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The hard problem of ranking
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The problem of ranking

Judge 1 8 Judge 2 8 Judge 3 8 Judge 4 8
8

Candidate 1 3.5 8 5

™

ﬁ% Candidate 2 10 6.5 10 3.5
Candidate 3 2 1 0 7
%anking method
?
Remark: here the judges provide rankings
?

but they could provide scores
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Real world examples




In machine learning

Models Scores



In machine learning

Task 1 Task 2

Task 3

Task 4

Task 5

Scores
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In machine learning

ACC ROC AUC F1 score RMSE Log Loss
Task 1 Task 2 Task 3 Task 4 Task 5

Models Scores



In machine learning

Fold 1 Fold 2 Fold 3 Fold 4
ACC ROC AUC F1 score RMSE Log Loss

Models Scores



In machine learning

Sample 1 Sample 2 Sample 3 Sample4  Sample 5
Fold 1 Fold 2 Fold 3 Fold 4

Models Scores



<% Ranking functions



Random Dictator

B
$
J 2 ‘/J'3 Ja
Ct 104 0.8 0.2 0.2
c2 | 0.8 0.7 0.9 0.7
cs | 0.7 0.7 0.8 1.0

0.8 1

0.7 — 2.5

0.7 2.5

f(M) rank( f{(M) )
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Only one task?

No re-run?

s %

Random Dictator

N

No bootstraps / cross-validation?

Ranking using only one score = Random Dictator! (in many cases)
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Mean

Jt 2 IE

j4

0.4

¢t 104 0.8 0.2 0.2
c2 | 0.8 0.7 0.9 0.7
cs | 0.7 0.7 0.8 1.0

0.775

0.8

f(M)

rank( f{(M) )
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Median

Jt 2 IE

j4

0.3

¢t 104 0.8 0.2 0.2
c2 | 0.8 0.7 0.9 0.7
cs | 0.7 0.7 0.8 1.0

0.75

0.75

f(M)

3

1.5

1.5

rank( f{(M) )
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Average rank

Studied in previous works [3]

J1

j2

J3

j4

¢l 0.4 0.8 0.2 0.2
c2 | 0.8 0.7 0.9 0.7
e | 0.7 0.7 0.8 1.0

f(M) = i Zjej rank(

2.5

— 1.625

1.875

f(M)

L
N

rank( f(M) )
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Ranking functions

Pairwise comparisons

f(M):<(n

1

_1)

Zj;éiw(ci7cj)>

1<i<n
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Ranking functions

Pairwise comparisons  f(M) = (ﬁ 2 jzi W(Ci, Cj)>
1<i<n

1 if the candidate u is more frequently better

Copeland’s method (u V) - thgn the candidate v across all judges,
) 0.5 in case of a tie,
0 otherwise.
j1 j2 j3 ja
c1 | 0.4 0.8 0.2 0.2 0.0 3
c2 | 0.8 0.7 0.9 0.7 — 1.0 — 1
cs | 0.7 0.7 0.8 1.0 0.5 2

M f(M) rank( f(M) )
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Ranking functions

Pairwise comparisons  f(M) = (ﬁ 2 jzi W(Ci, Cj)>
1<i<n

1 if the candidate u is more frequently better

Copeland’s method (u V) - thgn the candidate v across all judges,
) 0.5 in case of a tie,
0 otherwise.
j1 j2 j3 ja
c1 | 0.4 0.8 0.2 0.2 0.0 3
c2 | 0.8 0.7 0.9 0.7 — 1.0 — 1
cs | 0.7 0.7 0.8 1.0 0.5 2

M f(M) rank( f(M) )
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Ranking functions A cycle!

. . . y: Also called “Condorcet paradox” [2]
Pairwise comparisons Sty

1 if the candidate u is more frequently better

Copeland’s method (u V) s thgn the candiq’ate v across all judges,
2 0.5 in case of a tie,
0 otherwise.
j1 j2 J3 j4
¢t 0.8 0.5 0.7 0.5 1 2
c2 | 0.6 0.9 0.4 0.5 — 1 — 2
e | 0.4 0.7 0.8 0.5 1 2

M f(M) rank( f(M) ) 23



Ranking functions

Pairwise comparisons  f(M) = (ﬁ 2 iz W(CH, Cj))

1<i<n
i | m
Success rate w(u,v) = = D E—
J1 J2 J3 j4
c1 | 0.4 0.8 0.2 0.2 0.25 3
c2 0.8 0.7 0.9 0.7 — 0.625 — 1
cs | 0.7 0.7 0.8 1.0 0.5 2

Iy f(M) rank( f(M) )



Ranking functions

Pairwise comparisons  f(M) = (ﬁ 2 iz W(CH, Cj))

_ 1<i<n
. . R m U — Vi
Relative difference 'w(u, V) = = Zk:l T
J1 j2 J3 j4
c1 | 04 0.8 0.2 0.2 -0.1533... 3
c2 0.8 0.7 0.9 0.7 — 0.1381... —— 2
cs | 0.7 0.7 0.8 1.0 0.0172... 1

M f(M) rank( f(M) )
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Using optimization

m
s = argmins Z p(ji,s)
i=1
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Using optimization

m
s = argmins Z p(ji,s)

Spearman correlation
(=> average rank [9])

1=

Kendall tau

Any metric...

27



<% The hard problem of ranking



Theoretical criteria

Sum up

- Majority criterion

- Condorcet criterion
- Consistency

- Participation criterion
- Independence of irrelevant alternatives (11A)
- Local lIA

- Clone-proof

} Winner

} Judge perturbation

... and more

Candidate perturbation
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Theoretical criteria To characterize the behavior of the ranking functions

Example 1: participation criterion

I J2 j3 j4 js
ct 09 |09 05 |05 |02 0.5 2
c2 | 0.7 0.7 0.2 0.2 0.7 0.7

M median(M) rank( median(M) )
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Theoretical criteria To characterize the behavior of the ranking functions

Example 1: participation criterion

J j2 J3 ja j5
C1 05 05 02 0.5 1 I
I:> |:> u
c2 02 02 07 0.2 2
M median(M) rank( median(M) )

Median does NOT satisfies the participation criterion, while most methods do.
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Theoretical criteria

To characterize the behavior of the ranking functions

Example 2: independence of irrelevant alternatives (llA) criterion

J 2

ct 06 0.6
c2 04 |04
cs | 1 0

M

J3

0.4

AvRank(M)

rank( AvRank(M) )
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Theoretical criteria To characterize the behavior of the ranking functions

Example 2: independence of irrelevant alternatives (llA) criterion

J 2 I

c1 |06 0.6 0 1.333... 1 ,
—> — !
e 04 |04 1 1.667... 5
M AvRank(M) rank( AvRank(M) )

Average rank does NOT satisfies the IlA criterion, while median does.
33



No method is perfect
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No method is perfect

Gibbard’s theorem™ [3]:

Any deterministic ranking method holds at least one of the following three (unwanted) properties:

1.  The process is dictatorial

2. Theranking is limited to only two candidates

3. The process is open to “tactical voting”: the preferences of a judge may not best defend
their interest.

*Generalization of Arrow’s theorem [4]
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No method is perfect

Gibbard’s theorem™ [3]:

Any deterministic ranking method holds at least one of the following three (unwanted) properties:

1.  The process is dictatorial

2. Theranking is limited to only two candidates

3. The process is open to “tactical voting”: the preferences of a judge may not best defend
their interest

In practice, this imply incompatibilities between the desired properties of ranking functions

https://en.wikipedia.org/wiki/Comparison_of_electoral_systems

*Generalization of Arrow’s theorem [4] 36


https://en.wikipedia.org/wiki/Comparison_of_electoral_systems

Sum up

Majority

Condorcet

Consistency

Participation

A

LLIA

Clone
proof

Random Dictator gﬁ“i

v

Mean

Median

ANANAN

Average Rank

Copeland’s method

Success Rate

Relative Difference

LK KK

v
v
v
v

Kemeny-Young
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< What to do?



What to do?

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets
Cross-validation

Multiple samples
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What to do?

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets
Cross-validation

Multiple samples

Let’s try to find out empirically

40



Empirical criteria

generalization(f) = Xjegvaia 7 (F(T train) " rank(j))

Train judges Valid judges (left-out)

C1

A J

——> Mean rank correlation score
(Spearman p)

1g]

f(M)



Empirical criteria
stability(f) = =y Lix, 0(Xir X))

Where X is a matrix whose columns are the rankings f(M’) produced on several variation M’ of the score matrix M.

Variation can be on candidates, judges, or both.

M1 M’k
U o U
f(M*1) . f(M’x)

~

Mean correlation between all ranking produced
(Spearman p)
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Empirical criteria

Criteria relative to the elected

- is the average rank across all input judges of the
candidate ranked first in f(M).

- is the rate of ranking the Condorcet winner first when one exists.

Remark: This rate need to be evaluated on a set of score matrices

43



EXperimen’[al Setting (case judges = datasets, inline with [1])

Globally
normalized?
Benchmarks
# Datasets | # Algorithms Metric W | Norm Source
AutoDL-AUC 66 13 AUC 0.38 | No
AutoDL-ALC 66 13 ALC | 060 | No AutoDL [9)
AutoML 30 17 BAC or R | 0.27 | Yes AutoML [6]
Artificial 50 20 None 0.00 | Yes Authors of [13]
OpenML 76 292 Accuracy | 0.32 | Yes Alors [10] website
Statlog 22 24 Error rate | 0.27 | Yes | Statlog in UCI repository
10,000 repeat trials based on bootstraps Concordance

between judges



Experimental setting

Globally
normalized?
Benchmarks
# Datasets | # Algorithms Metric W | Norm Source
AutoDL-AUC 66 13 AUC 0.38 No
5
AutoDL-ALC 66 13 ALC | 060 | No AutoDL ]
AutoML 30 17 BAC or R* | 0.27 | Yes AutoML [6]
Artificial 50 20 None 0.00 | Yes Authors of [7]
OpenML 76 292 Accuracy | 0.32 | Yes Alors [8] website
Statlog 22 24 Error rate | 0.27 | Yes | Statlog in UCI repository
10,000 repeat trials based on bootstraps Concordance

between judges
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EXperimental results (case judges = datasets, inline with [1])

Theoretical properties Empirical properties

Winner Judge Candidate | . Wingsrd JUdggab'l' Carédig.’oll.tee
Maj. Condorcet Consist. Particip. IIA LIIA c::o":' suier CONCOrNt. @ nssalization; T Y RSy

f rank rate (judge) (candidate)

Mean 0 0.68 0.4 0.36 0.753
Median 0 0.70 0.5 0.37 0.702
Average - |
rank  ° 0.780
Success |
rate 9 0777
Relative 0
diff.
Copeland
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Experimental results - “Judge stability”

1.0
= 08 mm Mean
= B Median
. 06 mmm Average rank
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Experimental results - “Judge stability”
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Discussion time! @

We are trying to rank the ranking functions...

...how do we solve this meta-problem?



% Conclusion



Conclusion

The problem of ranking candidates from multiple scores is hard



Need empirical studies

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets
Cross-validation

Multiple samples

52
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