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Lecture Notes

These notes are a summary of the main definitions and results of the course. Demonstrations,
discussions and methods are found in the lectures and tutorials. Comments and suggestions welcome
at laurent.verstraete@u-psud.fr.

I- Relativity postulates and their consequences

In classical physics, objects and processes are described in frames (noted R), the association of
a Euclid space with a time measure t. Space is assumed to be isotropic and homogeneous and
duration (or time) measures are taken to be the same in all frames. A particular class of frame is
defined, the inertial frames where the inertia principle (Newton’s first law(a)) is verified.
First stated by Galileo in 1632, the relativity principle is now one of the corner stones of physics.
Its modern form is: the laws of physics take the same form in all inertial frames. By the end of the
19th century, it was soon realized that electromagnetism did not fulfill the relativity principle. At
the same time, the Michelson and Morley experiment suggested that the speed of light in free space
was the same in all frames This lead Einstein to the postulates of Special relativity namely, (1) the
principle of relativity is verified and (2) the speed of light c ' 3 108 m/s is the same in all inertial
frames.
It was then shown that the application of these postulates to the transformation of events between
frames R and R′, in rectilinear uniform motion with respect to each other, lead to the Lorentz-
Poincaré transformation, already known in the context of electromagnetism (1899)

ct′ = γ(ct− βx)

x′ = γ(x− βct)
y′ = y

z′ = z

with β = u/c, γ = 1/
√

1− β2 and −→u the velocity of R′ with respect to R. The Lorentz transfor-
mation has several important consequences:

- events simultaneous in R are not simultaneous anymore in R′. In relativity, time and space are
linked and physics must be described in a space with 4 dimensions called spacetime. Points in this
4D space are called events. The spacetime event (t,−→r ) in R thus takes place at (t′,−→r ′) in R′.

- The quantity s2 = (ct)2 − −→r 2 = (ct′)2 − −→r ′2 is conserved between frames(b): it is a spacetime
squared distance or interval. The squared interval between events A and B is s2AB = c2(tA− tB)2−
(−→rB − −→rA)2 or, in infinitesimal form, ds2 = c2dt2 −

−→
dr2. By definition a length L is the spacetime

interval between two simultaneous events here L = |−→rB −−→rA|.

- Proper frame and related quantities: by definition the proper frame is the frame where the particle
is at rest. A duration (or time) measured in this frame is called proper time. Similarly a length
measured simultaneously between 2 points in the proper frame is called a proper length. If the
particle is at rest in R′, t′ is the proper time, dx′ = 0 and the conservation of ds2 leads to dt = γdt′

illustrating the time dilation between R and R′. Similarly a proper length L′ measured in R′ will
contract when measured from the moving frame R such that, L = L′/γ.

Particle or system trajectories in spacetime are represented as world lines in spacetime diagrams.
Reference axis of several frames can be represented and moving frames R′, R′′ have oblique axis in
the lab frame R.
(a)In an inertial frame, an object, upon which no force is exerted, moves at constant velocity.
(b)Assuming a common origin event (0, 0) in R and R′



II- Spacetime physics

In this 4-dimensional space called Minkowski space, vectors are defined as quadruplets X = (Xµ)µ=0 to 3

also called 4-vectors . In addition, a dot (or scalar) product between 4-vectors X and Y is defined
as:

X.Y = X0Y 0 −X1Y 1 −X2Y 2 −X3Y 3 = gµν X
µY ν = tX GY

where G = (gµν)µν is a 4×4 matrix equal to diag (1,−1,−1,−1)(c). Since the dot product is used
to define distances and angles, gµν will be called the space metrics. We note that G is unitary
(G−1 = G). The Lorentz transformation is represented by a Λ matrix such that X ′ = ΛX or
X ′µ = Λµν Xν and conversely Xµ = Λ ν

µ X ′ν with Λ ν
µ = Λ−1 = Λ(−β). The dot product provides

4-scalars which are conserved through Lorentz transformations and called Lorentz invariants

A physical 4-vector A is defined as a quadruplet whose norm is a Lorentz invariant and whose
coordinates transform according to the Lorentz transformation, A′ = ΛA from R to R′. Important
4-vectors are

• 4-position: X = (ct,−→r ) of norm c2t2 −−→r 2

• 4-velocity: U =
dX

dτ
= γ(c,−→v ) with norm c2,

• 4-momentum: P = mU of norm m2 c2. It is also written as P = (E/c,−→p ) with E = γmc2

and −→p = γm−→v the relativistic total energy and momentum. Defining the kinetic energy as
K = (γ − 1)mc2 we have E = K + mc2 with mc2 the mass energy. From the norm of P we
also obtain the relationship E2 = p2c2 +m2c4.

• 4-force and acceleration: defined as F =
dP

dτ
or F = γ

(
1

c

dE

dt
,
d−→p
dt

)
with −→p = γm−→v .

We have the property F.U = 0 hence
dK

dt
=
−→
f .−→v with

−→
f =

d−→p
dt

, the relativistic dynamical

principle. The 4-acceleration is defined as Γ =
F

m
=

dU

dτ
.

• 4-wave vector: K =
(ω
c
,
−→
k
)

for a wave of angular velocity ω and wave vector
−→
k . In free

space K2 = 0. The wave phase ϕ = ωt−
−→
k .−→r = K.X is thus invariant (4-scalar).

- Doppler effect: the formula is easily established from the transformation of the time part of K,
namely ω′ = γ

(
ω −−→u .

−→
k
)
where the emitted frequency is ω in R and detected as ω′ in R′.

When physical laws are written in the Minkowski space using spacetime coordinates and 4-vectors
they can be transformed from one frame to the other or to find Lorentz invariants.

(c)The notation gµν AµBν uses the Einstein summation rule that applies on indices placed up and down.



III- Relativistic Dynamics

Important applications of special relativity are found in collisions of free particles such as:
A+B → C +D where the 4-momentum is conserved, PA + PB = PC + PD ensuring conservation
of total energy and momentum.

- Center of mass frame: we note M =
∑

imi with i = A,B or i = C,D from our example of
collision above. By definition, the center of mass frame or center of momentum frame (CMF) R∗ is
the frame in which the total momentum of particles is zero: −→p ∗ =

∑
i
−→pi∗ =

−→
0 . Since momentum is

conserved in the collision the CMF is the same for incoming (A,B) and outcoming (C,D) particles.
The total momentum of the particles in R is −→p =

∑
i
−→pi and can be expressed with a Lorentz

transformation of −→p ∗. The velocity −→vG(d) of R∗ with respect to R is found from the definition
−→p = γGM

−→vG, i.e., −→vG = c2

E
−→pG with γG = E/E∗ and E∗ = Mc2.

- Elastic collision: in this case the kinetic energy K is also conserved. Since the total energy is
E = K +mc2 this implies that the mass energy is conserved or mA +mB = mC +mD in the above
case.

- The relativistic dynamical principle writes in R as
d−→p
dt

=
−→
f where

−→
f is the resulting force on

the particle and −→p = γm−→v . In the case of the Lorentz force on a particle of charge q we have
−→
f = q(

−→
E +−→v ×

−→
B ) and the dynamical principal can be written in terms of 4-vectors:

dP

dτ
= q F U

where F is the electromagnetic tensor (see below).

IV- Relativistic Electrodynamics

From charge conservation and the fact that the spacetime element dV = cdtdx dy dz is a Lorentz
invariant, other 4-vectors can be defined

• 4-current density: J = (ρc,
−→
j = ρ−→v ) =

ρ

γ
U

• 4-potentiel: A =

(
Φ

c
,
−→
A

)
.

• 4-derivation: ∇ =

(
1

c

∂

∂t
,−
−→
∇
)

of norm � =
1

c2
∂t2 −

−→
∇2 (d’Alembertian operator).

A Lorentz invariant formulation of electromagnetism is obtained if the
−→
E and

−→
B fields are gathered

in a matrix F called the electromagnetic tensor

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 = ∂µAν − ∂νAµ

which provides two Lorentz invariants FµνFµν = 2(B2 − E2/c2) and det(F ) = (
−→
E .
−→
B )2/c2.

From frame R to R′, the electromagnetic tensor transforms as F ′ = ΛF Λ if the fields transform as
−→
E′ =

−→
E‖ + γ

−→
E⊥ +

−→
U ×

−→
B

−→
B′ =

−→
B‖ + γ

−→
B⊥ −

−→
U ×

−→
E /c2

with
−→
U = γ−→v and where the ‖ field components are colinear to the direction of motion of R′ with

respect to R, the x-axis here (and the ⊥ components are perpendicular to the x-axis).

Maxwell source equations are then obtained from ∇2A = ∇F = µ0 J if a Lorenz gauge is adopted,
∇.A=0.
(d)This is the velocity of the center of mass G, the origin of R∗. In the case of free particles, G is found from
γGM

−−→
OG =

∑
i γimi

−−−→
OM i.


