90o for long floaters. The fast oscillations were not visible in figure 2(a) where the
yaw angle measurement was synchronised at the wave frequency. The slow oscillations
reflect the marginal stability of the fixed points in this dissipationless model. Apart from
these differences, the numerical curves show a L-T transition somewhere in between Lx =
70 mm and 80 mm, in excellent agreement with the experimental transition estimated
at Lxc = 75 mm for this set of floaters.

We have repeated the simulations for more than 500 floaters, with parameters varied in
broad ranges and even slightly beyond the ε, δ � 1 limit for which our model is designed:
β ∈ [0.03, 0.97], δx ∈ [0.004, 5.43], δy ∈ [0.01, 0.36], δz ∈ [0.007, 0.29], ε ∈ [0.01, 0.33]. We
summarize the preferential floater orientation in figure 7 using the same representation
(F, ε) as in the experiments (Fig. 3). The L-T transition is clearly located at Fc = 60
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Preferential orientation of floaters drifting in water waves 13

Figure 7. Preferential state of orientation in the (F, ε) plane according to the numerical
simulations. More than 500 numerical simulations have been performed for varying β, δx, δy, δz, ε,
showing an excellent agreement with the theoretical prediction Fc = 60.

with no dependence in ε, in excellent agreement with the asymptotic theory developed
in the next section.

4. Asymptotic description of floater motion

The main objective of this section is to use asymptotic theory to derive the nonlinear
evolution equation (1.1) for the slow motion of the yaw angle ψ in the limit of ε, δ � 1,
and to prove that the criterion (1.2) describes the L-T transition.

Let us start by specifying how the floater motion is decomposed in this theory. Without
wave, ε = 0, the floater is in its equilibrium position (3.14). With a low amplitude wave,
ε� 1, deviations from equilibrium can be parametrized as xc = xc(τ) + x′c(t) +O(ε2)

yc = yc
zc = zc + z′c(t) +O(ε2)

,


θ = 0 + θ′(t) +O(ε2)
ϕ = 0 + ϕ′(t) +O(ε2)

ψ = ψ(τ) + ψ′(t) +O(ε2)
(4.1)

Next to ”mean” parts (bars) that are of order O(1), we find smaller O(ε) ”oscillations”
that vary on the rapid time-scale t of the wave (primes). We also admit that xc, ψ can
vary on a long time-scale τ = t/ε. The coordinate yc needs no further consideration as it
remains constant in this Froude-Krylov model. In the calculation, we will first find the
O(ε) deviations x′c(t), z

′
c(t), ϕ

′(t), θ′(t), ψ′(t), that carry the harmonic, linear response of
the floater to the incoming wave. With this we can compute the second order, O(ε2)
torque that defines the evolution equations of the yaw angle ψ(τ).

The fact that roll and pitch angles ϕ, θ always remain close to 0 allows to simplify
(linearize) all the dependencies on these angles: sθ ≈ θ′ + O(ε3), cθ ≈ 1 + O(ε2), sϕ ≈
ϕ′ +O(ε3), cϕ ≈ 1 +O(ε2). The transform formula (3.6) then reduces to ex

ey
ez

 =

 cψ −sψ (cψθ
′ + sψϕ

′)
sψ cψ (sψθ

′ − cψϕ′)
−θ′ ϕ′ 1


︸ ︷︷ ︸

RT

 ẽx
ẽy
ẽz

+O(ε2) (4.2)

and similar for the transform formula for vector components and coordinates in both
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14 W. Herreman, B. Dhote, L. Danion, F. Moisy

frames [see equation (3.6b)]. Up to O(ε2), we can define the inverse transforms with the
transposed matrix R.

Let us now write a preliminary version of the evolution equations that determine these
variables. For the first order deviations x′c, z

′
c, ϕ
′, θ′ we have

mẍ′c = F ′x , mz̈′c = F ′z , Ĩxxϕ̈
′ = K̃ ′x , Ĩyy θ̈

′ = K̃ ′y (4.3)

The forces F ′x, F
′
y and torques K̃ ′x, K̃

′
z contain the linearized, O(ε) part of the total force

and torque, and we explain below how they are calculated in practice. The evolution
equation for the yaw angle ψ needs to be defined at order O(ε2) and this requires some

attention. With small θ, ϕ, we have sϕ ≈ ϕ′, Ω̃x ≈ ϕ̇′ and Ω̃y ≈ θ̇′ at O(ε). From
Eqs. (3.8) and (3.13) we then get that the equations

ψ̇ = Ω̃z + ϕ′ θ̇′ +O(ε3) , Ĩzz
˙̃
Ωz = K̃z + (Ĩxx − Ĩyy)ϕ̇′θ̇′. (4.4)

define the order O(ε2) description of yaw angle. These equations contain many different
terms and so the description of the second order motion of the yaw angle seems rather
complex. We remark the following simplification. Using the transform (4.2), the fact that

K̃x = K̃ ′x + O(ε2), K̃y = K̃ ′y + O(ε2) and the evolution equations (4.3), we can rewrite

the torque component K̃z as

Kz = −θ′K̃x + ϕ′K̃y + K̃z ⇒ K̃z = Kz + Ĩxxϕ̈
′θ′ − Ĩyyϕ′θ̈′. (4.5)

If we inject this expression of K̃z into the second equation of (4.4) and use the first one

to eliminate Ω̃z = ψ̇ − ϕ′ θ̇′, we obtain the following equation for ψ:

Ĩzzψ̈ = Kz +
d

dt

(
Ĩxxϕ̇

′θ′ − Ĩyyϕ′θ̇′ + Ĩzzϕ
′ θ̇′
)

︸ ︷︷ ︸
second order harmonics ∼ e±i2t

+O(ε3). (4.6)

In the right hand side, we find Kz, the vertical torque component in the lab-frame,
next to a term d/dt(. . .) that is a time-derivative of O(ε2) products. In the evolution
equation, this term can only produce harmonics with frequency ±2, but no terms that
are stationary. As a consequence, this group of terms cannot create mean motion in ψ.
Of order O(ε2), this term d/dt(. . .) will also have no effect on the O(ε) rapid motion of ψ′.
In summary, this just means that we can derive the equations for the yaw angle variables
ψ and ψ′ from the balance Ĩzzψ̈ ≈ Kz and this is a very significant simplification with
respect to what we initially had in (4.4).

To separate the rapid from the slow motion, we still need to split the torque Kz into
a rapidly varying O(ε) fluctuating part and slowly varying O(ε2) mean part. We denote
this as

Kz = Kz +K ′z +O(ε3). (4.7)

The part K ′z is of order O(ε) and oscillates on the time-scale of the wave. The part Kz

is of order O(ε2) and is stationary on the rapid time-scale of the wave. Calculating this
torque up to second order is the main difficulty in the asymptotic theory, but once we
have it, the equations of motion for the yaw angle variables are as simple as

Ĩzzψ̈
′ = K ′z , Ĩzzψ̈ = Kz. (4.8)

A preliminary version of the necessary evolution equations has now been specified,
but we still need to calculate the force and torque components F ′x, F

′
z, K̃

′
x, K̃

′
y,K

′
z,Kz

analytically. We start from the volume formulation (3.12) of F and K. Analytical
evaluation of these volume integrals is not simple for several reasons: (i) the submerged
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Preferential orientation of floaters drifting in water waves 15

volume Vsub, is continuously changing in time and this motion needs to be parametrised
in floater frame coordinates (x̃, ỹ, z̃), (ii) integrands are easily expressed in lab-frame
coordinates (x, y, z), but need to be expressed in floater frame coordinates. Both problems
can be handled by making use of the assumption that the floater is small with respect
to the wavelength. This allows to Taylor expand fields near the floater and in practice,
to calculate the integrals.

Let us first explain how we handle problem (i), how we parametrise the volume
integrals. In all calculations, we use∫

Vsub

. . . dV =

∫ δx/2

−δx/2

∫ δy/2

−δy/2

∫ ζ̃(x̃,ỹ,t)

−δz/2
. . . dx̃ dỹ dz̃. (4.9)

We introduce here a new function, ζ̃(x̃, ỹ, t), that defines the height of the water surface
as seen in the floater frame. This way of calculating the integral implicitly supposes that
the top face of the floater is never partially submerged (ζ̃ < δz/2) and that the bottom

face is always totally submerged (ζ̃ > −δz/2) through the motion. This is a sensible
approximation for low ε and intermediate values of β. When β gets too close to 0 (very
light floaters) or 1 (equal density floaters) we expect some discrepancies. Considering
that the floater is supposed small with respect to the wavelength, we now construct
ζ̃(x̃, ỹ, t) as a polynomial approximation, locally adapted near the floater. We start by
Taylor expanding the surface elevation in the lab-frame ζ(x, t) around xc,

ζ(x, t) = ζc + (x− xc)∂xζc +
(x− xc)2

2
∂2xxζc +

(x− xc)3

6
∂3xxxζc + . . . (4.10)

The index c is used to express that the field is evaluated at the center of the floater C,
e.g. ζc = ζ(xc, t) = ε sin(xc − t), ∂xζc = ∂xζ|x=xc = ε cos(xc − t), etc. We inject this
Taylor expansion in the equation z = ζ(x, t) that defines the free surface and we replace
both z ≈ zc + (−θ′x̃+ ϕ′ỹ + z̃) and x− xc ≈ cψx̃− sψ ỹ +O(ε), the leading order parts

of the coordinate transform formula (4.2). Reorganising this equation into z̃ = ζ̃(x̃, ỹ, t)
allows to identify

ζ̃(x̃, ỹ, t) = −zc︸︷︷︸
O(δ)

−z′c + ζc︸ ︷︷ ︸
O(ε)

+ (θ′ + cψ∂xζc)x̃+ (−ϕ′ − sψ∂xζc)ỹ︸ ︷︷ ︸
O(εδ)

(4.11)

+
1

2
(cψx̃− sψ ỹ)

2
∂2xxζc︸ ︷︷ ︸

O(εδ2)

+
1

6
(cψx̃− sψ ỹ)

3
∂3xxxζc︸ ︷︷ ︸

O(εδ3)

+O(ε2, εδ4)

For clarity, we group the terms that have same order of magnitude in terms of powers of
δ and ε. We do not always need all the terms in this expansion but at some moments we
do. With the function ζ̃(x̃, ỹ, t) known, we can split the integration over the submerged
volume Vsub in two parts:∫

Vsub

. . . dV =

∫ δx/2

−δx/2

∫ δy/2

−δy/2

∫ −zc
−δz/2

. . . dx̃ dỹ dz̃︸ ︷︷ ︸∫
V

(0)
sub

... dV= O(δ3)

+

∫ δx/2

−δx/2

∫ δy/2

−δy/2

∫ ζ̃

−zc
. . . dx̃ dỹ dz̃︸ ︷︷ ︸∫

V
(1)
sub

... dV= O(εδ3)

. (4.12)

The integral over V
(0)
sub covers the equilibrium submerged volume. The integral over V

(1)
sub

covers the O(ε) perturbation of submerged volume caused by the wave. In the theory, we
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only need an O(ε) approximation of this V
(1)
sub integral and then we can use∫

V
(1)
sub

f dV ≈
∫ δx/2

−δx/2

∫ δy/2

−δy/2
f(x̃, ỹ,−zc)

(
ζ̃(x̃, ỹ, t) + zc

)
dx̃ dỹ. (4.13)

as an approximation, where f is an arbitrary field.

Let us now explain how we handle problem (ii), i.e., how we express the integrands in
the floater frame coordinates. In the force and torque formula (3.12), we find the fields

ax = ∂tux = −εez cos(x− t) , az = ∂tuz = −εez sin(x− t) (4.14)

These fields depend on the lab-frame coordinates x, z but need to be expressed in terms
of x̃, ỹ, z̃ variables if we want to compute the integrals analytically. Also here, the idea
is to replace ax, az with polynomial approximations, valid near the floater. Using Taylor
series, we have

a = ac + (x− xc)∂xac + (z − zc)∂zac (4.15)

+
1

2
(x− xc)2∂2xxac +

1

2
(z − zc)2∂2zzac + (x− xc)(z − zc)∂2xzac +O(εδ3)

Replacing x− xc = cψx̃− sψ ỹ + (cψθ
′ + sψϕ

′) z̃ and z − zc = −θ′x̃+ ϕ′ỹ + z̃ from (4.2)
we get

a = a(1) + a(2) +O(ε3). (4.16a)

There is an O(ε) part

a(1) = ac︸︷︷︸
O(ε)

+ (cψx̃− sψ ỹ)∂xac + z̃∂zac︸ ︷︷ ︸
O(εδ)

(4.16b)

+
1

2
(cψx̃− sψ ỹ)2∂2xxac +

z̃2

2
∂2zzac + (cψx̃− sψ ỹ)z̃∂2xzac︸ ︷︷ ︸

O(εδ2)

and an O(ε2) part

a(2) = (cψθ
′ + sψϕ

′)z̃∂xac + (−θ′x̃+ ϕ′ỹ)∂zac︸ ︷︷ ︸
O(ε2δ)

(4.16c)

+

[
(cψx̃− sψ ỹ)(cψθ

′ + sψϕ
′)z̃∂2xxac + (−θ′x̃+ ϕ′ỹ)z̃∂2zzac

+
[
(cψx̃− sψ ỹ)(−θ′x̃+ ϕ′ỹ) + (cψθ

′ + sψϕ
′)z̃2

]
∂2xzac

]
.︸ ︷︷ ︸

O(ε2δ2)

This second order part a(2) is of no importance for the harmonic, linear response of the
floater to the wave. However, it does contribute to the second order mean torque Kz.

We now have explained all the mathematical tools that are needed to calculate the
force and torque components. Using the notations of the previous paragraphs, we use the
following formula to compute the O(ε) fluctuating forces and torques that appear in the
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Preferential orientation of floaters drifting in water waves 17

equations of motion (4.3):

F ′x =

(∫
V

(0)
sub

a(1)x dV

)
(xc,zc,ψ)

(4.17a)

F ′z =

(∫
V

(0)
sub

a(1)z dV +

∫
V

(1)
sub

dV

)
(xc,zc,ψ)

(4.17b)

K̃ ′x =

(∫
V

(0)
sub

(
ỹa(1)z + sψ z̃a

(1)
x − z̃ϕ′

)
dV +

∫
V

(1)
sub

ỹdV

)
(xc,zc,ψ)

(4.17c)

K̃ ′y =

(∫
V

(0)
sub

(
−x̃a(1)z + cψ z̃a

(1)
x − z̃θ′

)
dV +

∫
V

(1)
sub

(−x̃)dV

)
(xc,zc,ψ)

(4.17d)

To obtain the formula for these torque components, we have used r−rc = x̃ẽx+ỹẽy+z̃ẽz
and the fact that a = cψaxẽx − sψaxẽy + azẽz + O(ε2) in the floater frame, according
to the transform (4.2). In practice, the calculation of these integrals is not particularly
difficult as we only have to integrate polynomials. The subscript (xc, zc, ψ) expresses that
the formula, obtained after integration, needs to be evaluated at the equilibrium position
xc ≈ xc, zc ≈ zc and ψ ≈ ψ.

Remain the torque components Kz and K ′z that need to be calculated up to respective
orders O(ε2) and O(ε). Using the definition of Kz and the coordinate transform formula
for y − yc, we have

Kz = −
∫
Vsub

(y − yc)ax dV = −
∫
Vsub

(sψx̃+ cψ ỹ + (sψθ
′ − cψϕ′) z̃) ax dV +O(ε3).

Using the previous notations, we separate this torque in two parts Kz = K
(1)
z +K

(2)
z +

O(ε3) of respective orders O(ε) and O(ε2). We have

K(1)
z = −

∫
V

(0)
sub

(sψx̃+ cψ ỹ) a(1)x dV (4.18a)

K(2)
z = −

∫
V

(0)
sub

(sψθ
′ − cψϕ′) z̃a(1)x dV −

∫
V

(0)
sub

(sψx̃+ cψ ỹ) a(2)x dV −
∫
V

(1)
sub

(sψx̃+ cψ ỹ) a(1)x dV.

(4.18b)

These torques K
(1)
z and K

(2)
z are not yet the torques K ′z and Kz that enter the evolution

equations of ψ′ and ψ. The fluctuating torque is just

K ′z =
(
K(1)
z

)
(xc,zc,ψ)

(4.19)

which is equation (4.18a) evaluated at the equilibrium position. The O(ε2) mean torque
Kz is more subtle and has two parts

Kz =
(
K

(1)
z

)
(xc+x′c,zc+z

′
c,ψ+ψ

′)
+
(
K

(2)
z

)
(xc,zc,ψ)

(4.20)

The bars in the right hand side denote a time-average. The second term is just the time-

average of K
(2)
z evaluated at the equilibrium position. The first term is a ”drift”- like

contribution that can be understood in the same way as we understand the Stokes drift
phenomenon (Stokes 1847). As the floater moves along with the wave, goes through its
first order motion, it explores regions of slightly higher and lower velocity. On average,
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this can result in a net displacement (Stokes drift) and here, for our spatially extended
floaters, it also results in a weak O(ε2) mean torque. In practice, we calculate this ”drift”-
like torque by using a Taylor series around the equilibrium position (xc, zc, ψ). Up to order
O(ε2) we may use

Kz ≈
(
K

(1)
z

)
(xc,zc,ψ)︸ ︷︷ ︸
0

+

(
x′c
∂K

(1)
z

∂xc
+ z′c

∂K
(1)
z

∂zc
+ ψ′

∂K
(1)
z

∂ψ

)
(xc,zc,ψ)

+
(
K

(2)
z

)
(xc,zc,ψ)

.(4.21)

The first term vanishes because we are taking the time-average of K ′z that is by con-
structing a quantity that fluctuates on the time-scale of the wave. The second group
caries the mean effective torque and requires the first order motion x′c, z

′
c, ψ
′.

The integrals defining F ′x, F
′
z, K̃

′
x, K̃

′
y,K

′
z,Kz or now clearly defined but one question

remains. We still need to estimate to which order in δ we must push all the Taylor series
that we use to approximate ζ̃ and the fields a(1), a(2) in the integrands. Considering the
equations of motion (4.3) and (4.8), and the fact that m = O(δ3) and I = O(δ5), we
deduce that we needed to calculate

F ′x, F
′
z up to order O(εδ4)

K̃ ′x, K̃
′
y,K

′
z up to order O(εδ6) (4.22)

Kz up to order O(ε2δ6).

The idea is that this should give access to the leading, O(ε) description of x′c, z
′
c, ϕ
′, θ′, ψ′,

O(ε2) description of ψ, but also to floater shape-related corrections of respective orders
O(εδ) and O(ε2δ). In the limit δ � 1, these shape-corrections seem much smaller but this
is without considering that these O(εδ) and O(ε2δ) terms are actually taking the form of
O(εδ2x/βδz) and O(ε2δ2x/βδz) terms. For strongly elongated floater, we can easily have

δ2x
βδz
∼ 1 (4.23)

and in that case, the shape related corrections may become as large or even larger
than the so-called leading order terms. This is precisely what happens at the L-T
transition and a theoretical pain in the neck: we really need to push the calculation
of the forces and torques to the orders of (4.22), otherwise we will miss the terms that
stabilise the transverse equilibrium. This, on the contrary is too much and results in very
long, unpractical formula. In our view, the best way, in between calculating no shape-
related corrections and all shape related correction, is to add an extra assumption. In
the experiment, all the floaters are flat and this means that

δx, δy � δz (4.24)

is a fair assumption. By exploiting this information in the calculation of the forces and
torques we can ignore (i) all O(δz) terms with respect to O(1) terms, (ii) all O(δ2z)
terms with respect to O(δ2x, δ

2
y) terms. This greatly simplifies the theory and produces

a physically relevant result. We can in fact, even further simplify the model by taking
into account that our floaters are also very elongated δx � δy in our experiments. This
will be done at the end, but in our calculation, we have found it useful to keep δx, δy at
similar magnitude as it produces more symmetrical formula that allow supplementary
checks. For now, we continue our presentation with the flat floater assumption (4.24).

Once F ′x, F
′
z, K̃

′
x, K̃

′
y,K

′
z are found, we immediately have the differential equations for

the first order motion x′c, z
′
c, ϕ
′, θ′, ψ′. Solving these differential equations is rather trivial
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and yields the harmonic response

x′c ≈ ε cos(xc − t) (4.25a)

z′c ≈ ε
(

1− 1

24

(
c2ψδ

2
x + s2ψδ

2
y

))
sin(xc − t). (4.25b)

ϕ′ ≈ −εsψ

(
1−

(
s2ψ
δ2y
40

+ c2ψ
δ2x
24

))
cos(xc − t) (4.25c)

θ′ ≈ −εcψ

(
1−

(
c2ψ
δ2x
40

+ s2ψ
δ2y
24

))
cos(xc − t) (4.25d)

ψ′ ≈ ε

(
δ2x − δ2y
δ2x + δ2y

)
sψcψ sin(xc − t), (4.25e)

Let us interpret these equations. At leading O(ε) order, we find in x′c and z′c that the
floater oscillates around its mean position, just as a material particle on the wave-surface
would do. Although this is less trivial to see, the leading O(ε) expressions for the angles
ϕ′, θ′ are such that the flat floater rotates so to align with the local wave slope (imagine
the rotation of a surfboard on a long wavelength wave that passes). The yaw angle ψ′

rocks back and forth around the mean value and thus the more for sufficiently elongated
floaters with δx � δy and for ψ close to 45o. Next the leading O(ε) terms, we also have
some smaller, shape-related corrections of order O(εδ2x, εδ

2
y) in the z′c, ϕ

′, θ′ variables.
These corrections may seem utterly small but we really can not ignore them. Physically,
they are due the fact that the water surface is not perfectly flat at the scale of the
floater. This waterline curvature induces small modification in the buoyancy force that
affect the force F ′z and the torques K̃x, K̃y. In particular the O(εδ2x) correction in z′c is
essential in this problem: without it, we just cannot explain why long floaters prefer the
transverse equilibrium. In section 5 we provide a more physical understanding of what
this correction actually captures.

With the first order motion specified, we can continue to next order. The evaluation
of the second order mean torque Kz is a difficult and technical part in this calculation
(some elements are provided in Appendix B). More important is that for flat floaters
with δx, δy � δz, we obtain the following nonlinear equation of motion for the slowly
varying yaw angle

ψ̈ = ε2

sψc3ψ
− (δ2x − δ2y)δ2x

(δ2x + δ2y)2
+

δ4x
60
−
δ2xδ

2
y

48
βδz(δ2x + δ2y)

− s3ψcψ
− (δ2y − δ2x)δ2x

(δ2x + δ2y)2
+

δ4y
60
−
δ2xδ

2
y

48
βδz(δ2x + δ2y)


(4.26)

We can separate a common factor sψcψ in the right hand side and because of this term,
we know that longitudinal (ψ = 0o) and transverse (ψ = 90o) positions are equilibria. We
can also verify how this equation incorporates a fundamental symmetry: if we exchange
δx ↔ δy and rotate the angle ψ → ψ + π/2, then the rectangular floater is in the same
physical state. When δx = δy, a new fixed point emerges at ψ = 45o, but the idea of
preferential orientation then looses its interest.

The equation for the slow evolution of yaw angle can be used to discuss the stability
of the L and T states. However, this discussion becomes even simpler with the extra
assumption of very elongated floaters: δx � δy � δz. Ignoring all O(δ2y) terms with
respect to O(δ2x) terms, we can simplify (4.26) further to find the equation of motion
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(1.2) already mentioned in the introduction

δx � δy � δz : ψ̈ = −ε2sψc3ψ
(

1− δ2x
60βδz︸ ︷︷ ︸
F/Fc

)
. (4.27)

This confirms that the non-dimensional number

F =
δ2x
βδz

=
kL2

x

βLz
(4.28)

is the control parameter that sets the preferential state of orientation. When F = Fc = 60,
the right hand side changes change sign and this is indicative of a global change in
stability. To see this better, we rewrite the equation in conservative form

ψ̈ = = −dV (ψ)

dψ
, V (ψ) =

ε2

4

(
−1 +

F

Fc

)
c4ψ. (4.29)

This equation tells us that the slow motion of the yaw angle is analogous to that of a
particle in a potential well V (ψ) ∼ cos4 ψ. For short floaters with F < Fc = 60, the
longitudinal position of ψ = 0o is the minimum of the potential and hence the stable
state. For long floaters with F > Fc, the situation flips and the transverse equilibrium,
ψ = 90o becomes the potential minimum and the stable state, in excellent agreement
with the experiments (figure 3) and the numerical simulations (figure 7).

5. Simplified model and physical interpretation

The asymptotic approach already provided some physical insights, but the calculation
of the second order torque Kz is so technical that much of the simpler physics remains
hidden. In this section, we show how to find the evolution equation for ψ much more
rapidly, by bringing in some physical ideas earlier on in the calculation.

We recall that both the rapid and slow motion of yaw angle ψ are controlled by the
torque component

Kz = ez ·
∫
Vsub

(r − rc)× a dV = −
∫
Vsub

(y − yc) ax dV, (5.1)

with ax = −εez cos(x−t). Evaluating this integral is the main difficulty in the theory and
there are numerous contributions that all need careful consideration (see Appendix B).
We have seen at the end of the previous section that the limit of strongly elongated floaters
δx � δy � δz is clearly adapted to capture the preferential orientation phenomenon, so
let us exploit this information directly. If the floater is indeed thin (along z̃) and not
wide (along ỹ), we can simply ignore the ỹ and z̃ variations in this torque integral and
simplify it to

Kz ≈ −
∫ +δx/2

−δx/2
(y − yc) ax δy

(
ζ̃ +

δz
2

)
︸ ︷︷ ︸

h̃(x̃,t)

dx̃. (5.2)

For this formula to make sense, we must express (y − yc)ax in terms of floater frame
coordinates and ignore the ỹ and z̃ variations. We also need to find the local submersion
depth h̃(x̃, t) = ζ̃ + (δz/2) along the long x̃-axis of the floater. To get this done, we use
a simplified coordinate transform. From (4.2) and ignoring all dependencies along ỹ and
z̃, we find that

x ≈ xc + cψ x̃, y ≈ yc + sψ x̃, z ≈ zc − θ′x̃ (5.3)
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along the long axis of the floater. The lever arm is then y−yc ≈ sψ x̃. The dependence of
the field ax on x̃ can be found by injecting this coordinate transform in the theoretical
expression. Then, making use of a Taylor expansion we get

ax ≈ −εezc−θ
′x̃ cos(xc + cψx̃− t)

≈ −ε (1 + zc − θ′x̃) (cos(xc − t)− cψx̃ sin(xc − t)) + . . . (5.4)

up to O(ε2). To find the local submersion depth h̃(x̃, t), we ignore the ỹ-dependencies in

the general definition of ζ̃ in (4.11). We also use the fact that −zc + (δz/2) = βLz = h is
the equilibrium submersion depth. In this way, we find that the local submersion depth
h̃(x̃, t) along the floater long axis is

h̃(x̃, t) ≈ h+ (−z′c + ε sin(xc − t)) + (θ′ + εcψ cos(xc − t)x̃−
ε

2
c2ψx̃

2 sin(xc − t). (5.5)

The wave surface at the scale of the floater is here approximated by a second order
polynomial and this is sufficient in this simplified model (we do not need the third
derivate terms). In this expression, we need to insert the first order motion z′c and θ′.
We already know the first order motion from the asymptotic theory, but let us show
how we can alternatively find this motion using some simpler physical arguments. In the
pressure force and torque, the buoyancy terms are the largest ones, much larger than the
dynamical pressure terms. Hence, we estimate that the floater is moving in such a way
that it keeps its submersed volume nearly constant in time. This requires

1

δx

∫ +δx/2

−δx/2
h̃(x̃, t)dx̃ ≈ h (5.6)

Evaluating the integral using the expression (5.5), we get the result

z′c ≈ ε sin(xc − t)
(

1− δ2x
24
c2ψ

)
. (5.7)

This indeed corresponds to the expression of z′c that we have obtained from a more
formal treatment of the equations of motion, in the limit δx � δy, see equation (4.25b).
Interestingly, we also recover the shape-related O(εδ2x) correction that is quite crucial in
the model. To explain the angular motion θ′, we can use a similar physical argument.
Due to buoyancy, the floater will rotate so as to align with the local surface slope. The
local normal on the wave surface is n ≈ ∇(z − ζ(x, t))|x=xc = ez − ε cos(xc − t)ex and
then needs to be orthogonal to the long axis ẽx ≈ cψex + sψey − θ′ez. Hence, we get

n · ẽx ≈ 0 ⇒ θ′ = −εcψ cos(xc − t). (5.8)

This approximation is sufficient, the extra O(εδ2x) correction in θ′ of (4.25d) is in fact not
so important. Replacing these expressions of z′c and θ′ into (5.5), we find the following
approximation for the local shape of the waterline at the floater position

h̃(x̃, t) ≈ h+ εc2ψ

(
δ2x
24
− x̃2

2

)
sin(xc − t). (5.9)

This result can be interpreted as follows: the waterline as seen from the floater center
always takes the shape of a parabola, symmetrical around x̃ = 0.

Combining all the elements together, we end up with the following simplified formula
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for the mean yaw moment Kz:

Kz ≈ −
∫ +δx/2

−δx/2
x̃sψ︸︷︷︸

local lever arm

(−ε (1 + zc − θ′x̃) (cos(xc − t)− cψx̃ sin(xc − t)))︸ ︷︷ ︸
local force density fx

×
(
h+ εc2ψ

(
δ2x
24
− x̃2

2

)
sin(xc − t)

)
︸ ︷︷ ︸

local submersion h̃

δy dx̃. (5.10)

This integral contains all the physics that explains the preferential orientation. The torque
Kz is the result of the local force density fx that varies along the floater’s long axis applied
on the local level arm. This force density is weighted by the local submersion depth h̃
and this effect is thus more important as the floater is longer. We evaluate this integral
up to O(ε2) and write the evolution equation Ĩzzψ̈ = Kz. Approximating Ĩzz ≈ mδ2x/12
for our elongated floater, we find

ψ̈ ≈ −ε(1 + zc)sψcψ sin(xc − t)− εθ′sψ cos(xc − t) +
ε2δ2x

30βδz
sψc

3
ψ sin2(xc − t). (5.11)

We now inject in this equation the decomposition xc = xc + x′c and zc = zc + z′c. In the
first, O(ε) term of (5.11), we use a Taylor expansion:

−ε(1 + zc + z′c)sψcψ sin(xc + x′c − t)
= −ε(1 + zc)sψcψ sin(xc − t)− εz′csψcψ sin(xc − t)− εx′csψcψ cos(xc − t) +O(ε3).(5.12)

As the floater is thin, we can approximate zc ≈ 0. The second and third terms of (5.11)
are already of order O(ε2), so there we can use sin2(xc − t) ≈ sin2(xc − t) + O(ε) and
cos(xc − t) ≈ cos(xc − t) +O(ε). We then replace the first order deviations by

x′c ≈ ε cos(xc − t) , z′c ≈ ε sin(xc − t) , θ′ = −εcψ cos(xc − t). (5.13)

The expression of x′c can be found by integrating ẋ′c = ux|z=0, which just means that, at
lowest order, the floater translates as a fluid material particle on the surface. After these
reductions, we obtain

ψ̈ ≈ −εsψcψ sin(xc − t) + ε2sψcψ

(
−1 +

δ2x
30βδz

c2ψ

)
sin2(xc − t) (5.14)

as evolution equation for ψ. We now also inject the decomposition ψ = ψ + ψ′ and use
a Taylor expansion to replace

sψcψ = sψcψ + ψ′(c2ψ − s2ψ) +O(ε2). (5.15)

This yields

ψ̈ + ψ̈′ ≈ −εsψcψ sin(xc − t)

−ε(c2ψ − s2ψ)ψ′ sin(xc − t) + ε2sψcψ

(
−1 +

δ2x
30βδz

c2ψ

)
sin2(xc − t). (5.16)

At order O(ε), we identify the equation for the fast yaw angle excursion ψ̈′ =
−εsψcψ sin(xc − t), that has the solution

ψ′ ≈ εsψcψ sin(xc − t). (5.17)

This expression is identical to that of the asymptotic model (4.25e) in the limit δx �
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Figure 8. Position, orientation and force distribution on the floater in wave crests and troughs.
Here δx = 0.5, δz = 0.01, β = 0.2, ε = 0.2 and xc = 0, ψ = 45o. (a,d) Side views on vertical
x− z plane. The circle shows the trajectory of the center of mass. The inset figures suggest the
instantaneous, parabolic shape of the waterline near the floater. (b,c,e,f) top views on x − y
plane. The arrows show the instantaneous force distribution along the floater that creates the
instantaneous torque Kz. In (b,e), without considering the variable submersion depth, using h.

In (c,f) taking into account the variable submersion h̃.

δy. Injecting this expression of ψ′ back into the equation, we isolate the second order
evolution equation for ψ by averaging over time and find

ψ̈ ≈ ε2sψc3ψ
(

1− δ2x
60βδz︸ ︷︷ ︸
F/Fc

)
. (5.18)

Hence, we have shown that the simplified model reproduces exactly the more formal
asymptotic theory.

The main advantage of the simplified model is that it allows a better understanding
of the physics that causes reorientation. Let us reconsider the torque Kz in (5.10),
expressed as the product of the local force density fx by the local level arm weighted
by the local submersion depth h̃. The force density fx is illustrated as vector arrows
in figure 8, showing the floater at two times, t = π/2 and t = 3π/2 (wave crest
and trough); animations are available as Supplementary Materials. The parameters
are β = 0.2, δx = 0.5, δz = 0.01 and ε = 0.2, corresponding to a non-dimensional
number F = δ2x/βδz = 125, larger than the critical value Fc = 60: this floater will
prefer the transverse position at late times. In the second column [Figs. 8(b,e)], the
force distribution is weighted by the equilibrium, spatially uniform submersion depth h,
whereas in the third column [Figs. 8(c,f)] it is weighted by the true, varying depth h̃.
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Comparing both cases allows us to illustrate the main physical mechanisms at the origin
of the longitudinal-transverse transition.

We first consider the case where the depth variation is ignored [Figs. 8(b,e)], an
approximation acceptable for small floaters only. At the wave crest, the yaw angle is
slightly larger than the mean value ψ whereas at the trough, it is slightly smaller than
ψ. The lever arm, x̃ sinψ, is therefore larger at the crest. We also see that the local
force density fx is slightly larger at the crest than at the trough. Both effects impact the
instantaneous torque in the same way. At the crest, the floater will experience a negative
(clockwise) torque Kz < 0 that is slightly larger than the positive (counter-clockwise)
torque Kz > 0 in the troughs, explaining why the part −x̃ sinψfxh in the integrand of
Kz is slowly pushing the floater towards the longitudinal position.

Figures 8(c,f) illustrates why including the varying submersion in the weighting of the
force distribution changes this conclusion in the case of long floaters. We immediately
see that there is clear influence of the variable submersion at the tips of the floater:
the weighted force density fxh̃ is significantly changing in magnitude. As shown in
Figs. 8(a,d), at the wave crest, the extremities of the floater are less submerged, whereas
in the troughs, they are more submerged. This locally changing submersion implies that
the instantaneous torque is significantly decreased at the tips of the floater when they
are at crest and increased at the tips when the floater is in a trough. The result for this
floater with F = 125 > Fc is that the positive (counter-clockwise) torque Kz > 0 acting
on the floater at the troughs is significantly larger than the negative torque at the crests,
resulting in a slow rotation towards the transverse position.

It is finally interesting to note that the yaw angle motion of small floaters is analogous
to that of the Kapitza pendulum, a pendulum with an oscillating anchor point (Kapitza
1951; Landau & Lifschitz 1960; Butikov 2001). For small floaters we have seen that the
variation of the immersion depth can be ignored and in that case, we have the evolution
equation

F � Fc : ψ̈ ≈ −εsψcψ sin(xc − t)− ε2sψcψ sin2(xc − t). (5.19)

Using the fact that sψcψ = (1/2) sin 2ψ and changing notation 2ψ = α, we can rewrite
this as

α̈+

(
−ε

2

2︸︷︷︸
g

+ ε sin(xc − t) +O(ε2)︸ ︷︷ ︸
g′(t)

)
sinα ≈ 0. (5.20)

We recognize the equation of motion for the angle α of a Kapitza pendulum, written in
the frame of reference attached to the anchor point. The Kapitza pendulum, analogue to
our floater, would be exposed to a weak O(ε2) downward external gravity g and a larger
O(ε) oscillatory acceleration g(t) that is due to the motion of the anchor point. Using
the same multiple time-scale techniques as we have previously used, we can find that this
pendulum has two equilibria. The lower position α = 0o is stable and the top position,
α = 180o is unstable. Owing to the relation ψ = α/2, this result is entirely equivalent
to saying that short floaters prefer longitudinal positions, ψ = 0o, and avoid transverse
positions, ψ = 90o.

6. Mean yaw moment: comparison with the literature

We have formulated a theoretical model for the idealized, second order motion of the
yaw angle, but in the existing literature, the focus is not so much on the slow yaw motion,
but rather on the mean yaw moment Kz. Several articles provide quantitative results
for this mean yaw moment, either in the form of an explicit equation (equation (55)
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in Newman (1967)) or in the form of figures that result from numerical computations
(Newman 1967; Skejic & Faltinsen 2008; Chen 2007; Yasukawa et al. 2019). In this
section, we compare the second order yaw moment that we have calculated from our
Froude-Krylov model to some existing results, focusing on the limit δx � δy � δz of a
strongly elongated floater.

To allow comparison, let us start by writing the dimensional yaw moment according
to our theory. By multiplying the right hand side of (1.1) with the dimensional moment
of inertia βρL3

xLyLy/12 and ω2 = gk, we obtain

Kz =
1

12
ρga2k3L3

xLy

(
−βLz +

kL2
x

60

)
sinψ cos3 ψ. (6.1)

This formula only applies to parallelepiped floaters that are short with respect to the
wavelength. As explained before, part of the torque (contribution −βLz in the paren-
theses) favors a longitudinal floater position (head-seas). This torque clearly depends on
how deep the floater is submerged as the draft of our floater is h = βLz. The other
part of the torque (contribution +kL2

x/60 in the parentheses) favors a transverse floater
position (beam-seas) and interestingly, it does not depend on the draft.

Newman (1967) derived an analytical formula [see his equation (55)] for the mean
yaw moment on a slender floating structure with rectangular planform, such as our
parallelepipeds. Written in our notations (wavenumber K → k, width B → Ly, length
L→ Lx, angle of incidence β = −ψ), this mean yaw moment is

K
Newman

z =
1

2
ρgka2L2

xLy sinψ j1

(
1

2
kLx cosψ

)
j2

(
1

2
kLx cosψ

)
. (6.2)

Here j1 and j2 are spherical Bessel functions. In this formula, diffraction and radiation
are taken into account so it holds for any kLx. In the limit of small floater length, we can
replace the spherical Bessel functions with their small argument asymptotic expansions.
From Abramowitz & Stegun (1948), equation (10.1.2), we have j1(x)j2(x) ≈ x3/45 for
small x (rather than x3/3 as written in Newman (1967)), so (6.2) reduces to

kLx cosψ � 1 : K
Newman

z ≈ 1

12
ρga2k3L3

xLy

(
kL2

x

60

)
sinψ cos3 ψ. (6.3)

Interestingly, this equation contains exactly one term of our mean yaw moment (6.1), the
one that favors the transverse position. The other term, related to the draft h = βLz, is
absent, probably because Newman used a slender body approximation which may hold as
long as kL2

x/h� 1. This missing term explains why Newman’s formula does not predict a
stable longitudinal position for short floaters. The fact that our asymptotic theory based
on the Froude-Krylov assumption recovers the short floater limit of Newman’s theory is
somehow surprising: in our approach, we neglect wave diffraction and radiation, whereas
the existence of a radiated wave is essential in Newman’s far field theory. This suggests
that the diffracted/radiated wave correction in the near field of small floaters does not
contribute at leading order to the mean yaw moment acting on such small floaters.

In his middle-field formulation, Chen (2007) introduced a numerical approach to
calculate first order motion and second order load on quite general floating structures.
The potential field around the floating body is calculated using the boundary element
method and includes diffracted and radiated waves. In one numerical application, Chen
considers a very large floating platform, called FPSO (Floating Production Storage
Offloading)-unit, that is close to a parallelepiped with dimensions Lx = 300 m by
Ly = 50 m and submerged over h = βLz = 25 m – huge compared to our centimeter
scale parallelepiped floaters –, placed in waves with angle of incidence ψ = −165o.
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Figure 9. (a) Dimensionless mean yaw moment as a function of kLx, and (b) zoom at small
kLx. Red squares: Data from the boundary element simulations of Chen (2007), computed for
a 300-m long floating structure. Blue line: present Froude-Krylov theory (6.1), valid in the limit
kLx 6 1, when diffraction and radiation is negligible. The longitudinal-transverse transition,
where Kz = 0 (or F = Fc), is approximately the same for both methods.

In common sea conditions, wavelengths are usually shorter than 300 m, so we expect
diffraction and wave radiation corrections, ignored in our theory, to be important. In
figure 9(a), we compare the mean yaw moment calculated by Chen’s BEM approach (red
squares) and our Froude-Krylov theory (6.1) (blue line). As kLx increases, the mean
yaw moment calculated by Chen is first negative, before changing sign and oscillating at
larger kLx, a signature of diffraction and radiation effects. As emphasized by the zoom in
figure 9(b), the −(kLx)4 trend at small kLx is very well reproduced by our theory. In spite
of the strong departure of our formula from the simulation at larger kLx, it reproduces
surprisingly well the change of sign of Kz, marking the longitudinal-transverse transition.
Although this might be coincidental, this suggests that the criterium kL2

x/h ' 60 for the
transition still applies at moderate kLx, even when diffraction and radiation effects are
not negligible.

7. Conclusion

In this paper we have shown that the orientation of a small elongated floater drifting
in a propagating gravity wave is governed by the non-dimensional number F = kL2

x/h̄,
where h̄ = βLz is the equilibrium submersion depth. Short and deeply immersed floaters
align longitudinally, along with the direction of propagation, whereas long and weakly
immersed floaters prefer to align transversely, along with the wave crests or troughs.

To model the preferential orientation of these drifting elongated floaters, we introduced
a Froude-Krylov theory that assumes a linear potential incoming wave in infinitely deep
water, ignoring viscous and capillary effects and all feedbacks of the floater on the
wave. We numerically solved the equations of motion and demonstrated that this model
contains the dominant physical ingredients that are needed to reproduce the preferential
state of orientation. In the limit of small wave amplitude and small floaters, ε, δ � 1,
we derived an asymptotic solution of the Froude-Krylov model. This classical and rather
technical asymptotic method allows us to find the second order evolution equation (1.2)
for the slow motion of the yaw angle, and places the L-T transition at Fc = 60, which is
reasonably close to the experimental value Fc ' 45± 10.

To gain deeper insight into the physics of the floater orientation, we have finally shown
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that the same evolution equation (1.2) for the slow motion of the yaw angle can be found
using a simpler approach in the limit of strongly elongated floaters. This allowed us to
identify that the preferential orientation is the result of local gradients in flow magnitude
that the floater experiences through its motion. Short floaters see little variation in
submersion depth along their long axis and experience a mean torque that favors the
longitudinal position. This mean torque arises from a phase correlation between the
oscillating buoyancy force and the oscillating lever arm, a feature shared with the classical
Kapitza pendulum. For longer floaters, the variation of the submersion along the floater
has a strong effect on the instantaneous torque, that is significantly decreased in crest
positions (the tips are less submerged) and increased in trough positions (the tips are
more submerged). Since in the trough position, the instantaneous torque always pushes
towards the transverse position, long floaters prefer to take transverse positions.

We have compared our mean yaw moment formula to previously published results.
Compared to Newman’s theory, we have identified an additional contribution to the mean
yaw moment that varies linearly with the draft h. The longitudinal-transverse transition
for short floaters is due to this contribution, explaining why Newman’s prediction,
that slender structures are stable in beam-seas, does not apply for very short floaters.
Comparing our Froude-Krylov theory to Chen’s boundary element calculations applied to
a large floating structure, we obtain an excellent agreement for the mean yaw moment in
the small floater length/ wavelength limit, and a fair prediction for the longitudinal-
transverse transition. Away from this limit, diffraction and radiation are no longer
negligible and our simplified theory breaks down. It would be interesting to extend these
comparisons to smaller floating structures such as sailing boats or small yachts.

We can finally draw some parallels between our work and recent studies in relation to
the problem of plastic waste transport by waves. The effect of shape on the mean motion
of non-spherical objects in wave flows has been investigated in several studies, but limited
to fully submerged, neutrally buoyant ellipsoids (DiBenedetto et al. 2018; DiBenedetto
& Ouellette 2018; DiBenedetto et al. 2019; Clark et al. 2020; DiBenedetto et al. 2022). A
similar preferential orientation phenomenon is observed there too, but its physical origin
is very different: it results from the pressure and viscous stress distribution on their
surface (Jeffery 1922), while for floating elongated bodies it results from the non-uniform
pressure forces and spatially varying submersion. This raises the question of the drift and
preferential orientation of very small, millimeter scale, floating anisotropic particles, for
which both viscous and buoyancy effects are expected.
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Appendix A. Kinematics of rotation

We detail in this Appendix the Euler angle convention used in this article, and find
the kinematic relation that links ϕ̇(t), θ̇(t), ψ̇(t) to the components Ω̃x(t), Ω̃y(t), Ω̃z(t) of
the instantaneous rotation vector in the floater frame.

The instantaneous orientation of the floater is defined with three Euler angles θ(t)
pitch, ϕ(t) roll and ψ(t) yaw. These angles relate to three successive rotations that bring
the laboratory frame (ex, ey, ez) to the floater frame (ẽx(t), ẽy(t), ẽz(t)). Imagine looking

Page 27 of 33

Cambridge University Press

Journal of Fluid Mechanics



28 W. Herreman, B. Dhote, L. Danion, F. Moisy

at the wave from above, from the ez axis. The yaw angle ψ(t) is the angle over which we
need to rotate the laboratory frame to align the e′x-axis of a new frame, with the front
of the floater. This defines a first intermediate frame (e′x, e

′
y, e
′
z) as e′x

e′y
e′z

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Rψ

 ex
ey
ez

 . (A 1)

Rψ is a first rotation matrix. We now change our point of view and look at the floater
from the side, from the e′y direction. The pitch angle θ(t) is the angle over which we need
to rotate the (e′x, e

′
y, e
′
z) frame to find a new e′′x axis that aligns with the nose of the

boat. Hence, we have a second intermediate frame (e′′x, e
′′
y , e
′′
z ) defined as e′′x

e′′y
e′′z

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

Rθ

 e′x
e′y
e′z

 . (A 2)

Rθ is a second rotation matrix. In a third and final rotation, we imagine looking at the
boat from the front, from the e′′x direction. The roll angle ϕ(t), rotates the (e′′x, e

′′
y , e
′′
z )

frame to the floater frame. Hence, we have ẽx
ẽy
ẽz

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


︸ ︷︷ ︸

Rϕ

 e′′x
e′′y
e′′z

 , (A 3)

and Rφ is a third rotation matrix. All combined and using the fact that the rotation
matrices are orthogonal, we can explicit the passage from the laboratory frame to the
floater frame as ẽx

ẽy
ẽz

 = RϕRθRψ︸ ︷︷ ︸
R

 ex
ey
ez

 ,
 ex
ey
ez

 = RTψR
T
θ R

T
ϕ︸ ︷︷ ︸

RT

 ẽx
ẽy
ẽz

 . (A 4)

Evaluating these matrix products explicitly we obtain formula (3.6a).

We now explain how to find (3.8) that links ψ̇(t), θ̇(t), ϕ̇(t) to Ω̃x(t), Ω̃y(t), Ω̃z(t). The
floater frame rotates at instantaneous speed Ω(t) which can be expressed using the

differential equation ˙̃ei(t) = Ω(t)× ẽi(t) for i = x, y, z. In other terms, we have

d

dt

 ẽx
ẽy
ẽz

 =

 0 Ω̃z −Ω̃y
−Ω̃z 0 Ω̃x
Ω̃y −Ω̃x 0


︸ ︷︷ ︸

M

 ẽx
ẽy
ẽz

 . (A 5)

Considering the transform (3.6a), we can also compute the time-derivative of the vectors
of the floater frame by deriving the rotation matrix. We then have

d

dt

 ẽx
ẽy
ẽz

 =
d

dt
(RϕRθRψ)

 ex
ey
ez

 =
d

dt
(RϕRθRψ)

(
RTψR

T
θ R

T
ϕ

) ẽx
ẽy
ẽz

 . (A 6)
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Comparing with (A 5) implies(
R′ϕRθRψϕ̇+RϕR

′
θRψ θ̇ +RϕRθR

′
ψψ̇
)
RTψR

T
θ R

T
ϕ = M. (A 7)

We denote R′ϕ = ∂ϕRφ and similar for the other matrices. Considering the orthogonality

of the rotation matrices, this simplifies to R′ϕR
T
ϕ φ̇+RϕR

′
θR

T
θ R

T
φ θ̇+RϕRθR

′
ψR

T
ψR

T
θ R

T
φ ψ̇ =

M . After evaluating all the matrix products, we then deduce that Ω̃x
Ω̃y
Ω̃z

 =

 1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ

 ϕ̇

θ̇

ψ̇

 (A 8)

Notice that this matrix is singular, when θ = ±π/2. In our applications, we do not
encounter such large pitch angles. Hence, we can always invert this relation to find the
system of equations (3.8).

Appendix B. Extra details of the asymptotic calculation

The computation of F ′x, F
′
z, K̃

′
x, K̃

′
y,K

′
z and the simplifications due to use of the flat

floater assumption yield the following differential equations for the first order motion

ẍ′c ≈ −ε cos(xc − t) (B 1a)

z̈′c +
1

βδz
z′c ≈ ε

[
1

βδz
− 1− 1

24βδz

(
c2ψδ

2
x + s2ψδ

2
y

)]
sin(xc − t) (B 1b)

ϕ̈′ +
1

βδz
ϕ′ ≈ −εsψ

[
1

βδz
− 1− 1

βδz

(
s2ψ
δ2y
40

+ c2ψ
δ2x
24

)]
cos(xc − t) (B 1c)

θ̈′ +
1

βδz
θ′ ≈ −εcψ

[
1

βδz
− 1− 1

βδz

(
c2ψ
δ2x
40

+ s2ψ
δ2y
24

)]
cos(xc − t) (B 1d)

ψ̈′ ≈ −ε

(
δ2x − δ2y
δ2x + δ2y

)
sψcψ sin(xc − t). (B 1e)

The z′c, ϕ
′ and θ′ equations are that of forced harmonic oscillators with natural frequencies√

1/βδz. Notice that for flat floaters, with δz � δx, δy, we indeed have nearly the same

natural oscillation frequencies ωz ≈ ωϕ ≈ ωθ ≈
√

1/βδz [see the general Eqs. (3.15)].

Considering that δz � 1, we have
√

1/βδz � 1, implying that the incoming wave is
never resonantly forcing the z′c, ϕ

′ and θ′ oscillations. Hence, the solution for the motion
is the sum of free oscillations at the bobbing frequency and a harmonic response. In the
theoretical calculation, we discard all free high-frequency oscillations as such motions are
strongly damped by radiative dissipation in reality.

The second order mean torque Kz is defined in (4.21) and it split in two parts Kz =

K
(1)

z +K
(2)

z . To find the first part, we must reconsider the calculation of the torque

K(1)
z = −

∫
V

(0)
sub

(sψx̃+ cψ ỹ) a(1)x dV ≈ Ĩzz (−εΛsψcψ ezc sin(xc − t)) (B 2)

where Λ = (δ2x − δ2y)/(δ2x + δ2y). To get the first and second order parts in this torque, we
must evaluate this formula not a the equilibrium position, but on the trajectory of the
floater (xc, zc, ψ) ≈ (xc + x′c, zc + z′c, ψ + ψ′). This generates the O(ε2) mean ”drift”-like
torque that we expressed in (4.21) using a Taylor expansion. Let us detail this step here.
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We have

Ĩ−1zz K
(1)
z

∣∣∣
(xc+x′c,zc+z

′
c,ψ+ψ

′)
(B 3)

≈ − εΛsψcψ ezc sin(xc − t)︸ ︷︷ ︸
K′z

−εΛezc
[
(c2ψ − s2ψ)ψ′ sin(xc − t) + sψcψ (z′c sin(xc − t) + x′c cos(xc − t))

]
+O(ε3).

We simplify ezc = 1 +O(δz) in the flat floater limit and inject the first order expressions
of x′c, z

′
c, ψ
′. Averaging over time and using

ψ′ sin(xc − t) =
εΛ

2
sψcψ , z′c sin(xc − t) + x′c cos(xc − t) ≈ ε, (B 4)

we find

Ĩ−1zz K
(1)

z ≈ −ε2Λsψcψ
[
1 +

Λ

2

(
c2ψ − s2ψ

)]
(B 5)

as first part in the mean torque. This part of the torque always favors the longitudinal
state.

The second part of the mean torque is the sum of three terms K
(2)

z = T 1 + T 2 + T 3.
This notation refers here to the three separate integrals that are visible in (4.18b). The
first contribution turns out to be negligible in the flat floater limit δz � δx, δy. We find

Ĩ−1zz T 1 ≈ −Ĩ−1zz

(∫
V

(0)
sub

(sψθ′ − cψϕ′) z̃a(1)x dV

)
(xc,zc,ψ)

≈ O(ε2δz) (B 6)

and this will always be smaller than the other terms of order O(ε2) and O(ε2δ2x/βδz).
The second term is not negligible:

Ĩ−1zz T 2 = −Ĩ−1zz

(∫
V

(0)
sub

(sψx̃+ cψ ỹ) a
(2)
x dV

)
(xc,zc,ψ)

≈ −Ĩ−1zz

(∫
V

(0)
sub

(sψx̃+ cψ ỹ) (−θ′x̃+ ϕ′ỹ)∂zax,c dV

)
(xc,zc,ψ)

≈ ε2Λ

2
sψcψ.(B 7)

We detail here the part of a
(2)
x that creates the leading contribution. This term captures

the small torque that is created by small vertical gradients in wave-magnitude (∂zax,c)
along its elongated surface and due to rotations (θ′ and ϕ′). The term alone creates a
slow O(ε2) motion that would rather be in favor of the transverse position. However, it

can never dominate the other O(ε2) terms in the K
(1)

z mean torque.

The third contribution to K
(2)

z is the longest to evaluate. In the flat floater limit, we
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find it as

Ĩ−1zz T 3 = −Ĩ−1zz

(∫
V

(1)
sub

(sψx̃+ cψ ỹ) a
(1)
x dV

)
(xc,zc,ψ)

≈ εezc cos(xc − t)
βδz(δ2x + δ2y)

[
sψ (θ′ + εcψ cos(xc − t))︸ ︷︷ ︸ δ2x − cψ (ϕ′ + εsψ cos(xc − t))︸ ︷︷ ︸ δ2y

+

(
c3ψsψ

(
− δ

4
x

40
+
δ2xδ

2
y

24

)
− s3ψcψ

(
−
δ4y
40

+
δ2xδ

2
y

24

))
ε cos(xc − t)

]

+
εezc sin(xc − t)
βδz(δ2x + δ2y)

[
sψcψ(δ2x − δ2y) (z′c − ε sin(xc − t))︸ ︷︷ ︸

+

(
c3ψsψ

(
3
δ4x
40
− 2

δ2xδ
2
y

24

)
− s3ψcψ

(
3
δ4y
40
− 2

δ2xδ
2
y

24

))
ε sin(xc − t)

]
. (B 8)

Physically, this term captures on its own the torque that is due to the changing submer-

sion of the floater (integral over V
(1)
sub). The underbraced terms show more clearly how

the first order motion z′c, θ
′, ϕ′ influences this varying submersion and hence this torque.

Quite astonishingly, we observe that the first term exactly vanishes after injecting the
solutions of θ′ and ϕ′, even with the tiny O(εδ2x, εδ

2
y) corrections. Hence, we can deduce

that these weak corrections in θ′ and ϕ′ are in fact not so relevant in this problem. The
second term does not vanish. After injecting the z′c-motion, we find that the very small
O(εδ2x, εδ

2
y) are crucially important. From (4.25b), we get that

z′c − ε sin(xc − t) = − ε

24

(
c2ψδ

2
x + s2ψδ

2
y

)
sin(xc − t). (B 9)

The right hand side may seem tiny, but without these terms, we would simply find T 3 = 0.
Hence, these weak buoyancy-induced corrections of the vertical motion are crucial and
the only ones that can cause T 3 to be non-zero in this model, at this order. After taking
the time-average, we find

Ĩ−1zz T 3 ≈
ε2

βδz(δ2x + δ2y)

[
sψc

3
ψ

(
δ4x
60
−
δ2xδ

2
y

48

)
− s3ψcψ

(
δ4y
60
−
δ2xδ

2
y

48

)]
. (B 10)

Without considering the anisotropy of the floater, this term causes a contribution of
O(ε2δ) to the motion of ψ that in fact, seems smaller than the other mean torques of
order O(ε2). However, for strongly elongated floaters with δx � δy � δz, this term is
rather of magnitude O(ε2δ2x/βδz) and dominates the O(ε2) terms. In our calculations,
we were able to retrace that this term T 3 was entirely due to the existence of a non-zero
curvature of the water-line at the floater position (the term (1/2)(x − xc)2∂2xxζc in the

Taylor expansion for ζ̃) and it is this physical element that brought us to the simplified
model discussed in section 5.

In the end, we have summed up all the contributions to the second order mean torque.

Expressing Ĩ−1zz ψ̈ = Kz, we then found the equation of motion (4.26).
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