

The hard problem of ranking

SéPag seminar - 22nd March 2023

Speaker: Adrien Pavão (adrien.pavao@gmail.com)

The hard problem of ranking

What to do?

Conclusion

The problem of ranking

	Judge 1 💍	Judge 2 🏾 🕒	Judge 3 💍	Judge 4 🚨
Candidate 1	2	1	2	2
Candidate 2	1	2	1	3
Candidate 3	3	3	3	1

The problem of ranking

	Judge 1	Judge 2 🏾 🐣	Judge 3 🐣	Judge 4 🚨
Candidate 1	2	1	2	2
Candidate 2	1	2	1	3
Candidate 3	3	3	3	1

The problem of ranking

	Judge 1	Judge 2 🐣	Judge 3 🐣	Judge 4 🚨
Candidate 1	3.5	8	8	5
Candidate 2	10	6.5	10	3.5
Candidate 3	2	1	0	7

Remark: here the judges provide rankings but they could provide scores

Real world examples

Real world examples

Real world examples

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Fold 1	Fold 2	Fold 3	Fold 4	
ACC	ROC AUC	F1 score	RMSE	Log Loss
Task 1	Task 2	Task 3	Task 4	Task 5

Introduction

Ranking functions

The hard problem of ranking

What to do?

Conclusion

Random Dictator

Μ

Only one task?

No bootstraps / cross-validation?

Ranking using only one score ⇒ Random Dictator! (in many cases)

Mean

f(M)

Μ

rank(f(M))

Median

3
1.5
1.5

rank(f(M))

f(M)

Μ

Average rank

Studied in previous works [3]

$$f(M) = \frac{1}{m} \sum_{\mathbf{j} \in \mathcal{J}} \operatorname{rank}(\mathbf{j})$$

f(M)

rank(f(M))

Pairwise comparisons
$$f(M) = \left(\frac{1}{(n-1)}\sum_{j\neq i} w(\mathbf{c_i}, \mathbf{c_j})\right)_{1 \le i \le n}$$

Pairwise comparisons

$$f(M) = \left(\frac{1}{(n-1)} \sum_{j \neq i} w(\mathbf{c_i}, \mathbf{c_j})\right)_{1 \le i \le n}$$

Copeland's method

$$w(\mathbf{u},\mathbf{v}) = \begin{cases} that \\ 0.5 \text{ in } 0.5 \text{ in } 0.5 \text{ or } that \end{cases}$$

1 if the candidate *u* is more frequently better than the candidate *v* across all judges, *0.5* in case of a tie, *0* otherwise.

f(M)

rank(f(M)) ²¹

Pairwise comparisons

$$f(M) = \left(\frac{1}{(n-1)} \sum_{j \neq i} w(\mathbf{c_i}, \mathbf{c_j})\right)_{1 \le i \le n}$$

f(M)

Copeland's method $w(\mathbf{u}, \mathbf{v}) = \begin{cases} 1 \text{ if the candidate } \mathbf{u} \text{ is more frequently better} \\ than the candidate <math>\mathbf{v}$ across all judges, **0.5** in case of a tie, **0** otherwise.

	-				0.5 in case of a tie, 0 otherwise.	Lorcet winn	<mark>.er</mark> "
	j1	j2	jз	j4	*ne"C	,onau.	
C 1	0.4	0.8	0.2	0.2	0.0 C ² is the	3	
C 2	0.8	0.7	0.9	0.7	$\implies (1.0) \implies ($	1	
C 3	0.7	0.7	0.8	1.0	0.5	2	

Μ

rank(f(M)) 22

f(M)

Μ

rank(f(M))

Pairwise comparisons
$$f(M) = \left(\frac{1}{(n-1)}\sum_{j\neq i} w(\mathbf{c_i}, \mathbf{c_j})\right)_{1 \le i \le n}$$

Success rate
$$w(\mathbf{u}, \mathbf{v}) = \frac{1}{m} \sum_{k=1}^{m} \mathbbm{1}_{u_k > v_k}$$

Μ

f(M)

rank(f(M))

Pairwise comparisons
$$f(M) = \left(\frac{1}{(n-1)}\sum_{j\neq i} w(\mathbf{c_i}, \mathbf{c_j})\right)_{1 \le i \le n}$$

Relative difference
$$w(\mathbf{u}, \mathbf{v}) = \frac{1}{m} \sum_{k=1}^{m} \frac{u_k - v_k}{u_k + v_k}$$

Μ

f(M)

rank(f(M))

Using optimization

$$\mathbf{s}^* = argmin_{\mathbf{s}} \sum_{i=1}^m \rho(\mathbf{j}_i, \mathbf{s})$$

Using optimization

Introduction

Ranking functions

The hard problem of ranking

What to do?

Sum up

- Majority criterion
 Condorcet criterion
 Winner
- -
- -
- Independence of irrelevant alternatives (IIA) -
- Local IIA -
- **Clone-proof** -

Candidate perturbation

... and more

Example 1: participation criterion

Μ

median(M) rank(median(M))

Example 1: participation criterion

M median(M) rank(median(M))

Median does NOT satisfies the participation criterion, while most methods do.

To characterize the **behavior of the ranking functions**

Example 2: independence of irrelevant alternatives (IIA) criterion

To characterize the **behavior of the ranking functions**

Example 2: independence of irrelevant alternatives (IIA) criterion

Average rank does NOT satisfies the IIA criterion, while median does.

No method is perfect

No method is perfect

Gibbard's theorem* [3]:

Any deterministic ranking method holds at least one of the following three (unwanted) properties:

- 1. The process is **dictatorial**
- 2. The ranking is **limited to only two candidates**
- 3. The process is open to **"tactical voting"**: the preferences of a judge may not best defend their interest.

No method is perfect

Gibbard's theorem* [3]:

Any deterministic ranking method holds at least one of the following three (unwanted) properties:

- 1. The process is **dictatorial**
- 2. The ranking is **limited to only two candidates**
- 3. The process is open to **"tactical voting"**: the preferences of a judge may not best defend their interest

In practice, this imply incompatibilities between the desired properties of ranking functions

https://en.wikipedia.org/wiki/Comparison_of_electoral_systems

Sum up

	Majority	Condorcet	Consistency	Participation	IIA	LLIA	Clone proof
Random Dictator							
Mean			\checkmark	 ✓ 	\checkmark	<	\checkmark
Median						<	\checkmark
Average Rank			\checkmark	 			
Copeland's method							
Success Rate			\checkmark	 			
Relative Difference			 	 			
Kemeny-Young		\checkmark				<	

Introduction

Ranking functions

The hard problem of ranking

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets

Cross-validation

Multiple samples

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets

Cross-validation

Multiple samples

Let's try to find out empirically

Empirical criteria

generalization(f) =
$$\sum_{\mathbf{j} \in \mathcal{J}^{valid}} \frac{1}{m} \sigma(f(\mathcal{J}^{train}), \operatorname{rank}(\mathbf{j}))$$

Empirical criteria

$$\texttt{stability}(f) = rac{1}{m(m-1)} \sum_{i
eq j} \sigma(X_i, X_j)$$

Where X is a matrix whose columns are the rankings f(M') produced on several variation M' of the score matrix M. **Variation can be on candidates, judges, or both.**

Empirical criteria

-

Criteria relative to the elected winner (ranked first)

- The average rank of the winner is the average rank across all input judges of the candidate ranked first in *f*(*M*).
 - The Condorcet rate is the rate of ranking the Condorcet winner first when one exists.

<u>Remark</u>: This rate need to be evaluated on a set of score matrices

Experimental setting (case judges = datasets, inline with [1])

Globally ⁄ normalized?

Benchmarks

	# Datasets	# Algorithms	Metric	W	Norm	Source
AutoDL-AUC	66	13	AUC	0.38	No	AutoDI [0]
AutoDL-ALC	66	13	ALC	0.60	No	AutoDL [9]
AutoML	30	17	BAC or \mathbb{R}^2	0.27	Yes	AutoML [6]
Artificial	50	20	None	0.00	Yes	Authors of [13]
OpenML	76	292	Accuracy	0.32	Yes	Alors [10] website
Statlog	22	24	Error rate	0.27	Yes	Statlog in UCI repository

10,000 repeat trials based on bootstraps

Concordance between judges

Experimental setting

Globally normalized?

Benchmarks

	# Datasets	# Algorithms	Metric	W	Norm	Source
AutoDL-AUC	66	13	AUC	0.38	No	AutoDI [5]
AutoDL-ALC	66	13	ALC	0.60	No	AutoDL [5]
AutoML	30	17	BAC or \mathbb{R}^2	0.27	Yes	AutoML [6]
Artificial	50	20	None	0.00	Yes	Authors of [7]
OpenML	76	292	Accuracy	0.32	Yes	Alors [8] website
Statlog	22	24	Error rate	0.27	Yes	Statlog in UCI repository

10,000 repeat trials based on bootstraps

Concordance between judges

Experimental results (case judges = datasets, inline with [1])

	Theoretical properties							Empirical properties				
	V	Vinner	Juc	lge	Candidate		Wir	nner	Judę	ge	Candidate	
	Maj.	Condorcet	Consist.	Particip.	IIA	LIIA	Clone- proof	Winner rank	Condorcet rate	Generalization	Stability (judge)	Stability (candidate)
Mean	0	0	1	1	1	1	1	0.68	0.4	0.36	0.753	1.000
Median	0	0	0	0	1	1	1	0.70	0.5	0.37	0.702	1.000
Average rank	0	0	1	1	0	0	0	0.74	0.8	0.41	0.780	0.954
Success rate	0	0	1	1	0	0	0	0.73	0.8	0.40	0.777	0.839
Relative diff.	0	0	1	1	0	0	0	0.73	0.8	0.41	0.884	0.941
Copeland	1	1	0	0	0	0	0	0.73	1.0	0.41	0.771	0.965

Experimental results - "Judge stability"

Experimental results - "Judge stability"

We are trying to rank the ranking functions...

...how do we solve this meta-problem?

Introduction

Ranking functions

The hard problem of ranking

What to do?

Conclusion

The problem of ranking candidates from multiple scores is hard

Need empirical studies

In practice, the choice of the ranking functions may depend on the problem

Multiple tasks/datasets

Cross-validation

Multiple samples

Thank you!

- Any question?
- Feel free to reach me later, I'll be happy to discuss this topic with you!

References

[1] Pavel B. Brazdil and Carlos Soares, 2000. "A Comparison of Ranking Methods for Classification Algorithm Selection".

[2] William V. Gehrlein, 1997. "Condorcet's Paradox and the Condorcet Efficiency of Voting Rules".

[3] Gibbard Allan, 1973. "Manipulation of voting schemes: A general result". Econometrica.

[4] Arrow, Kenneth J., 1950. "A Difficulty in the Concept of Social Welfare". Journal of Political Economy.

[5] Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong, Frank Hutter, Rongrong Ji, Júlio C. S. Jacques Júnior, Ge Li, Marius Lindauer, Zhipeng Luo, Meysam Madadi, Thomas Nierhoff, Kangning Niu, Chunguang Pan, Danny Stoll, Sébastien Treguer, Jin Wang, Peng Wang, Chenglin Wu, Youcheng Xiong, Arber Zela, and Yang Zhang. Winning solutions and post-challenge analyses of the chalearn autodl challenge 2019. IEEE Trans. Pattern Anal. Mach. Intell., 43(9):3108–3125, 2021.

[6] I. Guyon et al. Analysis of the AutoML Challenge Series 2015–2018, pages 177–219. Springer International Publishing, Cham, 2019.

[7] L. Sun-Hosoya, I. Guyon, and M. Sebag. Activmetal: Algorithm recommendation with active meta learning. In Wshp on Interactive Adaptive Learning @ ECML-PKDD, 2018.

[8] M. Misir and M. Sebag. Alors: An algorithm recommender system. Artif. Intell., 244:291–314, 2017.

[9] Kendall, M. G. and Gibbons, J. D. (1990) pg. 125. Rank Correlation Methods. 5th ed. London: Griffin.