logo ups
LOGO_FAST_ID

RESEARCH

I’m presently working at laboratoire FAST (bureau 1.26). Up until 2022, I was working at LIMSI, now LISN previously I worked . My research covers various topics in fluid mechanics and magnetohydrodynamics. Click on the thumbnail pictures below, to navigate to dedicated webpages that give some details on my work.

A publication list can be found below with pdf downloads that are for personal use only. Contact me at wietze.herreman@universite-paris-saclay.fr for any question related to my research. You can also visit my researchgate profile.


LMB

Flows in liquid metal batteries

Liquid metal batteries are composed of three layers of conducting fluids. When electrical currents passing through the cell get to intense, flows can devellop inside the batteries. We study Tayler instability, metal pad roll instability and electro-vortex flow.

Collaboration : C. Nore, S. Bénard (LISN, Orsay), J.-L. Guermond (TAMU, College Station), L. Cappanera (U. Phoenix) , N. Weber, T. Weier, G.M. Horstmann, P. Personnettaz (HZDR, Dresden)

flotteur

Wave-floater interaction

Small floaters, such as as plastic pollution, placed in propagating gravity waves drift and rotate slowly on long time-scales. We study this slow motion using laboratory experiments and asymptotic theory. (new webpage soon available) 

Collaboration : F. Moisy, B. Dhote (FAST, Orsay)

orb_wine_small

Orbital Sloshing

Orbital sloshing is the flow that occurs whenever fluids with a free surface are being displaced along circular paths. We have done a few experiemental  and theoretical studies on this flow.

Collaboration : F. Moisy, J. Bouvard (FAST, Orsay), G.M. Horstmann (HZDR, Dresden)

minimal

Optimized dynamos

Using variational optimization methods, we find the most efficient steady flows than can act as dynamos in cubes and spheres. We can also measure the minimal magnitude of flow perturbations that can trigger dynamo in shear flows.

Collaboration : L. Chen (U. Durham), A. Jackson,  K. Li, J. Luo (ETH Zurich), P. Livermore (U. Leeds)

drift

Dynamos driven by rapid waves

Inertial waves are examples of rapidly varying flows. Dynamos driven by such flows can be modelled using a mean field dynamo theory constructed on time-averages. When magnetic diffusivity is low, fast waves drive dynamos through their Stokes drift. 

Collaboration : P. Lesaffre (LERMA, Paris)

ellipt

Inertial waves in rotating flows

During my Phd at IRPHE (Marseille), I have studied the elliptical (tidal) instability both experimentally and theoretically. Some follow-up studies later on similar inertial wave instabilities due to libration. 

Collaboration; P. Le Gal, S. Le Dizès, M. Le Bars (IRPHE, Marseille), D. Cébron (ISTERRE, Grenoble), S. Vantieghem (U. Coventry)

PUBLICATION LIST

1. Magnetic field effects on viscous fingering of a ferrofluid in a radial Hele-Shaw cell. (2004) W. Herreman, P. Molho, S. Neveu. J. Magn. Magn. Mat., 289, 356-359. 

4

2. Magnetic field induced by elliptical instability in a rotating spheroid. (2006) L. Lacaze, W. Herreman, M. Le Bars, S. Le Dizes, P. Le Gal. Geophys. Astrophys. Fluid Dyn., 100, 299-317

4

3. On the effects of imposed magnetic field on the elliptical instability in rotating spheroids. (2009) W. Herreman, M. Le Bars, P. Le Gal. Phys. Fluids, 21 (4), 046602  

4

4. Elliptical instability in rotating cylinders: liquid metal experiments under imposed magnetic field. (2010) W. Herreman, D. Cebron, S. Le Dizes, P. Le Gal. J. Fluid. Mech., 661, 130-158  

4

5. Stokes drift dynamos. (2011) W. Herreman, P. Lesaffre. J. Fluid. Mech., 679, 32-57

4

6. Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment. (2012) A. Giesecke, C. Nore, F. Stefani, G. Gerbeth, J. Léorat, W. Herreman, F. Luddens, J.-L. Guermond. NJP, 14, 053005.

4

7. Libration-driven multipolar instabilities. (2014) D. Cébron, S. Vantieghem, W. Herreman. J. Fluid Mech., 739, 502-543.

4

8. Tayler instability in liquid metal columns and liquid metal batteries. (2015) W. Herreman, C. Nore, L. Cappanera, J.-L. Guermond. J. Fluid Mech., 771, 79-114

4

9. Optimal dynamo action by steady flows confined to a cube. (2015) L. Chen, W. Herreman, A. Jackson. J. Fluid Mech. 783, 23-45

4

10. Minimal flow perturbations that trigger kinematic dynamo in shear flows. (2016) W. Herreman, J. Fluid Mech., 795, R1

4

11. Metal pad roll instability in liquid metal batteries. (2017) N. Weber, P. beckstein, V. Galindo, W. Herreman, C. Nore, F. Stefani, T. Weier. Magnetohydrodynamics, 53 (1), 3-13

4

12. Sloshing instability and electrolyte layer rupture in liquid metal batteries. (2017) N. Weber, P. Beckstein, W. Herreman, G.M. Horstmann, C. Nore, F. Stefani, T. Weier. Phys. Fluids, 29 (5), 054101  

4

13. Mean mass transport in an orbitally shaken cylindrical container. (2017) J. Bouvard, W. Herreman, F. Moisy. Phys. Rev. Fluids, 2, 084801.  

4

14. Momentum-based approximation of incompressible multiphase fluid flows. (2017) L. Cappanera, J.-L. Guermond, W. Herreman, C. Nore.  Int. J. Numer. Meth. Fluids, 1–23.

4

15. The optimal kinematic dynamo driven by steady flows in a sphere. (2018) L. Chen, W. Herreman, K. Li, P. W. Livermore, J. W. Luo, A. Jackson. J. Fluid Mech., 839, 1-32

4

16. Minimal flow perturbations that trigger mean field dynamos in shear flows. (2018) W. Herreman. J. Plasma Phys., 84 (3), 735840305

4

17. Counter-rotation in an orbitally shaken glass of beer. (2018) F. Moisy, J. Bouvard, W. Herreman. Europhys. Lett., 122 (3), 34002

4

18. Perturbation theory for metal pad roll instability in cylindrical reduction cells. (2019) W. Herreman, C. Nore, L. Cappanera, J.-L. Guermond, N. Weber, G.-M. Horstmann. J. Fluid Mech., 878, 598-646

4

19. Numerical simulations of electro-vortex flows in cylindrical fluid layers and liquid metal batteries. (2019) W. Herreman, C. Nore, P. Ziebell Ramos, L. Cappanera, J.-L. Guermond, N. Weber, Phys. Rev. Fluids, 4 (113702).

4

20. Damped wave theory for orbitally shaken cylindrical containers. (2020) G.-M. Horstmann, T. Weier, W. Herreman, J. Fluid Mech., 891, A22

4

21. Solutal buoyancy and electrovortex flow in liquid metal batteries. (2020) W. Herreman, S. Bénard, C. Nore, P. Personnettaz, L. Cappanera, J.-L. Guermond, Phys. Rev. Fluids, 5 (074501). 

4

22. Efficient mixing by swirling electrovortex flows in liquid metal batteries. (2021) W. Herreman, C. Nore, L. Cappanera, J.-L. Guermond, J. Fluid Mech. 915, A17.  

4

23. Feasibility of metal pad roll instability experiments at room temperature. (2021)C. Nore, L. Cappanera, J.-L. Guermond, T. Weier, W. Herreman, Phys. Rev. Lett. 126, 184501.

4

24. Numerical simulations of swirling electrovortex flows in cylinders. (2022) S. Bénard, W. Herreman, J.-L. Guermond, C. Nore. J. Fluid Mech. 950, A28

4

25. Magnetic field based finite element method for magneto-static problems with discontinuous electric potential distributions. (2023) S. Bénard, L. Cappanera, W. Herreman, C. Nore. Comptes Rendus de la Mécanique (351), S1

4

26. Stability theory for metal pad roll in cylindrical liquid metal batteries. (2023) W. Herreman, L. Wierzchalek, G.M. Horstmann, L. cappanera, C. Nore. J. Fluid Mech. 962, A6

4

(preprint submitted to JFM) Preferential orientation of floaters drifting in water waves. W. Herreman, B. Dhote, L. Danion, F. Moisy. 

4

Research

Teaching

Contact