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Random Dictator
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Random Dictator

Ranking using only one score ⇒ Random Dictator! (in many cases)

Only one task?

No re-run?

No bootstraps / cross-validation?
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Mean

M

0.4 0.8 0.2 0.2

0.8 0.7 0.9 0.7

0.7 0.7 0.8 1.0

j1 j2 j3 j4

c1

c2

c3

0.4

0.775

0.8

  3

  2

  1

f(M) rank( f(M) )

17



Median
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Average rank
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Studied in previous works [3]
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Ranking functions

Pairwise comparisons
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Ranking functions

Pairwise comparisons

Copeland’s method
1 if the candidate u is more frequently better
   than the candidate v across all judges, 
0.5 in case of a tie, 
0 otherwise.

M

0.4 0.8 0.2 0.2

0.8 0.7 0.9 0.7

0.7 0.7 0.8 1.0

j1 j2 j3 j4

c1

c2

c3

0.0

1.0

0.5

  3

  1

  2

f(M) rank( f(M) ) 21



Ranking functions

Pairwise comparisons

Copeland’s method
1 if the candidate u is more frequently better
   than the candidate v across all judges, 
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Ranking functions

Pairwise comparisons

Copeland’s method
1 if the candidate u is more frequently better
   than the candidate v across all judges, 
0.5 in case of a tie, 
0 otherwise.
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                    A cycle!

Also called “Condorcet paradox” [2]
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Ranking functions

Pairwise comparisons
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Ranking functions

Pairwise comparisons
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Using optimization
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Using optimization
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Spearman correlation
   (=> average rank [9])  

Kendall tau

Any metric…
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Theoretical criteria

Sum up

- Majority criterion
- Condorcet criterion
- Consistency
- Participation criterion
- Independence of irrelevant alternatives (IIA)
- Local IIA
- Clone-proof
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Winner

Judge perturbation

Candidate perturbation

… and more



Theoretical criteria
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To characterize the behavior of the ranking functions

j5

Example 1: participation criterion
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To characterize the behavior of the ranking functions

j5

!

Median does NOT satisfies the participation criterion, while most methods do.

Example 1: participation criterion
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Theoretical criteria
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To characterize the behavior of the ranking functions

Example 2: independence of irrelevant alternatives (IIA) criterion

c3



Theoretical criteria
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To characterize the behavior of the ranking functions

Example 2: independence of irrelevant alternatives (IIA) criterion

c3

Average rank does NOT satisfies the IIA criterion, while median does.

!



No method is perfect
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No method is perfect

Gibbard’s theorem* [3]:

Any deterministic ranking method holds at least one of the following three (unwanted) properties:

1. The process is dictatorial
2. The ranking is limited to only two candidates
3. The process is open to “tactical voting”: the preferences of a judge may not best defend 

their interest.

35*Generalization of Arrow’s theorem [4]
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In practice, this imply incompatibilities between the desired properties of ranking functions

*Generalization of Arrow’s theorem [4]

https://en.wikipedia.org/wiki/Comparison_of_electoral_systems

https://en.wikipedia.org/wiki/Comparison_of_electoral_systems


Sum up
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What to do?

In practice, the choice of the ranking functions may depend on the problem
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Multiple tasks/datasets

Cross-validation

Multiple samples
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Multiple tasks/datasets

Cross-validation

Multiple samples

Let’s try to find out empirically



Empirical criteria

c1

...

cn

   r1

   ...

   rn

    f(M)

Train judges Valid judges (left-out)

Mean rank correlation score
        (Spearman ρ)

41

 generalization(  ) 



Empirical criteria

Where X is a matrix whose columns are the rankings f(M’) produced on several variation M’ of the score matrix M.
Variation can be on candidates, judges, or both.

    f(M’1)

M’1 ... M’k

      ...     f(M’k)

Mean correlation between all ranking produced
 (Spearman ρ)
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Empirical criteria

Criteria relative to the elected winner (ranked first) 

- The average rank of the winner is the average rank across all input judges of the 
candidate ranked first in f(M). 

- The Condorcet rate is the rate of ranking the Condorcet winner first when one exists.

Remark: This rate need to be evaluated on a set of score matrices 
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Experimental setting (case judges = datasets, inline with [1])

Benchmarks

10,000 repeat trials based on bootstraps  Concordance 
between judges

Globally
normalized?
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Experimental results (case judges = datasets, inline with [1])
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Experimental results - “Judge stability”



Experimental results - “Judge stability”



Discussion time!

We are trying to rank the ranking functions…

                                         …how do we solve this meta-problem?
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Conclusion

The problem of ranking candidates from multiple scores is hard



Need empirical studies

In practice, the choice of the ranking functions may depend on the problem
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Multiple tasks/datasets

Cross-validation

Multiple samples



Thank you!
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- Any question?

- Feel free to reach me later, I’ll be happy to discuss this topic with you!
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