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Algorithms are everywhere 1/3

Suppose that you want to buy a house. You go to the bank to get a loan.
They accept you based on an algorithm.
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Algorithms are everywhere 2/3

Suppose that you want to get a job. You candidate. They accept you
based on an algorithm.

Figure 5: Recruiters
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Algorithms are everywhere 3/3

Nowadays, many people want to rely on autonomous systems to provide
you with content, service, medical assistance...
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Examples of harm caused by algorithms
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Black Box models
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Figure 13: Youtube's recommendation algorithm is proprietary thus black box

Too Complex

Class
Label

-
BERT

=EE . D= 6

Sentence 1 Sentence 2

Figure 14: Even if you have access to a model, it does not mean it is
interpretable




Whitening the black box

1. Proprietary : Reconstruction attacks (Balle et al. 2022)
2. Building interpretable models from scratch (Zhang Zhu, 2018)

3. Explanation methods
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Explanations methods

Saliency maps (Looking at the activation Tensor)
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Figure 15: Multiple scale Saliency map From activation Tensor (Mundhenk et
al, 2020)




Explanation methods 2/2

Grad CAM
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Figure 16: Schema of the GradCAM method
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Limits of explan

mation Bias

Test image Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

Explanations using
attention maps

Fig. 2| Saliency does not explain anything except where the network is looking. We have no idea why this image is labelled as either a dog or a musical
instrument when considering only saliency. The explanations look essentially the same for both classes. Credit: Chaofen Chen, Duke University
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Concept-based Explanation

e Instead of explaining the importance of each feature, intepret the
decision with respect to concepts.

Concepts properties (Alvarez-Melis et al, 2018)
e Explicitness/Intelligibility: Are the explanations immediate and
understandable?
e Faithfulness: Are relevance scores indicative of "true” importance?

e Stability: How consistent are the explanations for
similar/neighboring examples?




Example of Concept-based explanations 1/2
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concepts ¢
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undertail color task y

CNN . Classifier
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Figure 17: Concept Bottleneck models ( Koh et al. 2020)
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Example of Concept-based explanations 2/2

Figure 18: This looks like that: deep learning for interpretable image
recognition (Chen et al. 2019)
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Interpretability Beyond Feature Attribution: Quantitative Test-
ing with Concept Activation Vector (Kim et al. 2018) 1/2

@ @ ) fi: RZ\H R*™: ] h: Ii’” R
. ||I| W = = e W K" class
#@@é @&@ "
!
mawi © ;;( @G ©
- ﬁ /1 "8 Sck (Mg )

/ [- ) :V/’I_k(fl(%)) : v’(;

Figure 19: Schema of TCAV
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Interpretability Beyond Feature Attribution: Quantitative Test-

ing with Concept Activation Vector (Kim et al. 2018) 2/2
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Figure 21: Non Linear
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(Crabbé and Scharr
2022)
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Concept bottleneck models ( Koh et al. 2020)
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Figure 22: Schema of the approach
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Towards Automatic Concept-based Explanations (Ghorbani et

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers (c) Computing saliency of concepts
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Figure 23: Schema of ACE method
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Conclusion

Black Box

e Can be harmful to society ( bias, failure )

e Proprietary and obscurity by complexity make a black box

e Building trust is necessary

e Concepts can take multiple forms (prototype, text)
e They have to respect Intelligibility, Faithfulness and Stability

e |t allows the dialog with the expert
Post-Hoc vs Explainable by design

e Post-Hoc methods may be unreliable

e Latent spaces of black box are not necessary separable by concepts
(whitening)

e Interpretable by design suppose to retrain a model but is better



