

Plan

- I/ Les deux composantes d'un modèle
- 2/ Incertitude sur des valeurs empiriques
 - · L'écart-type, l'erreur standard et autres
- 3/ Incertitude sur les paramètres du modèle
- L'erreur standard et la distribution par MCMC
- 4/ Prendre en compte les incertitudes sur les entrées pour générer des incertitudes sur les sorties
- 5/ Impact des paramètres sur les sorties d'un modèle
 - · L'élasticité: « One at the time »
- · L'analyse de sensibilité par décomposition de la variance

Notions à retenir

- Robustesse
- Ecart-type, erreur standard, quantiles
- Matrice hessienne
- MCMC par méthode bayésienne et algorithme de Metropolis-Hastings
- Elasticité
- Sensibilité, Indice de Sobol

LES DEUX COMPOSANTES D'UN MODÈLE

Qu'est-ce qu'un modèle ?

- Un modèle est constitué de deux parties:
- Une formalisation de connaissances
- · Une paramétrisation de ces connaissances
- La formalisation des connaissances peut être verbale ou par des équations.
- Il n'y a pas de différence fondamentale entre un modèle verbal ("Il fait plus chaud quand il y a une couverture nuageuse plus faible") ou un modèle décrit par des équations: $T_1 > T_2$ si $N_1 < N_2$.
- L'utilisation d'équations permet cependant souvent d'être plus concis et précis.

Exemple

• Prenons comme exemple la croissance d'une population sous la forme d'un modèle logistique:

$$N_t = \frac{N_0 K}{N_0 + e^{-rt} (K - N_0)}$$

• Qui est la solution de l'équation différentielle:

$$\frac{dN_t}{dt} = r N_t \left(1 - \frac{N_t}{K} \right)$$

Croissance logistique

5

- Le modèle est donc constitué:
- de l'équation qui correspond à une formalisation de connaissances;
- des valeurs des paramètres N₀, r et K qui décrivent un comportement particulier du modèle.

Lambert Adolphe Jacques Quetelet né à Gand le 22 février 1796 et mort à Bruxelles le 17 février 1874.

La croissance logistique

- P. F. Verhulst est élève de Adolphe Quételet, un des fondateurs des statistiques.
- Quételet connait bien les travaux de Malthus et la croissance géométrique des populations.
- Il faut noter que Malthus discute déjà des mécanismes écologiques qui doivent freiner la croissance. Mais il ne fournit pas d'équation.
- Quételet propose à Verhulst de trouver une fonction de freinage en s'inspirant de la résistance de l'air en aérodynamique:
- La résistance aérodynamique s'écrit : Ra = 1/2 . μ . k . v^2 où μ représente la masse volumique de l'air, k un coefficient dépendant de la surface frontale du véhicule et de sa résistance aérodynamique et v sa vitesse.

Pierre-François Verhulst, né le 28 octobre 1804 et mort le 15 février 1849 à Bruxelles

Lambert Adolphe Jacques Quetelet né à Gand le 22 février 1796 et mort à Bruxelles le 17 février 1874.

L'origine du modèle

10

• « J'ai tenté depuis longtemps de déterminer par l'analyse, la loi probable de la population ; mais j'ai abandonné ce genre de recherches parce que les données de l'observation sont trop peu nombreuses pour que les formules puissent être vérifiées, de manière à ne laisser aucun doute sur leur exactitude » (in Quételet, 1850)

Les fonctions de freinage

$$\frac{dp}{dt} = (m \ p) - \varphi(p)$$

Verhulst indique ainsi avoir testé successivement quatre fonctions retardatrices :

$$\varphi(p) = n \cdot p^2$$
 $\qquad \varphi(p) = n \cdot p^3$

$$\varphi(p) = n \cdot p^4$$
 $\varphi(p) = n \cdot \log(p)$

Il choisit la première car c'est la plus simple et il n'avait pas d'argument pour choisir les autres!

Croissance logistique

9

 La relation mécaniste entre un modèle démographique et l'équation logistique n'a été démontrée qu'en 2002 dans:

Ecological Modellina 190 (2002) 55-81

Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis

Luděk Berec '

Department of Theoretical Biology, Justines of Estamology, Academy of Sciences of the Carch Republic, Farshy of Biological Sciences, University of Social Robonius, Reculiariski 21, 270 th Cede Biologicales, Carch Republi Records 23 February 2001; received in a viscol form 24 August 2001; second 25 Newhort 2016. Formalisation de connaissance

- La formalisation des connaissances sous la forme d'un modèle peut être elle-même sujette à une part d'incertitude; par exemple, on peut penser que K peut lui-même dépendre de N_t si K inclut le développement de prédateurs quand N_t est élevé... Mais alors c'est un modèle de type Lotka-Voltera !
- Cependant souvent cette incertitude n'est pas prise en compte. On considèrera alors ce modèle comme décrivant au mieux les processus que l'on cherche à modéliser.
- C'est clairement trop optimiste et une solution intéressante est proposée sur la page suivante!



Paramètres

- L'autre composante du modèle est celle pour laquelle on considère le plus souvent l'incertitude, il s'agit des paramètres du modèle.
- Les valeurs de ces paramètres peuvent être déterminées expérimentalement et elles sont donc entachées d'incertitude.

13

Partie II
INCERTITUDE SUR DES
VALEURS EMPIRIQUES (ISSUES
DE L'OBSERVATION)

Paramètres mesurés empiriquement

- Certains paramètres peuvent être directement mesurés sur le terrain.
- Il convient cependant d'effectuer une série de mesures pour capturer la variabilité sur ce paramètre.

Comment décrire cette variabilité ?

15

- Maximum et minimum
- L'écart-type
- L'erreur-standard
- Intervalle interquantiles
- Toutes ces mesures sont justes mais ne représentent pas la même chose; il faut donc bien savoir ce que l'on cherche à représenter.

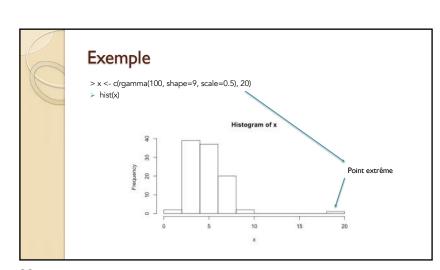
Différence principale

- Ce qui différencie principalement ces mesures de dispersion, c'est leur comportement par rapport à des valeurs extrêmes ou aberrantes ainsi que la symétrie de l'estimateur autour de la moyenne ou de la médiane.
 - La moyenne, la médiane, le mode ou les quantiles sont des statistiques d'ordre I, c'est-à-dire qu'elles donnent comme réponse un point sur l'échelle de la variable aléatoire.
 - Les statistiques d'ordre 2 donnent des informations sur un intervalle de valeurs.

17

Robustesse d'une statistique

- La robustesse d'une statistique est sa capacité à supporter des violations d'hypothèses.
- Dans notre cas, si on veut mesurer la dispersion de nos observations, l'hypothèse est que les points soient tous tirés d'une même distribution.
- Mais si un point sort clairement du lot (erreur de mesure, autres phénomènes), il faut que la statistique décrivant la distribution ne dévie pas trop à cause de ce point.



Minimum et maximum

• Les minimum et maximum sont des statistiques très sensibles aux valeurs extrêmes. Ce sont les statistiques les moins robustes pour décrire la dispersion.

> x <- rgamma(100, shape=9, scale=0.5)

> x2 <- c(x, 20)

> range(x) [1] 1.558270 9.499228

> range(x2)

[1] 1.558270 20.00000

Dans x on a les points tous tirés d'une même distribution et dans x2 on rajoute un point aberrant (20).

Pour avoir un code réplicable quand on utilise des nombres aléatoires, pensez à utiliser set.seed(x).

Ecart-type - standard deviation

- L'écart-type mesure la dispersion des valeurs.
- Dans une loi normale, 95% des observations sont situées dans l'intervalle moyenne ± 1,96 SD.

> sd(x)

[1] 1.542434

> sd(x2)

[1] 2.179

> 100*(sd(x2)-sd(x))/sd(x)

[1] 41,27029

21 22

L'écart-type (2)

• L'écart-type est très sensible à la présence d'une valeur extrême puisqu'il augmente de 41% seulement à cause d'une valeur.

Attention: Les observations sont situées dans l'intervalle moyenne ± 1.96 SD seulement dans le cas de la loi normale.

L'erreur standard - standard error

• L'erreur standard mesure la dispersion de la moyenne de nos observations. Il se calcule comme:

> sd(x)/sqrt(length(x)) [1] 0.1542434

> sd(x2)/sqrt(length(x2))

[1] 0.2168186

 $SE = \frac{SD}{\sqrt{N}}$

L'erreur standard (2)

 Mais l'erreur standard reste très sensible à une observation extrême puisqu'il augmente aussi de 41% sur la base de l'inclusion d'une seule valeur extrême.

> sd(x)/sqrt(length(x)) [1] 0.1542434 > sd(x2)/sqrt(length(x2)) [1] 0.2168186

Masquer les erreurs

• On a comme relation : $SE = \frac{SD}{\sqrt{N}}$

« Donc SE est toujours plus faible que SD; et donc autant présenter SE que SD sur les barres d'erreur, cela cachera qu'on a mal travaillé! »

25 26

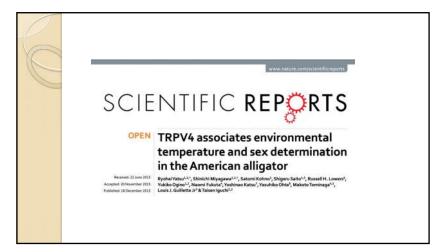
Représenter SE ou SD

M <- NULL
SD <- NULL
SE <- C(M, mean(x))
SD <- C(M, mean(x))
SD <- C(M, mean(x))
SE <- C(M, mean

- En fait le terme « barre d'erreurs » serait à proscrire.
 Ces barres mesurent la dispersion d'un résultat et pas forcément une erreur.
- La source de dispersion des valeurs est le plus souvent due à une variabilité naturelle. Bien sûr parfois la variabilité peut être générée par des erreurs de mesure, mais c'est rare. C'est une des raisons pour laquelle on peut répliquer aussi les mesures individuelles.
- Vouloir masquer la variabilité naturelle est stupide puisque justement c'est cette variabilité naturelle qui est utile pour répondre à des questions intéressantes (ou pas) et qui est le moteur de l'évolution!

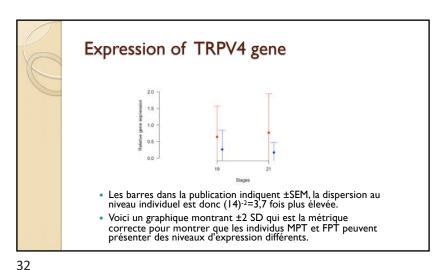
SD vs SE

- SD est une mesure de la dispersion des observations.
- SE est une mesure de la dispersion des moyennes, c'est à dire où se trouve la moyenne.
- · La moyenne peut être considérée déjà comme un modèle.
- SD et SE ne sont donc pas interchangeables; selon ce qu'on veut montrer sur un graphique, il faut choisir l'un ou l'autre.



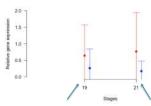
29 30

Expression of TRPV4 gene (9) 1.5×10⁻⁰³ Developmental stage Figure 1. Developmental expression profile of American alligater TRP channels in gonad during sexual development. (A) The mRNA levels of various thermosensitive TRP channels were assessed in gonads at the ones of TSP (stage 21) incubated under MPT and FTP conditions. Gene expressions of 5 AmT RP ion channels (AmT RPV2, AmT RPV4, AmT RRPA), AmT RRPAMS) were observed in varying expression levels. (B) Quantitative RT-PCR ambays was performed for AmT RPV4 at various key sexual developmental stages including hypotential (stage 19 n = 13), see determination (stage 21 in = 14, 15), stages at hold FPT and MPT semperature conditions respectively, if SIM. Temperature resultive period is indicated in gas;



31

Expression of TRPV4 gene



- Notez qu'en utilisant ± 2 SD on trouve que l'expression relative pourrait être négative, cela n'a aucun sens.
- Cela est dû au fait que la distribution de l'expression relative (un rapport) n'est pas normale alors que quand on fait ± 2 SD, on suppose implicitement qu'elle est normale.

Le nombre magique 2

- On a tous entendu que 95% des points sont situés dans l'intervalle moyenne ± 2 SD.
- Déjà, on sait tous que ce n'est pas 2, mais 1,96:

> (deux <- qnorm(p=0.975, 0, 1))</pre> [1] 1.959964

• Si on prend 2, cela fait:

> pnorm(2, 0, 1)-pnorm(-2, 0, 1) [1] 0.9544997

• Pas si différent si l'effectif n'est pas trop important.

33

34

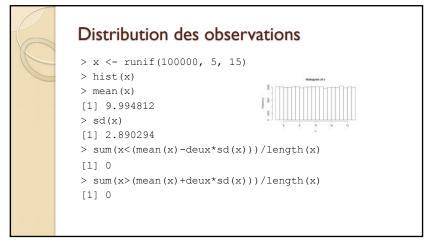
Distribution des observations

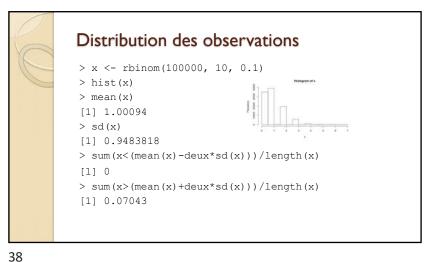
```
> x <- rnorm(100000, 10, 2)
> hist(x)
> mean(x)
[1] 10.01199
> sqrt(sum((x-mean(x))^2)/length(x))
[1] 1.997326
> sd(x)
[1] 1.997336
> sum(x<(mean(x)-deux*sd(x)))/length(x)
[1] 0.02401
> sum(x>(mean(x)+deux*sd(x)))/length(x)
[1] 0.02531
```

> x <- rlnorm(100000, 6, 0.5)> hist(x) > mean(x) [1] 457.4219 > sd(x)[1] 245.5845 > sum (x<(mean(x)-deux*sd(x)))/length(x)

> sum (x>(mean(x)+deux*sd(x)))/length(x) [1] 0.04643

Distribution des observations





37

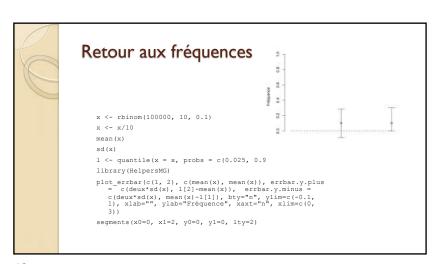
Conclusion

• 95% des observations ne sont pas dans l'intervalle ±1.96 SD sauf dans un cas très particulier: la loi normale.

• Cela peut conduire à des situations absurdes :

x <- x/10
mean (x)
sd(x)
library (HelpersMG)
plot_errbar(1, mean (x),
errbar.y = deux*sd(x), bty="n",
ylim=c(-0.1, 1), xlab="",
ylab="fréquence", xaxt="n")
segments (x0=0, x1=2, y0=0, y1=0, lty=2)

Et voici comment une fréquence peut être négative!



Les quantiles

- Un quantile q est la valeur pour laquelle une fréquence q des observations sont situées en dessous du quantile.
- On utilisera les quantiles 0.025 et 0.975 pour définir les bornes qui incluent 95% des valeurs (0.975-0.025=0.95).
- > quantile(x, probs=c(0.025, 0.975)) 2.5% 97.5% 2.273944 7.963572 > quantile(x2, probs=c(0.025, 0.975)) 2.5% 97.5% 2.276463 8.151774

Les quantiles (2)

 Les quantiles sont des statistiques très robustes notamment aux points extrêmes mais aussi à l'asymétrie de la distribution.

41 42

Les quantiles 0,025 et 0,975

M <- NULL; SD <- NULL; SE <- NULL; QM <- NULL; QP <- NULL for (i in I:10) {

 $layout(mat=matrix(!2,nrow=2)) \\ plot_errbar(!:10,M_errbary=deux*SD_bty="n", las=1, ylab="M+/-SD", xlab="1:10", ylim=c(0,20)) \\ plot_errbar(!:10,M,yplus=QR,yminus=QM,bty="n", las=1, ylab="M+/-55% Quantiles", xlab="1:10", ylim=c(0,20)) \\ plot_errbar(!:10,M,yplus=QR,yminus=QM,bty="m", las=1, ylab="M+/-55% Quantiles", xlab="1:10", ylim=c(0,20)) \\ plot_errbar(!:10,M,yplus=QR,yminus=QM,bty="m", las=1, ylab="M+/-55% Quantiles", xlab="las=1, ylab="m", las=1, ylab="M+/-55% Quantiles", xlab="las=1, ylab="m", las=1, ylab=$

Conclusion

- Pour mesurer la dispersion des points, nous utiliserons les quantiles 0.025 et 0.975.
- Pour mesurer la dispersion de la moyenne nous utiliserons l'erreur standard sachant qu'il y a 95% de chance que la vraie moyenne soit entre moyenne ± 1.96 SE
- $\,{}^{\circ}$ A noter que la distribution de la moyenne est, elle, normale.

D'où vient cette affirmation ?

- Le théorème central limite (Laplace, 1809) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale.
- La moyenne est une somme divisée par une constante (N), donc le théorème central limite s'applique mais que dit-il en clair: Définition - On dit que la suite (X_n)_{n≥1} converge en loi vers X si, pour toute fonction φ continue bornée sur E, à valeurs dans R:

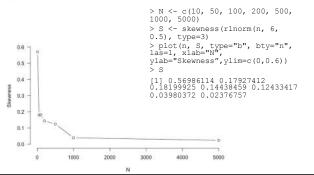
23 mars 1749, Beaumont-en-Auge 5 mars 1827 Paris $\lim_{n} \mathbb{E} [\varphi(X_n)] = \mathbb{E} [\varphi(X)].$

Pierre-Simon Laplace, « Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres, et su leur application aux probabilités », Mémoires de la Classe des sciences mathématiques et physiques de l'Institut de

France, 1809, p. 333-415

Distribution de la moyenne M <- NULL; SD <- NULL; SE <- NULL for (i in 1:10000) { x <- rlnorm(10, 6, 0.5) M <- c(M, mean(x)) SD <- c(SD, sd(x)) SE <- c(sd(x)/sqrt(length(x))) } layout(mat = matrix(1:2, nrow=2)) hist(rlnorm(100000, 6, 0.5)) hist(M, xlim=c(200, 1000)) | mean((M-mean(M))/sd(M))/-3) | obsc/4483 | | blorary(e)(77) | skewness(M type=3) | [1] 0.5624483 | | closs(1) (10564483 | | closs(1) (1056483 | | closs(1) (10564

Quel *n* est nécessaire pour que la convergence en loi normale soit une approximation correcte ?

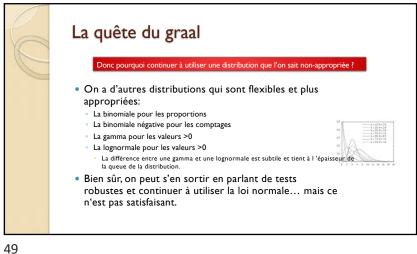


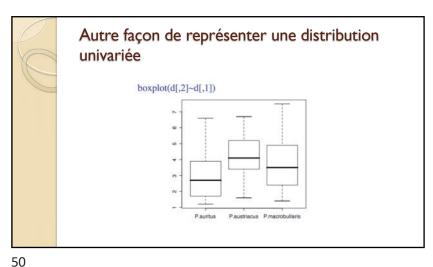
La quête du graal

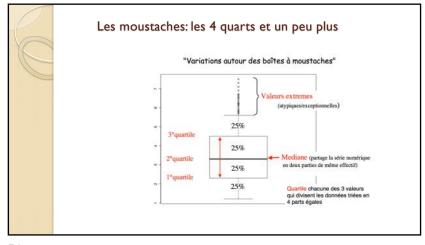
- Le théorème central limite nous dit que les estimateurs sont distribués normalement mais on ne l'atteint réellement que quand un nombre très grand d'observations utilisés pour estimer les distributions.
- Qu'en est-il pour les observations elles-mêmes ?
- Revenons aux caractéristiques de la loi normale:
- Non bornée

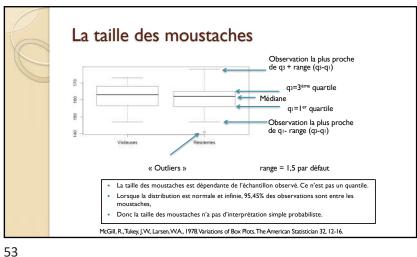
46

- Symétrique
- •Est-ce réaliste: non!
- $\,{}^{\bullet}$ La loi normale admet des valeurs négatives alors que la plupart des métriques utilisée en biologie n'en admettent pas.









Partie 3 **INCERTITUDE SUR LES** PARAMÈTRES AJUSTÉS D'UN MODÈLE

Ajustement d'un modèle à des observations

- Il arrive assez fréquemment qu'on cherche à ajuster des paramètres d'un modèle à partir d'observation.
- Cela revient à chercher la valeur que peut prendre un paramètre.
- Mais cette valeur a elle-même une incertitude.
- Appelons $x_1, ..., x_n$ les données de l'observation et $\theta_1, ...,$ θ_{k} les paramètres du modèle à estimer.

Maximum de vraisemblance

54

- Etant donné un échantillon observé x et une fonction de vraisemblance f, la vraisemblance quantifie la probabilité que les observations proviennent effectivement d'un échantillon (théorique) de la loi f.
- La fonction de vraisemblance, notée $L(x_1, ..., x_n \mid \theta_1, ..., \theta_k)$ est une fonction de probabilités conditionnelles qui décrit les valeurs x_i (observations) d'une loi statistique en fonction des paramètres θ_i
- Estimer un paramètre θ_i par la méthode du maximum de vraisemblance, c'est proposer comme valeur de ce paramètre celle qui rend maximale la vraisemblance, à savoir la probabilité d'observer les données comme réalisation d'un échantillon de la loi f.

55 56

L'estimation au ML

- Les paramètres θ_1 , ..., θ_k qui maximisent la vraisemblance $L(x_1, ..., x_n \mid \theta_1, ..., \theta_k)$ correspondent à une estimation ponctuelle (*point estimation*).
- Ils représentent la combinaison qui maximise la probabilité d'observer les données comme réalisation d'un échantillon de la loi f mais ils ne nous donnent pas d'information sur la précision à laquelle on les connait.

Toujours
bien de se
rappeler...

Biased

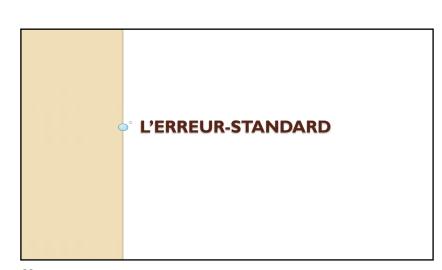
Precise

Not pre

57 58

Estimer la précision d'un paramètre

- Estimer la précision à laquelle est connue un paramètre est très important car cela permet de calculer son intervalle de confiance.
- On pourra alors conclure par exemple s'il est différent ou non de 0, ou bien si deux conditions expérimentales donnent des résultats significativement ou non ou si deux populations sont significativement différentes pour le caractère mesuré.



- La loi binomiale modélise un évènement répété où il y a deux sorties possibles (A et B). Cette loi a un paramètre, p qui désigne la probabilité d'avoir un A (et donc q=1-p est la probabilité d'avoir un B).
- La probabilité d'une réalisation particulière d'obtention de *k* objets A sur un total de *n* s'écrit:

$$P(x=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = C_n^k = \frac{n!}{k! (n-k)!}$$

$$(n-1)! = \Gamma(n)$$

61

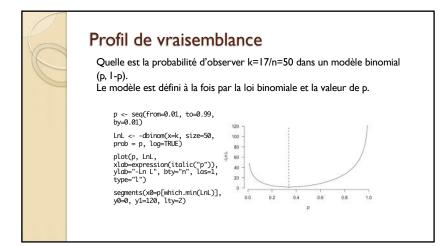
Autres lois possibles

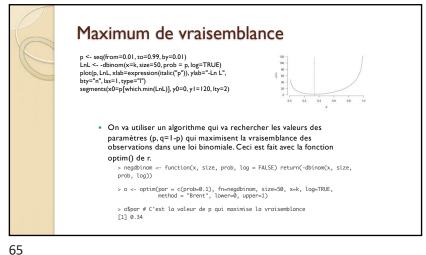
62

- On va considérer ici que le modèle binomial n'est pas une variable en soi.
- Notez quand même qu'il existe d'autres lois possibles pour décrire ces données, par exemple la loi bêtabinomiale lorsque le paramètre p de la binomiale est aléatoire et donné par une loi bêta:
- https://fr.wikipedia.org/wiki/Loi bêta-binomiale

Exemple avec une distribution binomiale

```
> k <- 17 # Nombre de A
> n <- 50 # Nombre total de tirage
> p <- 0.1 # probabilité de tirer un A
> choose(n, k)*p^k*(1-p)^(n-k)
[1] 3.043151e-06
> dbinom(x=k, size=50, prob = p, log=FALSE)
[1] 3.043151e-06
> dbinom(x=k, size=50, prob = p, log=TRUE) # même chose en log
[1] -12.70262
> -dbinom(x=k, size=50, prob = p, log=TRUE) # même chose en -log
[1] 12.70262
```





Le profil de vraisemblance dépend de la taille de l'échantillon k <- 17 # Nombre de A n <- 50 # Nombre total de tirage p <- seq(from=0.01, to=0.99, by=0.01) LnL <- -dbinom(x=k, size=n, prob = p, log=TRUE)
plot(p, LnL, xlab=expression(italic("p")), ylab="-Ln L", ylim=c(0, 130), bty="n", las=I, type="l") segments(x0=p[which.min(LnL)], y0=0, y1=1300, lty=2)k <- 34 # Nombre de A n <- 100 # Nombre total de tirage p <- seg(from=0.01, to=0.99, by=0.01) LnL <- -dbinom(x=k, size=n, prob = p, log=TRUE) lines(p, LnL, col="red") legend(x=0.4, y=120, legend = c("n=50", "n=100"), lty=I,col=c("black", "red"))

66

Le profil de vraisemblance dépend de la taille de l'échantillon 100 0.2 8.4 Plus l'échantillon est grand, plus le profil de vraisemblance est aigu au niveau du Cela signifie que quand on change la valeur du paramètre p, la vraisemblance se dégrade plus rapidement lorsque la taille de l'échantillon est importante que lorsque la taille de l'échantillon est plus faible. On va utiliser une mesure de cette courbure au point ML pour décrire la précision avec laquelle on connait le paramètre p.

Mesurer le changement de la vraisemblance au point de ML? • Petit rappel de maths: • La dérivée première en un point mesure la pente de la tangente en ce point; elle est nulle pour un extremum La dérivée seconde en un extremum mesure la courbure en cet extremum. Test de la dérivée seconde ive vers le bas et /(x) est con

Erreur standard de p

• L'erreur standard de p est alors la racine carrée de l'inverse de la dérivée seconde de la vraisemblance L au point ML:

$$SE(p) = \sqrt{\frac{1}{\frac{d^2 L}{d p^2}}}$$

Effet de la taille de l'effectif sur SE

> k <- 17 # Nombre de A
> n <- 50 # Nombre total de tirage
> o <- optim(par = c(prob=0.1), fn=negdbinom, size=n, x=k, log=TRUE, method = "Brent", lower=0, upper=1, hessian = TRUE)
> sqrt(1/o\$hessian)
0.0669921

> k <- 34 # Nombre de A
> n <- 100 # Nombre total de tirage
> o <- optim(par = c(prob=0.1), fn=negdbinom, size=n, x=k, log=TRUE, method = "Brent", lower=0, upper=1, hessian = TRUE)
> sqrt(1/o\$hessian)
0.04737057

69

U3

Ludwig Otto Hesse (22 avril 1811 à Königsberg, Prusse – 4 août 1874 à Munich, Allemagne)

Extension dans un système à n variables

 La matrice hessienne (ou simplement la hessienne), Hessian matrix en anglais, d'une fonction numérique f est la matrice carrée, notée H(f), de ses dérivées partielles secondes.

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x} \end{bmatrix}$$

En pratique, la fonction de vraisemblance n'est souvent pas dérivable et on utilise des approximations numériques de cette matrice

70

Extension dans un système à n variables

 L'utilisation de la matrice hessienne permet de prendre en compte les covariances entre paramètres qui souvent ne sont pas nulles.

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial z_1^2} & \frac{\partial^2 f}{\partial z_1 \partial z_2} & \cdots & \frac{\partial^2 f}{\partial z_1 \partial z_n} \\ \frac{\partial^2 f}{\partial z_2 \partial z_1} & \frac{\partial^2 f}{\partial z_2^2} & \cdots & \frac{\partial^2 f}{\partial z_2 \partial z_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial z_n \partial z_1} & \frac{\partial^2 f}{\partial z_n \partial z_2} & \cdots & \frac{\partial^2 f}{\partial z_n^2} \end{bmatrix}$$

71

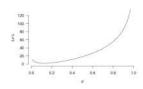
Extension dans un système à n variables

- Par exemple, ici, les covariances sont supposées nulles :
- Girondot, M. (1999) Statistical description of temperature-dependent sex determination using maximum likelihood. Evolutionary Ecology Research, 1, 479-486.
- Godfrey, M.H., Delmas, V. & Girondot, M. (2003) Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Ecoscience, 10, 265-272.
- Alors qu'en réalité elles ne le sont pas corrigé ici:
- Hulin, V., Delmas, V., Girondot, M., Godfrey, M.H. & Guillon, J.-M. (2009)
 Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia, 160, 493-506.

Problèmes de cette méthode

- Si le profil de vraisemblance est plat autour du point ML, la dérivée seconde est nulle et SE ne peut pas être estimé.
- Un pis-aller pour s'en sortir est de postuler que 1/0=0. C'est ce que l'on appelle une matrice inversée généralisée (par exemple Moore-Penrose generalized inverse). Voir https://en.wikipedia.org/wiki/Moore-Penrose_inverse
- La méthode suppose que le profil de vraisemblance est symétrique de part et d'autre du point ML.

k <- 6
n <- 50
p <- seq(from=0.01, to=0.99,
by=0.01)
Int <- -dbinom(x=k, size=n, prob =
p, log=TRUE)
plot(p, Int L'',
xlab=expression(italic("p")),
ylab="-Ln L'',
ylim=(0, 130),
bty="m", las=1, type="1")</pre>



73

De plus...

- La fonction de vraisemblance, notée
 L(x₁, ..., x_n | θ₁, ..., θ_k)
 est une fonction de probabilités conditionnelles qui décrit les valeurs
 x_i (observations) d'une loi statistique en fonction des paramètres θ_i
- Notez l'opérateur | qui indique « sachant que ». Donc ici sachant le modèle... or c'est justement le modèle qu'on cherche. Donc ce qu'on veut c'est plutôt:
 P(θ₁, ..., θ_k | x₁, ..., x_n) qu'on appelle la plausibilité ou la crédibilité
- Donc quand on utilise le maximum de vraisemblance, on prend le problème à l'envers!

Lê Nguyên, H. La Formule du Savoir: Une philosophie unifiée du savoir fondée sur le théorème de Bayes; Paris, France, 2018.

- Statistiques fréquentistes
- On mesure la probabilité des observations selon un modèle
- $p(x_1, ..., x_n \mid \theta_1, ..., \theta_k)$
- Statistiques bayésiennes
- On mesure la probabilité d'un modèle selon des observations
- $p(\theta_1, ..., \theta_k | x_1, ..., x_n)$

Voir par exemple: https://www.youtube.com/watch?v=x-2uVNze56s

75

15/10/2025

Un premier exemple

- Une maladie est présente dans la population, dans la proportion d'une personne malade sur 10000.
- On appelle M "La personne est malade »
- P(M) = 1/10000 = 0,0001
- Un nouveau test de dépistage est présenté : si une personne est malade, le test est positif à 99%.
- On appelle T: "Le test est positif".
- P(T|M)=0,99
- Ce chiffre a l'air excellent. C'est une méthode qui marche dans 99% des cas!

Exemple tiré de https://www.bibmath.net/dico/index.php?action=affiche&quoi=.%2Fb%2Fbayes.html

77 78

Mais...

- M "La personne est malade" et T "Le test est positif »: P(T|M)=0,99
- Mais ce qui est plus intéressant, c'est la probabilité qu'une personne soit malade si le test est positif. On est donc intéressé par $P(M \mid T)$
- $P(M|T) = \frac{P(T|M) \wedge P(T)}{P(T)}$

Formule de Bayes

- Si une personne n'est pas malade M, le test est positif T à 0,1%• P(T|M) = 0,1% = 0,001
- P(T) est la probabilité que le test soit positif, soit pour un malade M, soit pour un non-malade M:
 - $P(T|M) \times P(M) + P(T|M) \times P(M) = 0.99 \times 0.0001 + 0.001 \times 0.9999$
- Donc P(M|T) = 0.09 = 9 %
- $\bullet~$ II n'y a que 9 % de chance qu'une personne positive T soit malade M !

Formule de Bayes

- On voit clairement dans cet exemple que $P(M|T) \neq P(T|M)$
- Formule de Bayes
- $P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$
- Bayes, T., & Price, R. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London, 53, 370-418. (publié de façon posthume).

Thomas Bayes (1701 ou 1702 –17 avril 1761)

Portrait non certifié

79 80

Mortalité et plastique

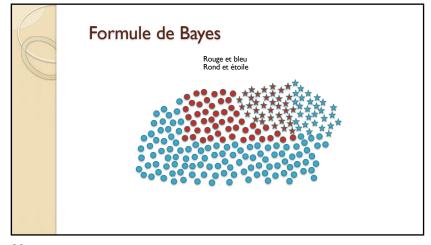
- Wilcox, C.; Puckridge, M.; Schuyler, Q.A.; Townsend, K.; Hardesty, B.D. A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Scientific Reports 2018, 8, 12536, doi:10.1038/s41598-018-30038-z.
- « Nous avons constaté une probabilité de mortalité de 50 % à partir du moment où un animal avait 14 morceaux de plastique dans son intestin. »

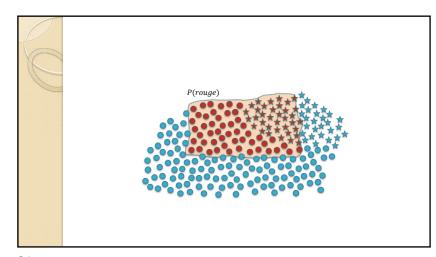
Réponse par Lynch et al.

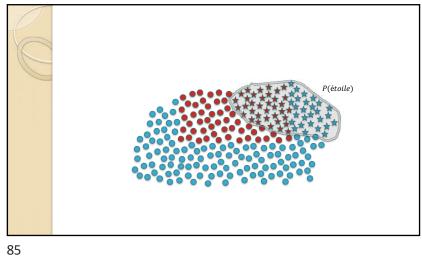
- In Lynch, J.M.; Work, T.; Jung, M.R.; Flint, M.; Balazs, G.H. Study on the lethality of sea turtles by ingested plastics is hard to swallow. **2019**.
- Cette étude traite de « la probabilité d'ingestion de plastique en cas de décès », alors que la question d'intérêt est « quelle est la probabilité de décès en cas d'ingestion de plastique ».

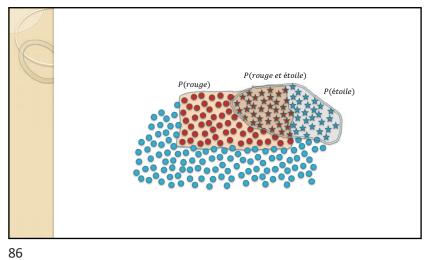
p(plastique | décès) vs. p(décès | plastique)

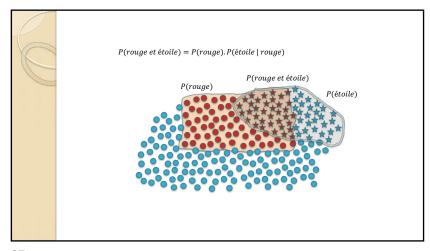
81 82

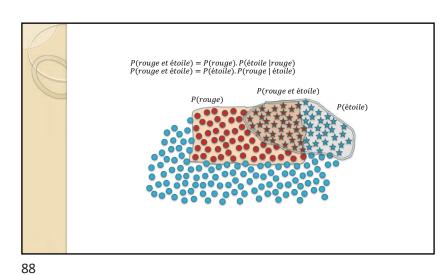












Formule de Bayes, retrouvée par Laplace

 $P(rouge\ et\ étoile) = P(rouge).P(étoile\ | rouge)$ $P(rouge\ et\ étoile) = P(étoile).P(rouge\ |\ étoile)$

$$P(A et B) = P(A) \cdot P(B \mid A)$$

$$P(A et B) = P(B) \cdot P(A \mid B)$$

 $P(B) \cdot P(A \mid B) = P(A) \cdot P(B \mid A)$

Pierre Simon Laplace, 1774

90

mas Bayes (1701 ou 1702-1761)

Bayes, T., & Price, R. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London, 53, 370-418.

Pierre Simon Laplace. Théorie Analytique des Probabilités, Second Edition; Mme Veuve Courcier: Paris, France, 1814.

P(A|B) - La vraisemblance

 $P(B|A) = \frac{P(A|B) \times P(A|B)}{P(B)}$

 La vraisemblance est la probabilité conditionnelle de A sachant B.

89

Le maximum de vraisemblance

- L'estimateur du maximum de vraisemblance est utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. In Wikipedia
- Cette méthode a été développée par le statisticien Ronald Aylmer Fisher entre 1912 et 1922 et est devenue centrale dans les sciences avec le développement des moyens de calcul.
- Fisher, R.A. 1912 . On an absolute criterion for fitting frequency curves. Messenger of Mathematics 41 155-160.
- En 1912, R.A. Fisher était en équivalent de L3.

D'un point de vue pratique

- Soit un ensemble d'observations indépendantes (les évidences dans le langage bayésien) $X = \{X_i\}_{i=1}^{|X|}$ où chaque X_i est une réalisation de la variable aléatoire X. |X| est le nombre d'observations dans X.
- On appelle Θ l'ensemble des paramètres qui expliquent les observations X.
- Le ML revient à chercher Θ maximisant $P(X|\Theta)$ qui est appelé la vraisemblance ou la probabilité conditionnelle des observations X sachant Θ .
- La « vraisemblance » répond donc à la question de savoir dans quelle mesure les observations (X) sont probables pour des valeurs données des paramètres du modèle (Θ) .

Le maximum de vraisemblance

- P(X|Θ) est donc la vraisemblance soit la probabilité conditionnelle des observations X sachant le modèle Θ.
- Mais le « sachant le modèle » pose un problème car justement nous ne le savons pas! C'est lui qu'on cherche.
- L'estimation par le ML nous donne un jeu de paramètres Θ sans connaître l'incertitude qu'on a sur $\Theta.$
- · C'est ce qu'on appelle une estimation ponctuelle.
- $\circ~$ En faisant des hypothèses fortes, on peut estimer l'incertitude sur $\Theta.$
- D'un point de vue épistémologique, l'idée est que si on fait l'expérience un grand nombre de fois, on converge vers θ.
 - Or on ne peut pas refaire l'expérience un grand nombre de fois !
 On est limité par les données disponibles.

Comment passer à $P(\Theta|X)$

- P(Θ|X) correspond à ce qui nous intéresse réellement puisque c'est la probabilité du modèle Θ connaissant les données X.
- La formule de Bayes nous donne la solution.

$$P(\Theta|X) = \frac{P(X|\Theta) \times P(\Theta)}{P(X)}$$

93

$P(\Theta|X)$ par le Maximum a posteriori

 $P(\Theta|X) = \frac{P(X|\Theta) \times P(\Theta)}{P(X)}$

- Une première solution est de considérer P(X) comme une constante inconnue qui ne nous intéresse pas car elle ne dépend pas de Θ.
 Ça nous arrange bien car en général on n'a aucune information sur P(X) qui est la probabilité d'observer X dans le monde qui nous entoure.
- C'est ce qu'on appelle l'estimation « Maximum a Posteriori » MAP
- $P(\Theta|X) # P(X|\Theta) \times P(\Theta)$
- $P(\Theta)$ est l'information qu'on a a priori sur les valeurs de Θ .

LE MAP

- $P(X|\Theta) \times P(\Theta)$ est donc proportionnel à une constante 1/P(X) près à la probabilité du modèle sachant les observations.
- Le MAP nous permet d'injecter une information *a priori* sur les paramètres.
- $^{\circ}$ Si on considère qu'on n'a aucune information a priori sur Θ (distribution uniforme infinie), alors le MAP est identique au ML.
- L'estimation par le MAP nous donne un jeu de paramètres Θ sans connaître l'incertitude qu'on a sur Θ.
- · C'est encore une estimation ponctuelle.
- D'un point de vue épistémologique, l'idée est encore une fois que si on fait l'expérience un grand nombre de fois, on converge vers Θ.

L'a priori

- Les lois a priori peuvent être créées à l'aide d'un certain nombre de méthodes;
- Une loi a priori peut être déterminée à partir d'informations antérieures, telles que des expériences précédentes.
- Elle peut être obtenue à partir de l'évaluation purement subjective d'un expert expérimenté.
- Une loi a priori non informative peut être créée pour refléter un équilibre entre les résultats lorsque aucune information n'est disponible.

L'estimation bayésienne

- Si on revient à la formule de Bayes:
- $P(\Theta|X) = \frac{P(X|\Theta) \times P(\Theta)}{P(X)}$
- On voit qu'on a toujours le problème de P(X) qu'en général on ne connait pas.
- Mais on peut faire disparaître le dénominateur P(X) en calculant le ratio $P(\Theta_{(1)}|X)/P(\Theta_{(2)}|X)$
- $\circ \Theta_{(x)}$ est un jeu x de paramètres Θ , pas le paramètre x de Θ .
- $\bullet \ \frac{{}^{P}\!\!\left(\boldsymbol{X}\big|\boldsymbol{\Theta}_{(1)}\right) \!\times\! {}^{P}\!\!\left(\boldsymbol{\Theta}_{(1)}\right)}{{}^{P}\!\!\left(\boldsymbol{X}\right)} \! \! \left/ \! \frac{{}^{P}\!\!\left(\boldsymbol{X}\big|\boldsymbol{\Theta}_{(2)}\right) \!\times\! {}^{P}\!\!\left(\boldsymbol{\Theta}_{(2)}\right)}{{}^{P}\!\!\left(\boldsymbol{X}\right)} = \frac{{}^{P}\!\!\left(\boldsymbol{X}\big|\boldsymbol{\Theta}_{(1)}\right) \!\times\! {}^{P}\!\!\left(\boldsymbol{\Theta}_{(1)}\right)}{{}^{P}\!\!\left(\boldsymbol{X}\big|\boldsymbol{\Theta}_{(2)}\right) \!\times\! {}^{P}\!\!\left(\boldsymbol{\Theta}_{(2)}\right)}$
- Et c'est là qu'intervient l'algorithme de Metropolis-Hastings ou de Gibbs par MCMC qui va nous donne la distribution de $\theta.$

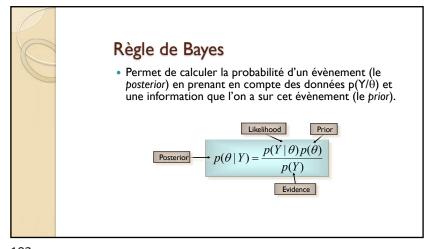
97

L'estimation bayésienne

- P(Θ|X) est donc bien la probabilité du modèle sachant les observations.
- L'estimation bayésienne nous donne la distribution des paramètres Θ prenant en compte l'information qu'on a a priori sur Θ.
- Même si on considère qu'on n'a pas d'information sur Θ,
 l'estimation bayésienne reste intéressante puisque ce n'est pas une estimation ponctuelle.
- D'un point de vue épistémologique, on estime l'incertitude qui correspond réellement aux données dont on dispose.

Pourquoi maintenant?

- Pour utiliser une inférence bayésienne en dehors de cas simples comme vus en introduction, il est nécessaire d'utiliser des moyens de calcul pour à la fois estimer la vraisemblance et le MAP.
- Ces calculs doivent être répétés un grand nombre de fois dans l'algorithme de Metropolis-Hastings ce qui conduit à des calculs de plusieurs heures, voir plusieurs jours.
- Des nouveaux algorithmes parallèles ont été développés ce qui rend ces calculs faisables maintenant ce qui n'était pas le cas il y a encore 10 ans.



101 102

La bayésien en pratique

- Pendant longtemps, on n'a pas ${\bf su}$ utiliser le bayésien car on ne savait pas calculer p(Y) sauf dans des cas très simples.
- Pendant longtemps, on n'a pas voulu utiliser le bayésien à cause d'une incompréhension de ce que sont les priors, notamment en relation avec l'objectivité scientifique qui date de la méthode scientifique vue par Roger Bacon (1220-1292).
- Et puis le MCMC bayésien a été inventé:
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by fast computing machines. *Journal of Chemical Physics* **1953**, *21*, 1087-1092.
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97-109.

Chaîne de Markov

Un processus de Markov est un processus stochastique possédant la propriété de Markov:

I'information utile pour la prédiction du futur est contenue dans l'état présent du processus.

Monte Carlo est un quartier de Monaco, une ville-État.

Monte Carlo

 Le terme méthode de Monte-Carlo désigne une famille de méthodes algorithmiques visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes.

L'aiguille de Buffon est une expérience de probabilité proposée en 1733 par Georges-Louis Leclerc de Buffon, au XVIIIe siècle. Cette expérience fournit une approximation du nombre TI.

107

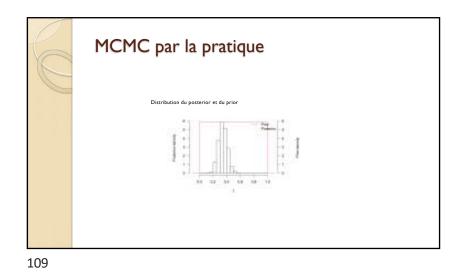
105

MCMC par la pratique • n=50, k=17 Density Prior1 Prior2 SDProp Min Max Init p dunif 0 1 0.05 0 1 0.1

Revenons à notre exemple On cherche la distribution p. On a les données n=50 et k=17. On doit

- On cherche la distribution p. On a les données n=50 et k=17. On doi choisir un prior pour p. qu'a-t-on comme information sur p? Rien.
 Donc on choisira un prior de p dans une loi uniforme comprise dans]0, 1[.
- On commence une chaîne de Markov avec une valeur p_0 =0.1 par exemple.
- On calcule la vraisemblance L_0 . On tire au hasard une valeur p_1 (le processus de Monte-Carlo). On calcule la vraisemblance L_1 avec cette valeur. Si L_1 est meilleure que L_0 , on la garde sinon on peut quand même la garder avec une probabilité dépendant de sa probabilité posterior et de celle du point précédent: si elle est vraiment très peu probable, on a peu de chance de la garder mais ce n'est jamais nul quand même (algorithme de Metropolis-Hastings). Cela génère une chaîne de Markov.

MCMC par la pratique



MCMC par la pratique

• lci n=50, k=2. Le ML est obtenu pour p=0.04 et l'erreur standard par ML est 0.02769617. L'intervalle de confiance à 95% est: [-0.01428, 0.09428] ce qui n'a aucun sens !

• L'intervalle crédible à 95% en MCMC est [0.0089, 0.0953] ce qui est nettement mieux.

• Notez qu'il n'est pas symétrique.

Partie 4
PRENDRE EN COMPTE
L'INCERTITUDE DES ENTRÉES

111

Soit un modèle M
Dans ce modèle, il y a k paramètres qui sont connus avec une certaine incertitude, soit décrite par une erreur standard, soit par une distribution interquantiles, soit une une distribution de valeurs possibles.
On veut savoir comment cette incertitude se reflète sur l'incertitude des sorties.
On utilisera une erreur standard si l'incertitude est distribuée normalement ou au moins est symétrique, on utilisera l'intervalle interquantiles pour une distribution asymétrique et une liste de valeurs pour un résultat de MCMC.

112

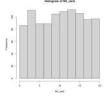
110

Modèle logistique

- Le modèle logistique est décrit par 3 paramètres, No, r et
- A chacun de ces paramètres est associé une incertitude. On va générer un set de m valeurs tirées dans la gamme des possibles.
- Par exemple:

NO rand <- runif(1000, min=0.1, max=20) hist(NO rand)

Attention au biais sur l'histogramme car la première colonne n'a pas la même largeur que les suivantes car elle n'inclut que des valeurs > 0,1 et non >0.

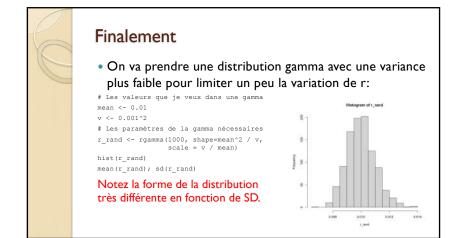


113

Avec une distribution lognormale # Les valeurs que je veux dans une lognormale; movenne et variance v <- 0.01^2 # Les paramètres de la lognormale nécessaires - démonstration # mu + sigma^2/2=log(mean) # 2 mu + sigma^2=2 log(mean) # $log(exp(sigma^2)-1)+ 2 mu + sigma^2 = log(v)$ # $\log(\exp(sigma^2)-1) + 2 \log(mean) = \log(v)$ # $\log(\exp(sigma^2)-1) = \log(v) - 2 \log(mean)$ $\# \exp(\operatorname{sigma^2}) - 1 = \exp(\log(v) - 2 \log(\operatorname{mean}))$ # exp(sigma^2) = exp(log(v) - 2 log(mean)) + 1 $\# \exp(sigma^2) = v/mean^2 + 1$ # sigma^2 = log(v/mean^2 + 1) sigma <= sqrt(log(v / mean ^ 2 + 1)) mu <- log(mean) - sigma ^ 2 / 2 r_rand <- rlnorm(1000, meanlog = mu, sdlog=sigma) mean(r_rand); sd(r_rand)

Une incertitude tirée d'une distribution normale... • Si l'écart-type est du même ordre de grandeur que la moyenne, on est obligé de tronquer la distribution pour ne pas avoir de valeurs négatives: r_rand <- rnorm(1000, mean=0.01, sd=0.01) hist(r_rand) while(any(r_rand <= 0)) { pos <- which(r_rand <= 0) r rand[pos] <- rnorm(length(pos), mean=0.01, sd=0.001) hist(r_rand) mean(r_rand); sd(r_rand) Attention, la moyenne et le SD de la distribution tronquée sont biaisés (la moyenne est plus forte que mean et l'écart-type plus faible que sd). Ce n'est pas la bonne façon de procéder. On va plutôt utiliser des distributions toujours positives. 114

Avec une distribution gamma # Les valeurs que je veux dans une distribution gamma mean <- 0.01 v <- 0.01^2 # Les paramètres de la gamma nécessaires - démonstration # shape * scale = mean # shape * scale^2 = v # shape = mean / scale # v = scale^2 * mean / scale # v = scale * mean # scale = v / mean # shape = mean / 1 / (v / mean) # shape = mean^2 / v r rand <- rgamma(1000, shape=mean^2 / v, scale = v / mean) hist(r rand) mean (r rand); sd (r rand)



K tiré dans une distribution de Cauchy

- La distribution de Cauchy ressemble à une distribution normale mais a une queue plus grosse. Elle peut être utile quand on veut définir un prior symétrique qui n'exclut pas trop des valeurs extrêmes. Mais attention, le fait qu'elle ait de grosses queues fait que si on l'utilise pour générer une distribution de nombre aléatoire, on peut avoir facilement des nombres négatifs.
- La distribution de Cauchy apparaît naturellement quand on fait le ratio de deux distributions normales.

https://fr.wikipedia.org/wiki/Loi de Cauchy (probabilités

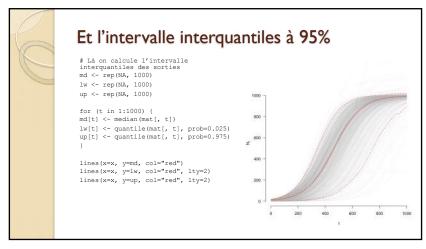
118

117

Et finalement, on affiche les 1000 réplicats

plot(x = c(1:1000), y=logistique(1:1000, N0=10, r=0.01, K=1000), type="1", type=

119



Partie 5

ANALYSE DE SENSIBILITÉ ET D'ÉLASTICITÉ

121 122

Introduction

- En étudiant comment la réponse du modèle réagit aux variations de ses variables d'entrée, l'analyse de sensibilité permet de répondre à un certain nombre de questions.
- I. Le modèle est-il bien fidèle au phénomène/processus modélisé?
- $^{\circ}$ 2. Quelles sont les variables qui contribuent le plus à la variabilité de la réponse du modèle ?
- 3. Quelles sont au contraire les variables les moins influentes ?
- 4. Quelles variables, ou quels groupes de variables, interagissent avec quelles (quels) autres?

Jacques J. (2001) Pratique de l'analyse de sensibilité : comment évaluer l'impact des entrées aléatoires sur la sortie d'un modèle mathématique. PUB. IRMA, 71 (III), 1-19.

Pourquoi une analyse de sensibilité ?

- I. Le modèle est-il bien fidèle au phénomène/processus modélisé?
 - En effet, si l'analyse exhibe une forte influence d'une variable d'entrée habituellement connue comme non influente, il sera nécessaire de remettre en cause la qualité du modèle ou (et) la véracité de nos connaissances sur l'impact réel des variables d'entrée.

Pourquoi une analyse de sensibilité ?

- 2. Quelles sont les variables qui contribuent le plus à la variabilité de la réponse du modèle ?
 - Si cette variabilité est synonyme d'imprécision sur la valeur prédite de la sortie, il sera alors possible d'améliorer la qualité de la réponse du modèle à moindre coût en concentrant les efforts sur la réduction des variabilités des entrées les plus influentes.
 - Mais cela n'est pas toujours possible, notamment lorsque la variabilité d'une variable d'entrée est intrinsèque à la nature de la variable et non due à un manque d'information ou à des imprécisions de mesures.

Pourquoi une analyse de sensibilité ?

- 3. Quelles sont au contraire les variables les moins influentes?
- Il sera possible de les considérer comme des paramètres déterministes, en les fixant par exemple à leur espérance, et obtenir ainsi un modèle plus léger avec moins de variables d'entrée.

125

Pourquoi une analyse de sensibilité ?

- 4. Quelles variables, ou quels groupes de variables, interagissent avec quelles (quels) autres?
 - L'analyse de sensibilité peut permettre de mieux appréhender et comprendre le phénomène modélisé, en éclairant les relations entre les variables d'entrée.

Contexte général

 Elasticité et sensibilité sont deux termes utilisés pour décrire la relation qui existe entre une ou des variables d'entrée d'un modèle et la ou les sorties de ce modèle.

Origine des concepts

 À la fin du XVIIe siècle, en particulier, Gregory King, puis Charles D'Avenant notent qu'une baisse de l'offre de blé conduit à un renchérissement du prix de cette denrée qui n'est pas en proportion de la baisse.

Gregory King (né le 15 décembre 1648 - mort le 29 août 1712) est un haut fonctionnaire britannique et l'un des premiers grands statisticiens économiques du monde moderne.
Charles d'Avenant (1656-1714), économiste anglais

REPORT
To the Horsesset

COMMISSIONERS
TO STITLES

Execution the Act,
STITLES

As All, for the Falling, EastMark All, for the Falling, EastMark All States (Constitution)

The Constitution Constitution

The Constitution Constitution

The Const

Charles d'Avenant (1656-1714), économiste anglais

Attention, en marketing ou physique

- L'élasticité des prix est un principe économique créé en 1890 par l'économiste Alfred Marshall. Lorsque le prix d'un produit change, la volonté des clients de l'acheter change également.
- La sensibilité au prix, quant à elle, indique dans quelle mesure un client est sensible aux variations de prix et s'avère précieuse pour comparer différents segments afin de déterminer lequel, le cas échéant, est le plus sensible au prix.
- On trouve aussi des concepts d'élasticité ou de sensibilité en physique des matériaux sans qu'il n'y ait de relation avec ceux décrits ci-après.

129

Analyse de type "One at a time" (OAT)

ELASTICITÉ

 La sensibilité est la variation d'une variable y par rapport à la variation d'une variable x.

$$S(y,x) = \frac{\Delta(y)}{\Delta(x)}$$

• Notez que la sensibilité a l'unité de celle de y.x-l

Attention, faux ami: En anglais, « sensibility » est « an understanding of or ability to decide about what is good or valuable, especially in connection with artistic or social activities ».

Elasticité (elasticity en anglais)

- L'élasticité est le coefficient de variation d'une variable y par rapport à la variation d'une variable x.
- Le pourcentage de variation de y se notant $\frac{\Delta(y)}{y} \times 100$ et celui de x se notant $\frac{\Delta(x)}{x} \times 100$, on obtient, pour x et y non nuls, la formule suivante (les 100 se simplifient) :

$$E(y,x) = \frac{\frac{\Delta(y)}{y}}{\frac{\Delta(x)}{x}} = \frac{x}{y} \cdot \frac{\Delta(y)}{\Delta(x)}$$

Notez que l'élasticité n'a pas d'unité.

Analyse de sensibilité appliquée aux modèles matriciels

- Un outil important dans l'analyse des modèles matriciels de population consiste à comprendre comment les probabilités de transition et de permanence de chaque classe affectent la croissance de la population. Les valeurs qui expriment cela sont appelés sensibilité et élasticité.
- Ce sont des outils tant pour la compréhension des différentes stratégies de cycle biologique que pour la gestion des populations menacées, voire pour leur utilisation durable.

Elasticité et sensibilité

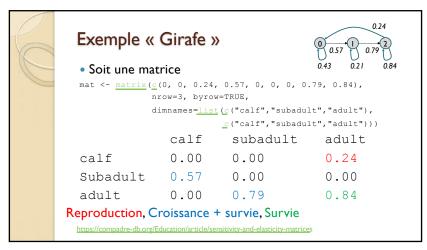
133

- La sensibilité est la contribution directe de chaque transition à λ. En termes mathématiques, la sensibilité de l'élément a_{ii} de la matrice de projection A correspond à la variation de λ due à une petite variation de cet élément $(\delta \lambda / \delta a_{ii})$.
- L'élasticité, en revanche, est une mesure de sensibilité proportionnelle à l'effet. Elle permet de déterminer si un élément de transition peut doubler et avoir peu d'impact sur le lambda, ou si cet élément peut doubler et avoir un effet fort sur le lambda, quelles que soient les valeurs initiales.

Exemple pour un modèle matriciel

134

- $S_{i,j} = \frac{\lambda_{perturbé} \lambda_{original}}{a_{perturbé},j-a_{original},j}$ Pour le calcul de l'élasticité, il suffit de diviser chaque différence de la formule ci-dessus par la valeur d'origine afin que les différences soient exprimées en proportion:
- $E_{i,j} = \frac{(\lambda_{perturb\acute{e}} \lambda_{original})/\lambda_{original}}{(a_{perturb\acute{e}},j a_{original},j)/a_{original},j}$
- Une autre solution consiste à multiplier la valeur de la sensibilité par le rapport entre le taux original et le lambda original :
- $E_{i,j} = \frac{a_{original i,j}}{\lambda_{original}} S_{i,j}$
- Notez que, pour le calcul matriciel, on peut calculer les dérivées de façon analytique sans faire d'approximation.



Sensibilité Quand on ajoute l'option zero=FALSE, on considère que les cases où il n'y a pas de flèche pourraient en avoir. Library (popbio) sensitivity(mat, zero = FALSE) calf subadult adult 0.09871191 0.05874458 0.3939444 > subadult 0.16587133 0.09871191 0.6619676 > adult 0.20110408 0.11967932 0.8025762 sensitivity(mat, zero = TRUE) calf subadult 0.0000000 0.0000000 0.3939444 > calf > subadult 0.1658713 0.0000000 0.0000000 0.0000000 0.1196793 0.8025762 Reproduction, Croissance + survie, Survie

137

Cas général de calcul de l'élasticité

- Soit un modèle avec k paramètres. On fait varier chacun des k paramètres de ± p% (0,1%, 1% ou 10%) et on regarde de combien varie la sortie du modèle.
- On fait alors le rapport des taux de variation qui est l'élasticité, une valeur sans unité.
- En général on choisit p% petit pour se rapprocher de l'élasticité en un point particulier.

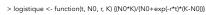
Exemple avec le modèle logistique

$$N_{t} = \frac{N_{0}K}{N_{0} + e^{-rt}(K - N_{0})}$$

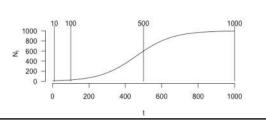
• On va chercher à évaluer l'impact de K, r et N_0 sur N_{10} , N_{100} , N_{500} et N_{1000} avec K=1000, r=0,01 et N_0 =10.

141 142

Etat initial

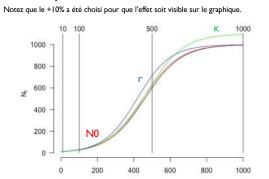


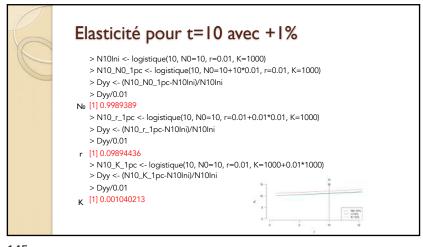
- > plot(x = c(1:1000), y = logistique(1:1000, N0=10, r=0.01, K=1000), type="l", bty="n", las=1, xlab="t", ylab=bquote("N"[t]), ylim=c(0, 1100))
- > segments(x0=c(10, 100, 500, 1000), y0=0, y1=1100)
- par(xpd=TRUE); text(x=c(10, 100, 500, 1000), y=1150, labels = c("10", "100", "500", "1000"))



143

Effet des paramètres +10%





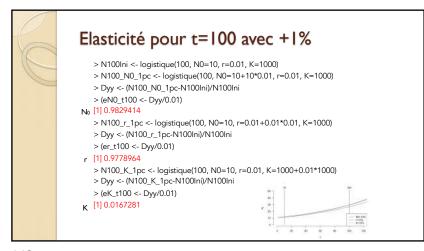
Synthèse

- Si l'élasticité >0, cela signifie qu'une augmentation sur le paramètre induit une augmentation sur la sortie
- Si l'élasticité <0, cela signifie qu'une augmentation sur le paramètre induit une baisse sur la sortie

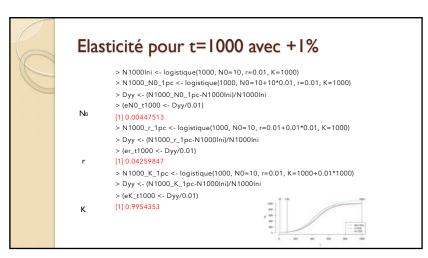
145

Synthèse, si l'élasticité est >0

- Si l'élasticité =0, cela signifie qu'l% d'augmentation sur le paramètre n'induit aucun changement sur la sortie
- Si l'élasticité est comprise entre 0 et 1, cela signifie qu'1% d'augmentation conduit à une augmentation de moins de 1% en sortie.
- Si l'élasticité = I, cela signifie qu'1% d'augmentation sur le paramètre induit 1% d'augmentation sur la sortie
- Si l'élasticité est supérieure à 1, cela signifie qu'1% d'augmentation conduit à une augmentation de plus de 1% en sortie.



147



149 150

Choix de la déviation • Le choix de l% n'est pas neutre: > N500_r_1pc <- logistique(500, N0=10, r=0.01+0.01*0.01, K=1000) > Dyy <- (N500_r_1pc-N500lni)/N500lni > (er_t500 <- Dyy/0.01) [1] 1.99035 > N500_r_10pc <- logistique(500, N0=10, r=0.01+0.1*0.01, K=1000) > Dyy <- (N500_r_10pc-N500lni)/N500lni > Dyy/0.1 [1] 1.868633

Symétrie de l'effet

• L'effet n'est pas strictement symétrique:

> N500_r_10pc <- logistique(500, N0=10, r=0.01+0.1*0.01, K=1000)

> Dyy <- (N500_r_10pc-N500Ini)/N500Ini

> Dyy/0.1

[1] 1.868633

> N500_r_10pc <- logistique(500, N0=10, r=0.01-0.1*0.01, K=1000)

> Dyy <- (N500_r_10pc-N500Ini)/N500Ini

> Dyy <- (N500_r_10pc-N500Ini)/N500Ini

> Dyy/-0.1

[1] 2.060843

On pourra prendre l'élasticité moyenne pour ± x%

Autres problèmes (I)

- Comment prendre en compte les interactions entre paramètres ?
- Exemple: Le changement d'un paramètre ne change pas la sortie du modèle mais quand il change alors qu'un autre change aussi, l'effet est très important.
- on trouvera cet effet lorsqu'il y a des chaînes de causalité:

$$A \xrightarrow{X_1=0} B \xrightarrow{X_2} C$$

 $^{\circ}$ Changer X_2 n'aura aucun effet car B est absent, mais changer à la fois X_1 et X_2 pourra avoir un effet très fort.

Autres problèmes (2)

- Comment prendre en compte l'incertitude sur les paramètres ?
- Cette méthode calcule l'incertitude en un point mais ce point est lui-même souvent mal connu et on risque d'explorer l'élasticité dans une zone de l'espace des paramètres qui ne correspond pas à la zone où se trouve la vraie valeur.

153

Gérer l'incertitude en OAT

- Morris (1991) propose d'explorer l'espace des paramètres toujours dans une stratégie OAT pour y détecter trois comportements de variables:
- · Variables sans effet sur la sortie
- · Variables avec effet fort sur la sortie
- Variables avec effet non-linéaire

M.D. Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 33:161–174, 1991.

Mais en pratique ça ne résout pas les problèmes décrits précédemment.

Conclusion

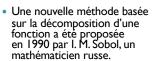
- C'est souvent la première analyse que l'on fait car elle est très peu coûteuse en temps de calcul.
- Mais il ne faut pas s'arrêter là car on risque de passer à côté d'effets importants ou intéressants.

ANALYSE DE SENSIBILITÉ BASÉE SUR LA DÉCOMPOSITION DE LA VARIANCE

Sobol I.M. (1990) Sensitivity estimates for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2, 112-118. Sobol I.M. (1993) Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1, 407-414. Sobol I.M. (2001) Global sensitivity indices for nonlinear

mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271-280.

Sensibilité de Sobol



- Cette méthode est devenue la méthode de référence même si elle est encore assez peu utilisée:
- Nossent J., Elsen P. and Bauwens W. (2011) Sobol' sensitivity analysis of a complex environmental model. Environmental Modelling & Software, 26(12), 1515-1525.
- Chevallier, D., Mourrain, B. & Girondot, M. (2020) Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation. *Ecological Modelling*, **426**,

157 158

Rappels

• Soit une variable aléatoire x de variance s_x^2

Alors

 $s_{x+k}^2 = s_x^2$

> x <- rnorm(20, mean=10, sd=2)

 $> sd(x)^2$

[1] 2.12796

 $> sd(10+x)^2$

[1] 2.12796

 $> sd(10*x)^2$

[1] 212.79

Rappels

- Soit une variable aléatoire x_1 de variance $s_{x_1}^2$ et x_2 de variance $s_{x_2}^2$, la covariance de x_1 et x_2 étant nulle:
 Alors $s_{x_1+x_2}^2 = s_{x_1}^2 + s_{x_2}^2$ et $s_{x_1x_1+k_2,x_2}^2 = k_1^2.s_{x_1}^2 + k_2^2.s_{x_2}^2$ La variance totale est s_{x_1,x_1+k_2,x_2}^2 qui peut être décomposée en deux termes $k_1^2.s_{x_1}^2$ et $k_2^2.s_{x_2}^2$
- $k_1^2. s_{x_1}^2/(s_{k_1.x_1+k_2.x_2}^2)$ est la contribution de x_1 à la variance totale et $k_2^2. s_{x_2}^2/(s_{k_1.x_1+k_2.x_2}^2)$ est la contribution de x_2 à la variance totale avec leur somme égale à I.

Généralisons

• Supposons que le modèle étudié soit linéaire, et qu'il s'écrive sous la forme suivante :

$$Y = \beta_0 + \sum_{i=1}^{p} \beta_i X_i$$
.

• Si les variables X_i sont supposées indépendantes, la variance de Y s'écrit alors :

$$V(Y) = \sum_{i=1}^{p} \beta_i^2 V(X_i),$$

Et $\beta_i^2 V(Xi)$ est la part de la variance totale due à la variable X_i .

L'indice SRC

162

- La sensibilité de Y à X_i peut donc simplement être quantifiée par le rapport de la part de variance due à X_i sur la variance totale.
- On définit ainsi l'indice de sensibilité SRC (Standardized Regression Coefficient) :

$$SRC_i = \frac{\beta_i^2 V(X_i)}{V(Y)}.$$

161

L'apport de Ilya Sobol

- Un modèle est décrit comme Y=f(X) avec X un vecteur $\{X_1, X_2, ..., X_d\}$.
- Sobol (1990, 1993) a proposé une méthode pour écrire cette fonction f(X) comme étant une décomposition linéaire :

$$f(\mathbf{X}) = f_0 + \sum_{i=1}^d f_i(X_i) + \sum_{i< j}^d f_{ij}(X_i, X_j) + \dots + f_{1,2,\dots,d}(X_1, X_2, \dots, X_d)$$

$$\text{avec } X_i \in [0, 1] \text{ et } i=1, 2, \dots, d$$

X représente donc un hypercube de côté I.

f comme une somme de fonctions

• La fonction f du modèle peut donc être décomposée en une somme de fonctions de dimensions croissantes :

$$\begin{array}{lll} Y & = & f(X_1,...,X_p) \\ & = & f_0 + \sum_{i=1}^p f_i(X_i) + \sum_{1 \leq i < j \leq p} f_{ij}(X_i,X_j) + \ldots + f_{1,...p}(X_1,...,X_p). \\ \\ \text{où} & f_0 & = & \mathbf{E}[Y], \\ f_i(X_i) & = & \mathbf{E}[Y|X_i] - \mathbf{E}[Y], \\ f_{i,j}(X_i,X_j) & = & \mathbf{E}[Y|X_i,X_j] - \mathbf{E}[Y|X_i] - \mathbf{E}[Y|X_j] + \mathbf{E}[Y], \\ f_{i,j,k}(X_i,X_j,X_k) & = & \mathbf{E}[Y|X_i,X_j] - \mathbf{E}[Y|X_i,X_j] - \mathbf{E}[Y|X_i,X_k] \\ - & \mathbf{E}[Y|X_j,X_k] \dots \end{array}$$

Variance du modèle

• La variance du modèle à entrées indépendantes se décompose en :

$$\begin{split} V &= \sum_{i=1}^{p} V_{i} + \sum_{1 \leq i < j \leq p} V_{ij} + \ldots + V_{1...p}, \\ V_{i} &= V(\mathbb{E}[Y|X_{i}]), \\ V_{ij} &= V(\mathbb{E}[Y|X_{i},X_{j}]) - V_{i} - V_{j}, \\ V_{ijk} &= V(\mathbb{E}[Y|X_{i},X_{j},X_{k}]) - V_{ij} - V_{ik} - V_{jk} - V_{i} - V_{j} - V_{k}, \\ &\cdots \\ V_{1...p} &= V - \sum_{i=1}^{p} V_{i} - \sum_{1 \leq i < j \leq p} V_{ij} - \ldots - \sum_{1 \leq i_{1} < \ldots < i_{p-1} \leq p} V_{i_{1}...i_{p-1}} \end{split}$$

Décomposition linéaire de f(x)

- Lorsque la fonction f(x) est intégrable, il est possible de calculer la décomposition de façon analytique;
- Sinon (ce qui est le plus souvent le cas dans des cas réels), on effectue une décomposition par une méthode itérative basée sur une méthode de (quasi)-Monte-Carlo.

https://en.wikipedia.org/w/index.php?title=Variance-based_sensitivity_analys

165

Indices de Sobol

- I. M. Sobol se base sur cette décomposition pour définir des indices de sensibilité d'ordre un: S_i=V_i/V.
- Les indices de sensibilité d'ordre deux,
 S_{ij}= V_{ij}/V, expriment la sensibilité de la variance de Y à l'interaction des variables X_i et X_j, c'est-à-dire la sensibilité de Y aux variables X_i et X_j qui n'est pas prise en compte dans l'effet des variables seules.
- On peut aussi définir des indices d'ordre 3 jusqu'à p.

Interprétation des indices

166

• L'interprétation de ces indices est facile, puisque leur somme est égale à 1, et étant tous positifs, plus l'indice sera grand (proche de 1), plus la variable aura d'importance pour expliquer la variance de la sortie.

167

 On peut aussi définir la contribution d'une variable à la variance totale comme étant la somme de tous les indices où elle apparaît, par exemple, pour S_i:

$$S_i + S_{i(1:p)} + S_{i(1:p)(1:p)} + ... + S_{1:p}$$

Attention, la somme des S_i définis de cette façon est supérieure à I.

Estimation des indices

- Il existe plusieurs méthodes permettant leur estimation.
- La méthode originale, nommée ici Sobol'93 permet l'estimation de toutes les interactions mais les estimateurs sont assez instables.
- On utilisera aussi celle de Jansen'99 plus stable qui donne la contribution à la variance totale de chaque paramètre pris isolément, S_i, et de chaque paramètre S_i plus l'ensemble de ses interactions nommé S_i.

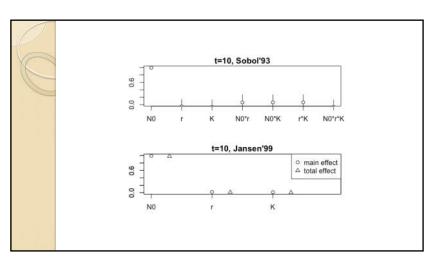
M.J.W. Jansen, 1999, Analysis of variance designs for model output, Computer Physics Communication, 117, 35–43.

169 170

Génération de l'hypercube

• Les paramètres doivent tous se situer dans un hypercube de côté 1; il convient donc d'effectuer un changement de variable pour les utiliser dans un modèle logistique avec $N_0=10$, r=0.01 et K=1000:

N0 <- ((runif(1)*2)-1)*0.1*10+10 r <- ((runif(1)*2)-1)*0.1*0.01+0.01 K <- ((runif(1)*2)-1)*0.1*1000+1000



21/10/2025

