Continuous wavelet transform
Idea: be sensitive to irregularities instead of oscillations
- Let  $\psi(t)$ be an admissible “mother” wavelet, and its the dilated and translated versions
$$ \psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left( \frac{t-b}{a} \right) $$
- The continuous wavelet transform is given by:
$$ C_x(a,b) = \langle x(t),\psi_{a,b}(t)\rangle = \frac{1}{\sqrt{a}}\int_{-\infty}^{+\infty} x(t) \psi\left(\frac{t-b}{a}\right)\mathrm{d} t $$
- $|C_x(a,b)|$ is called the magnitude scalogram
Properties
- It is a time-scale transform
- It is invertible
$$ x(t)= \frac{1}{c_\psi}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(a,b) \psi\left(\frac{t-b}{a}\right)\frac{\mathrm{d} a\ \mathrm{d} b}{a^2} $$
- We have energy preservation